Effect of Water on a Hydrophobic Deep Eutectic Solvent
Deep eutectic solvents (DESs) formed by hydrogen bond donors and acceptors are a promising new class of solvents. Both hydrophilic and hydrophobic binary DESs readily absorb water, making them ternary mixtures, and a small water content is always inevitable under ambient conditions. We present a tho...
Saved in:
Published in | The journal of physical chemistry. B Vol. 126; no. 2; pp. 513 - 527 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
American Chemical Society
20.01.2022
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Deep eutectic solvents (DESs) formed by hydrogen bond donors and acceptors are a promising new class of solvents. Both hydrophilic and hydrophobic binary DESs readily absorb water, making them ternary mixtures, and a small water content is always inevitable under ambient conditions. We present a thorough study of a typical hydrophobic DES formed by a 1:2 mole ratio of tetrabutyl ammonium chloride and decanoic acid, focusing on the effects of a low water content caused by absorbed water vapor, using multinuclear NMR techniques, molecular modeling, and several other physicochemical techniques. Already very low water contents cause dynamic nanoscale phase segregation, reduce solvent viscosity and fragility, increase self-diffusion coefficients and conductivity, and enhance local dynamics. Water interferes with the hydrogen-bonding network between the chloride ions and carboxylic acid groups by solvating them, which enhances carboxylic acid self-correlation and ion pair formation between tetrabutyl ammonium and chloride. Simulations show that the component molar ratio can be varied, with an effect on the internal structure. The water-induced changes in the physical properties are beneficial for most prospective applications but water creates an acidic aqueous nanophase with a high halide ion concentration, which may have chemically adverse effects. |
---|---|
AbstractList | Deep eutectic solvents (DESs) formed by hydrogen bond donors and acceptors are a promising new class of solvents. Both hydrophilic and hydrophobic binary DESs readily absorb water, making them ternary mixtures, and a small water content is always inevitable under ambient conditions. We present a thorough study of a typical hydrophobic DES formed by a 1:2 mole ratio of tetrabutyl ammonium chloride and decanoic acid, focusing on the effects of a low water content caused by absorbed water vapor, using multinuclear NMR techniques, molecular modeling, and several other physicochemical techniques. Already very low water contents cause dynamic nanoscale phase segregation, reduce solvent viscosity and fragility, increase self-diffusion coefficients and conductivity, and enhance local dynamics. Water interferes with the hydrogen-bonding network between the chloride ions and carboxylic acid groups by solvating them, which enhances carboxylic acid self-correlation and ion pair formation between tetrabutyl ammonium and chloride. Simulations show that the component molar ratio can be varied, with an effect on the internal structure. The water-induced changes in the physical properties are beneficial for most prospective applications but water creates an acidic aqueous nanophase with a high halide ion concentration, which may have chemically adverse effects.Deep eutectic solvents (DESs) formed by hydrogen bond donors and acceptors are a promising new class of solvents. Both hydrophilic and hydrophobic binary DESs readily absorb water, making them ternary mixtures, and a small water content is always inevitable under ambient conditions. We present a thorough study of a typical hydrophobic DES formed by a 1:2 mole ratio of tetrabutyl ammonium chloride and decanoic acid, focusing on the effects of a low water content caused by absorbed water vapor, using multinuclear NMR techniques, molecular modeling, and several other physicochemical techniques. Already very low water contents cause dynamic nanoscale phase segregation, reduce solvent viscosity and fragility, increase self-diffusion coefficients and conductivity, and enhance local dynamics. Water interferes with the hydrogen-bonding network between the chloride ions and carboxylic acid groups by solvating them, which enhances carboxylic acid self-correlation and ion pair formation between tetrabutyl ammonium and chloride. Simulations show that the component molar ratio can be varied, with an effect on the internal structure. The water-induced changes in the physical properties are beneficial for most prospective applications but water creates an acidic aqueous nanophase with a high halide ion concentration, which may have chemically adverse effects. Deep eutectic solvents (DESs) formed by hydrogen bond donors and acceptors are a promising new class of solvents. Both hydrophilic and hydrophobic binary DESs readily absorb water, making them ternary mixtures, and a small water content is always inevitable under ambient conditions. We present a thorough study of a typical hydrophobic DES formed by a 1:2 mole ratio of tetrabutyl ammonium chloride and decanoic acid, focusing on the effects of a low water content caused by absorbed water vapor, using multinuclear NMR techniques, molecular modeling, and several other physicochemical techniques. Already very low water contents cause dynamic nanoscale phase segregation, reduce solvent viscosity and fragility, increase self-diffusion coefficients and conductivity, and enhance local dynamics. Water interferes with the hydrogen-bonding network between the chloride ions and carboxylic acid groups by solvating them, which enhances carboxylic acid self-correlation and ion pair formation between tetrabutyl ammonium and chloride. Simulations show that the component molar ratio can be varied, with an effect on the internal structure. The water-induced changes in the physical properties are beneficial for most prospective applications but water creates an acidic aqueous nanophase with a high halide ion concentration, which may have chemically adverse effects. Deep eutectic solvents (DESs) formed by hydrogen bond donors and acceptors are a promising new class of solvents. Both hydrophilic and hydrophobic binary DESs readily absorb water, making them ternary mixtures, and a small water content is always inevitable under ambient conditions. We present a thorough study of a typical hydrophobic DES formed by a 1:2 mole ratio of tetrabutyl ammonium chloride and decanoic acid, focusing on the effects of a low water content caused by absorbed water vapor, using multinuclear NMR techniques, molecular modeling, and several other physicochemical techniques. Already very low water contents cause dynamic nanoscale phase segregation, reduce solvent viscosity and fragility, increase self-diffusion coefficients and conductivity, and enhance local dynamics. Water interferes with the hydrogen-bonding network between the chloride ions and carboxylic acid groups by solvating them, which enhances carboxylic acid self-correlation and ion pair formation between tetrabutyl ammonium and chloride. Simulations show that the component molar ratio can be varied, with an effect on the internal structure. The water-induced changes in the physical properties are beneficial for most prospective applications but water creates an acidic aqueous nanophase with a high halide ion concentration, which may have chemically adverse effects. |
Author | Ruggeri, Stefano Lukkari, Jukka Salomäki, Mikko Mäkilä, Ermei Poletti, Fabrizio Vainikka, Petteri Kivelä, Henri Terzi, Fabio |
AuthorAffiliation | Department of Chemistry University of Turku Doctoral School for Chemical and Physical Sciences Department of Physics and Astronomy Electrochemical Sensors Group, Department of Chemical and Geological Sciences Turku University Centre for Surfaces and Materials (MatSurf) |
AuthorAffiliation_xml | – name: Electrochemical Sensors Group, Department of Chemical and Geological Sciences – name: Department of Chemistry – name: Department of Physics and Astronomy – name: Turku University Centre for Surfaces and Materials (MatSurf) – name: University of Turku – name: Doctoral School for Chemical and Physical Sciences |
Author_xml | – sequence: 1 givenname: Henri orcidid: 0000-0003-1414-8893 surname: Kivelä fullname: Kivelä, Henri organization: Turku University Centre for Surfaces and Materials (MatSurf) – sequence: 2 givenname: Mikko orcidid: 0000-0001-6190-2073 surname: Salomäki fullname: Salomäki, Mikko organization: Turku University Centre for Surfaces and Materials (MatSurf) – sequence: 3 givenname: Petteri orcidid: 0000-0002-3570-0977 surname: Vainikka fullname: Vainikka, Petteri organization: University of Turku – sequence: 4 givenname: Ermei orcidid: 0000-0002-8300-6533 surname: Mäkilä fullname: Mäkilä, Ermei organization: University of Turku – sequence: 5 givenname: Fabrizio surname: Poletti fullname: Poletti, Fabrizio email: fabrizio.poletti@unimore.it organization: Electrochemical Sensors Group, Department of Chemical and Geological Sciences – sequence: 6 givenname: Stefano surname: Ruggeri fullname: Ruggeri, Stefano organization: Electrochemical Sensors Group, Department of Chemical and Geological Sciences – sequence: 7 givenname: Fabio surname: Terzi fullname: Terzi, Fabio organization: Electrochemical Sensors Group, Department of Chemical and Geological Sciences – sequence: 8 givenname: Jukka orcidid: 0000-0002-9409-7995 surname: Lukkari fullname: Lukkari, Jukka email: jukka.lukkari@utu.fi organization: Turku University Centre for Surfaces and Materials (MatSurf) |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/35001628$$D View this record in MEDLINE/PubMed |
BookMark | eNqNkc1LwzAYxoNM3IfePUmPHuxM0iZNLoLM6YSBBxWPIU1T19E1NWkH--_NXB0qKB5CEt7f8-TN-wxBrzKVBuAUwTGCGF1K5cbLWqVjpCBDCTwAA0QwDP1Ket2ZIkj7YOjcEkJMMKNHoB8RCBHFbADoNM-1agKTBy-y0TYwVSCD2Sazpl6YtFDBjdZ1MG0bT_nboynXumqOwWEuS6dPun0Enm-nT5NZOH-4u59cz0NJItyEKOMsI6mMsxSxmEuI0zjSCuecRYgyzqVKCI1ZFBEOY8k1iglNdZwmGSYZJdEIXO186zZd6Uz5p60sRW2LlbQbYWQhvleqYiFezVqwhBHEkTc47wyseWu1a8SqcEqXpay0aZ3ANKIxZDCh_0AR83PjHHv07Gtb-34-5-oBuAOUNc5Zne8RBMU2OuGjE9voRBedl9AfElU0sinM9mNF-ZfwYif8qJjWVj6R3_F3ewus3w |
CitedBy_id | crossref_primary_10_1016_j_molliq_2022_120043 crossref_primary_10_1016_j_molliq_2022_120285 crossref_primary_10_1002_app_53285 crossref_primary_10_1021_acs_iecr_4c02346 crossref_primary_10_1016_j_molliq_2024_124849 crossref_primary_10_3390_molecules27228098 crossref_primary_10_1016_j_mineng_2023_108306 crossref_primary_10_1016_j_molliq_2024_126427 crossref_primary_10_1016_j_molliq_2024_124326 crossref_primary_10_1016_j_molliq_2024_126102 crossref_primary_10_3390_en15249333 crossref_primary_10_1016_j_molliq_2024_126031 crossref_primary_10_1002_elsa_202100199 crossref_primary_10_1021_acs_iecr_3c04481 crossref_primary_10_1016_j_fluid_2024_114287 crossref_primary_10_1007_s10765_024_03374_8 crossref_primary_10_1016_j_cej_2024_149344 crossref_primary_10_1016_j_envres_2022_115207 crossref_primary_10_1039_D2CP03423A crossref_primary_10_1021_acssusresmgt_4c00339 crossref_primary_10_1016_j_molliq_2022_119524 crossref_primary_10_5189_revpolarography_70_65 crossref_primary_10_1063_5_0244255 crossref_primary_10_1016_j_cej_2024_158172 crossref_primary_10_1016_j_molliq_2023_121481 crossref_primary_10_1021_acs_iecr_2c03702 crossref_primary_10_1016_j_jece_2023_110562 crossref_primary_10_3390_ph17010124 crossref_primary_10_1016_j_molliq_2024_126757 crossref_primary_10_1039_D3EE02978F crossref_primary_10_1016_j_molliq_2023_121322 crossref_primary_10_1134_S0040579525601062 crossref_primary_10_1021_acs_jced_3c00002 crossref_primary_10_1016_j_molliq_2025_127110 crossref_primary_10_1039_D3GC00080J crossref_primary_10_1039_D4GC01361A crossref_primary_10_1021_acsapm_3c02361 crossref_primary_10_1080_10408347_2022_2125284 crossref_primary_10_1016_j_fuel_2025_134784 crossref_primary_10_1016_j_molliq_2022_119672 crossref_primary_10_3390_biom15020181 crossref_primary_10_1016_j_jece_2024_113960 crossref_primary_10_1002_cphc_202200239 crossref_primary_10_1021_acs_iecr_4c03336 crossref_primary_10_3390_pharmaceutics15092351 crossref_primary_10_1016_j_jmgm_2023_108561 crossref_primary_10_1021_acssuschemeng_2c06137 crossref_primary_10_1039_D4CP03878A crossref_primary_10_1016_j_molliq_2023_123895 crossref_primary_10_1063_1674_0068_cjcp2304039 crossref_primary_10_1016_j_microc_2024_110841 crossref_primary_10_1016_j_seppur_2024_129214 crossref_primary_10_1016_j_eng_2023_10_020 crossref_primary_10_1016_j_foodres_2023_113368 crossref_primary_10_1016_j_jcis_2024_12_092 crossref_primary_10_1016_j_molliq_2024_124517 crossref_primary_10_1021_acssuschemeng_4c09183 crossref_primary_10_1080_01496395_2024_2315614 crossref_primary_10_1021_acsmaterialslett_3c00938 crossref_primary_10_1016_j_ccr_2024_216406 crossref_primary_10_1016_j_seppur_2025_132341 crossref_primary_10_1039_D3CP03587E crossref_primary_10_1016_j_molliq_2024_124871 crossref_primary_10_1021_acs_energyfuels_4c03623 crossref_primary_10_1080_05704928_2024_2390962 crossref_primary_10_1016_j_molliq_2024_125569 crossref_primary_10_1016_j_jil_2024_100126 crossref_primary_10_1016_j_molliq_2023_123643 crossref_primary_10_1021_acs_jced_2c00440 crossref_primary_10_1016_j_polymer_2024_127262 crossref_primary_10_1002_tcr_202300267 crossref_primary_10_1016_j_seppur_2024_128510 crossref_primary_10_1063_5_0223828 crossref_primary_10_1038_s41598_022_27106_w crossref_primary_10_1016_j_heliyon_2023_e17810 |
Cites_doi | 10.1146/annurev-matsci-071312-121640 10.1021/acssuschemeng.8b04255 10.1039/C3CP53456A 10.1021/jp0671998 10.1021/acssuschemeng.7b04235 10.1021/acs.jpcb.9b11753 10.1039/C8CP07383J 10.1039/c1cp20373h 10.1021/acssuschemeng.9b02402 10.1021/ar2001809 10.1021/je200349t 10.1021/acssuschemeng.8b03520 10.1063/1.4775741 10.1021/acssuschemeng.8b05449 10.1016/j.ssi.2018.05.016 10.1039/C1CS15146K 10.1002/anie.201207548 10.1021/acs.jpcb.7b05454 10.1016/j.trac.2018.05.001 10.1002/cphc.200400190 10.1021/acssuschemeng.5b00532 10.1021/acssuschemeng.6b01542 10.1038/srep29225 10.1016/j.fluid.2017.04.002 10.1016/j.molliq.2019.02.107 10.1016/j.trac.2015.11.006 10.1002/anie.201702486 10.1002/aic.17427 10.1039/C4CP02600D 10.1021/jp077714h 10.1039/b804794d 10.1002/cphc.201900307 10.1021/jp5110455 10.1021/acs.jpcb.7b08472 10.1021/acs.jpcb.0c11147 10.1016/j.jct.2005.04.009 10.1016/j.jiec.2021.03.011 10.1039/D0CP05407K 10.1016/j.molliq.2019.01.053 10.1021/acs.chemrev.0c00385 10.1021/acsomega.8b02447 10.1021/acssuschemeng.9b05096 10.1039/a701949a 10.1063/1.4919946 10.1021/acs.jpclett.5b01192 10.1021/acs.jpcb.0c03647 10.1155/2018/9579872 10.1021/ef5028873 10.1039/C7CP06494B 10.1021/cr300162p 10.1021/acs.jpcb.6b04187 10.1039/C4CP01164C 10.1021/je300997v 10.1016/j.fluid.2019.02.010 10.1021/acs.jpca.5b07244 10.1021/acs.jpcb.8b02378 10.1021/acssuschemeng.0c00559 10.1063/1.1801031 10.1039/C0GC00395F 10.1016/j.jpowsour.2015.11.072 10.1021/acs.jpca.7b10264 10.1002/ejoc.201501197 10.1016/0022-3093(88)90396-1 10.1021/jp510420h 10.1021/sc500439w 10.1021/jp075913v 10.1002/jssc.201701282 10.1021/acssuschemeng.7b01707 10.1039/C4CP00637B 10.1021/bm300200e 10.1039/C5NJ02677F 10.1021/acs.jpcb.7b09540 10.1063/5.0047369 10.1002/cphc.200500489 10.1016/j.aca.2012.12.019 10.1039/C5GC03080C 10.1021/acssuschemeng.9b00315 10.1021/acssuschemeng.8b01203 10.1039/C9CP00742C 10.1016/j.electacta.2018.10.086 10.1039/C8CS00325D 10.1063/1.466117 10.1021/acsomega.0c02665 10.1039/C5CP00768B 10.1063/1.341681 10.1063/1.3684633 10.1016/j.jclepro.2021.127965 10.1016/j.apmt.2017.11.005 10.1073/pnas.0911705106 10.1021/acs.jctc.0c00120 10.1063/1.3656696 10.1039/C8CP06728G 10.1103/PhysRevB.40.7040 10.1039/c1cp22554e 10.1039/C5CP01493J 10.1038/35065704 10.1021/je5001796 10.1021/acs.cgd.5b00328 10.1039/C9CP00036D 10.1021/jp404619x 10.1039/C8CC05815F 10.1039/C8CC04152K 10.1063/5.0054699 10.1107/S0108768197014821 10.1021/jp960779s 10.1021/je500320c 10.1039/c2cs35178a 10.1016/j.molliq.2016.10.115 10.1021/acs.jpcb.0c02231 10.1039/C5GC01451D 10.1007/s10953-018-0793-1 10.1103/PhysRevE.50.2064 10.1021/sc500096j 10.1039/C4CS00093E 10.1039/C5GC02914G 10.1016/S0010-938X(99)00012-8 10.1039/D0CP01560A 10.6028/jres.102.015 10.1021/cr0006831 |
ContentType | Journal Article |
Copyright | 2022 The Authors. Published by American Chemical Society 2022 The Authors. Published by American Chemical Society 2022 The Authors |
Copyright_xml | – notice: 2022 The Authors. Published by American Chemical Society – notice: 2022 The Authors. Published by American Chemical Society 2022 The Authors |
DBID | AAYXX CITATION NPM 7X8 7S9 L.6 5PM |
DOI | 10.1021/acs.jpcb.1c08170 |
DatabaseName | CrossRef PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | MEDLINE - Academic AGRICOLA PubMed |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1520-5207 |
EndPage | 527 |
ExternalDocumentID | PMC8785191 35001628 10_1021_acs_jpcb_1c08170 a132312812 |
Genre | Journal Article |
GroupedDBID | - 02 123 29L 4.4 55A 5VS 7~N 85S AABXI ABFLS ABFRP ABMVS ABPTK ABUCX ACGFS ACNCT ACS AEESW AENEX AFEFF AHGAQ ALMA_UNASSIGNED_HOLDINGS AQSVZ BAANH CS3 DU5 EBS ED F5P GGK GNL IH9 IHE JG K2 PZZ RNS ROL TAE TN5 UI2 UKR UPT VF5 VG9 VQA W1F WH7 X XOL YZZ ZGI --- -~X .DC .K2 53G AAHBH AAYXX ABBLG ABJNI ABLBI ABQRX ACBEA ADHLV CITATION CUPRZ ED~ JG~ XSW YQT ~02 NPM 7X8 7S9 L.6 5PM |
ID | FETCH-LOGICAL-a532t-1d98d5ba4db1849a02b43ec2f98316899ac75648335904a9e1456be4b7d25d653 |
IEDL.DBID | ACS |
ISSN | 1520-6106 1520-5207 |
IngestDate | Thu Aug 21 14:36:11 EDT 2025 Thu Jul 10 18:34:01 EDT 2025 Fri Jul 11 05:10:47 EDT 2025 Mon Jul 21 06:06:04 EDT 2025 Tue Jul 01 04:08:24 EDT 2025 Thu Apr 24 23:10:13 EDT 2025 Thu Jan 27 04:11:33 EST 2022 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 Permits the broadest form of re-use including for commercial purposes, provided that author attribution and integrity are maintained (https://creativecommons.org/licenses/by/4.0/). |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a532t-1d98d5ba4db1849a02b43ec2f98316899ac75648335904a9e1456be4b7d25d653 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0001-6190-2073 0000-0002-3570-0977 0000-0003-1414-8893 0000-0002-8300-6533 0000-0002-9409-7995 |
OpenAccessLink | https://pubmed.ncbi.nlm.nih.gov/PMC8785191 |
PMID | 35001628 |
PQID | 2618500992 |
PQPubID | 23479 |
PageCount | 15 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_8785191 proquest_miscellaneous_2636408076 proquest_miscellaneous_2618500992 pubmed_primary_35001628 crossref_primary_10_1021_acs_jpcb_1c08170 crossref_citationtrail_10_1021_acs_jpcb_1c08170 acs_journals_10_1021_acs_jpcb_1c08170 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-01-20 |
PublicationDateYYYYMMDD | 2022-01-20 |
PublicationDate_xml | – month: 01 year: 2022 text: 2022-01-20 day: 20 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | The journal of physical chemistry. B |
PublicationTitleAlternate | J. Phys. Chem. B |
PublicationYear | 2022 |
Publisher | American Chemical Society |
Publisher_xml | – name: American Chemical Society |
References | ref45/cit45 ref99/cit99 ref3/cit3 ref81/cit81 ref16/cit16 ref52/cit52 ref114/cit114 ref23/cit23 ref116/cit116 ref110/cit110 ref111/cit111 ref2/cit2 ref112/cit112 ref77/cit77 ref113/cit113 ref71/cit71 ref117/cit117 ref20/cit20 ref48/cit48 ref118/cit118 ref74/cit74 ref119/cit119 ref10/cit10 ref35/cit35 ref89/cit89 ref19/cit19 ref93/cit93 ref42/cit42 ref96/cit96 ref107/cit107 ref120/cit120 ref109/cit109 ref13/cit13 ref122/cit122 ref105/cit105 ref61/cit61 ref67/cit67 ref38/cit38 ref90/cit90 ref64/cit64 ref54/cit54 ref6/cit6 ref18/cit18 ref65/cit65 ref97/cit97 ref101/cit101 ref11/cit11 ref102/cit102 ref29/cit29 ref76/cit76 ref86/cit86 Bockris J. O. (ref22/cit22) 1977 ref32/cit32 ref39/cit39 ref5/cit5 ref43/cit43 ref80/cit80 ref28/cit28 ref91/cit91 ref55/cit55 ref12/cit12 ref66/cit66 ref121/cit121 ref33/cit33 ref87/cit87 ref106/cit106 ref44/cit44 ref70/cit70 ref98/cit98 ref9/cit9 ref27/cit27 ref63/cit63 ref56/cit56 ref92/cit92 Levitt M. H. (ref115/cit115) 2009; 37 ref8/cit8 ref31/cit31 ref59/cit59 ref85/cit85 ref34/cit34 ref37/cit37 ref60/cit60 ref88/cit88 ref17/cit17 ref82/cit82 ref53/cit53 ref21/cit21 ref46/cit46 ref49/cit49 ref75/cit75 ref24/cit24 ref50/cit50 ref78/cit78 ref36/cit36 ref83/cit83 ref79/cit79 ref100/cit100 ref25/cit25 ref103/cit103 ref72/cit72 ref14/cit14 ref57/cit57 ref51/cit51 ref40/cit40 ref68/cit68 ref94/cit94 ref26/cit26 ref73/cit73 ref69/cit69 ref15/cit15 ref62/cit62 ref41/cit41 ref58/cit58 ref95/cit95 ref108/cit108 ref104/cit104 ref4/cit4 ref30/cit30 ref47/cit47 ref84/cit84 ref1/cit1 ref123/cit123 ref7/cit7 35266693 - J Phys Chem B. 2022 Mar 24;126(11):2324 |
References_xml | – ident: ref46/cit46 doi: 10.1146/annurev-matsci-071312-121640 – ident: ref33/cit33 doi: 10.1021/acssuschemeng.8b04255 – ident: ref18/cit18 doi: 10.1039/C3CP53456A – ident: ref21/cit21 doi: 10.1021/jp0671998 – ident: ref59/cit59 doi: 10.1021/acssuschemeng.7b04235 – ident: ref68/cit68 doi: 10.1021/acs.jpcb.9b11753 – ident: ref73/cit73 doi: 10.1039/C8CP07383J – ident: ref102/cit102 doi: 10.1039/c1cp20373h – ident: ref39/cit39 doi: 10.1021/acssuschemeng.9b02402 – ident: ref113/cit113 doi: 10.1021/ar2001809 – ident: ref93/cit93 doi: 10.1021/je200349t – ident: ref58/cit58 doi: 10.1021/acssuschemeng.8b03520 – ident: ref101/cit101 doi: 10.1063/1.4775741 – ident: ref60/cit60 doi: 10.1021/acssuschemeng.8b05449 – ident: ref112/cit112 doi: 10.1016/j.ssi.2018.05.016 – ident: ref92/cit92 doi: 10.1039/C1CS15146K – ident: ref5/cit5 doi: 10.1002/anie.201207548 – ident: ref45/cit45 doi: 10.1021/acs.jpcb.7b05454 – ident: ref11/cit11 doi: 10.1016/j.trac.2018.05.001 – ident: ref19/cit19 doi: 10.1002/cphc.200400190 – ident: ref53/cit53 doi: 10.1021/acssuschemeng.5b00532 – ident: ref25/cit25 doi: 10.1021/acssuschemeng.6b01542 – ident: ref47/cit47 doi: 10.1038/srep29225 – ident: ref57/cit57 doi: 10.1016/j.fluid.2017.04.002 – ident: ref69/cit69 doi: 10.1016/j.molliq.2019.02.107 – ident: ref10/cit10 doi: 10.1016/j.trac.2015.11.006 – ident: ref67/cit67 doi: 10.1002/anie.201702486 – ident: ref63/cit63 doi: 10.1002/aic.17427 – ident: ref41/cit41 doi: 10.1039/C4CP02600D – ident: ref116/cit116 doi: 10.1021/jp077714h – ident: ref107/cit107 doi: 10.1039/b804794d – ident: ref88/cit88 doi: 10.1002/cphc.201900307 – ident: ref14/cit14 doi: 10.1021/jp5110455 – ident: ref86/cit86 doi: 10.1021/acs.jpcb.7b08472 – ident: ref66/cit66 doi: 10.1021/acs.jpcb.0c11147 – ident: ref108/cit108 doi: 10.1016/j.jct.2005.04.009 – ident: ref71/cit71 doi: 10.1016/j.jiec.2021.03.011 – ident: ref64/cit64 doi: 10.1039/D0CP05407K – ident: ref27/cit27 doi: 10.1016/j.molliq.2019.01.053 – ident: ref2/cit2 doi: 10.1021/acs.chemrev.0c00385 – ident: ref35/cit35 doi: 10.1021/acsomega.8b02447 – ident: ref37/cit37 doi: 10.1021/acssuschemeng.9b05096 – ident: ref83/cit83 doi: 10.1039/a701949a – ident: ref24/cit24 doi: 10.1063/1.4919946 – ident: ref42/cit42 doi: 10.1021/acs.jpclett.5b01192 – ident: ref62/cit62 doi: 10.1021/acs.jpcb.0c03647 – ident: ref122/cit122 doi: 10.1155/2018/9579872 – ident: ref13/cit13 doi: 10.1021/ef5028873 – ident: ref123/cit123 doi: 10.1039/C7CP06494B – ident: ref1/cit1 doi: 10.1021/cr300162p – ident: ref43/cit43 doi: 10.1021/acs.jpcb.6b04187 – ident: ref84/cit84 doi: 10.1039/C4CP01164C – ident: ref109/cit109 doi: 10.1021/je300997v – ident: ref70/cit70 doi: 10.1016/j.fluid.2019.02.010 – ident: ref120/cit120 doi: 10.1021/acs.jpca.5b07244 – volume-title: Modern Electrochemistry 1 year: 1977 ident: ref22/cit22 – ident: ref34/cit34 doi: 10.1021/acs.jpcb.8b02378 – ident: ref3/cit3 doi: 10.1021/acssuschemeng.0c00559 – ident: ref85/cit85 doi: 10.1063/1.1801031 – ident: ref30/cit30 doi: 10.1039/C0GC00395F – ident: ref110/cit110 doi: 10.1016/j.jpowsour.2015.11.072 – ident: ref87/cit87 doi: 10.1021/acs.jpca.7b10264 – ident: ref9/cit9 doi: 10.1002/ejoc.201501197 – ident: ref96/cit96 doi: 10.1016/0022-3093(88)90396-1 – ident: ref49/cit49 doi: 10.1021/jp510420h – ident: ref7/cit7 doi: 10.1021/sc500439w – ident: ref80/cit80 doi: 10.1021/jp075913v – ident: ref121/cit121 doi: 10.1002/jssc.201701282 – ident: ref17/cit17 doi: 10.1021/acssuschemeng.7b01707 – ident: ref118/cit118 doi: 10.1039/C4CP00637B – ident: ref91/cit91 doi: 10.1021/bm300200e – ident: ref50/cit50 doi: 10.1039/C5NJ02677F – ident: ref8/cit8 doi: 10.1021/acs.jpcb.7b09540 – ident: ref77/cit77 doi: 10.1063/5.0047369 – ident: ref20/cit20 doi: 10.1002/cphc.200500489 – ident: ref16/cit16 doi: 10.1016/j.aca.2012.12.019 – ident: ref54/cit54 doi: 10.1039/C5GC03080C – ident: ref117/cit117 doi: 10.1021/acssuschemeng.9b00315 – ident: ref26/cit26 doi: 10.1021/acssuschemeng.8b01203 – ident: ref28/cit28 doi: 10.1039/C9CP00742C – ident: ref56/cit56 doi: 10.1016/j.electacta.2018.10.086 – ident: ref51/cit51 doi: 10.1039/C8CS00325D – ident: ref98/cit98 doi: 10.1063/1.466117 – ident: ref61/cit61 doi: 10.1021/acsomega.0c02665 – ident: ref100/cit100 doi: 10.1039/C5CP00768B – ident: ref105/cit105 doi: 10.1063/1.341681 – ident: ref81/cit81 doi: 10.1063/1.3684633 – ident: ref72/cit72 doi: 10.1016/j.jclepro.2021.127965 – ident: ref12/cit12 doi: 10.1016/j.apmt.2017.11.005 – ident: ref95/cit95 doi: 10.1073/pnas.0911705106 – ident: ref36/cit36 doi: 10.1021/acs.jctc.0c00120 – ident: ref114/cit114 doi: 10.1063/1.3656696 – ident: ref38/cit38 doi: 10.1039/C8CP06728G – ident: ref94/cit94 doi: 10.1103/PhysRevB.40.7040 – ident: ref23/cit23 doi: 10.1039/c1cp22554e – ident: ref31/cit31 doi: 10.1039/C5CP01493J – ident: ref106/cit106 doi: 10.1038/35065704 – volume: 37 volume-title: Spin Dynamics: Basics of Nuclear Magnetic Resonance year: 2009 ident: ref115/cit115 – ident: ref48/cit48 doi: 10.1039/C4CP02600D – ident: ref89/cit89 doi: 10.1021/je5001796 – ident: ref75/cit75 doi: 10.1021/acs.cgd.5b00328 – ident: ref40/cit40 doi: 10.1039/C9CP00036D – ident: ref32/cit32 doi: 10.1021/jp404619x – ident: ref29/cit29 doi: 10.1039/C8CC05815F – ident: ref55/cit55 doi: 10.1039/C8CC04152K – ident: ref65/cit65 doi: 10.1063/5.0054699 – ident: ref82/cit82 doi: 10.1107/S0108768197014821 – ident: ref119/cit119 doi: 10.1021/jp960779s – ident: ref90/cit90 doi: 10.1021/je500320c – ident: ref6/cit6 doi: 10.1039/c2cs35178a – ident: ref111/cit111 doi: 10.1016/j.molliq.2016.10.115 – ident: ref74/cit74 doi: 10.1021/acs.jpcb.0c02231 – ident: ref52/cit52 doi: 10.1039/C5GC01451D – ident: ref4/cit4 doi: 10.1007/s10953-018-0793-1 – ident: ref104/cit104 doi: 10.1103/PhysRevE.50.2064 – ident: ref15/cit15 doi: 10.1021/sc500096j – ident: ref99/cit99 doi: 10.1039/C4CS00093E – ident: ref44/cit44 doi: 10.1039/C5GC02914G – ident: ref76/cit76 doi: 10.1016/S0010-938X(99)00012-8 – ident: ref97/cit97 doi: 10.1039/D0CP01560A – ident: ref103/cit103 doi: 10.6028/jres.102.015 – ident: ref78/cit78 doi: 10.1021/cr0006831 – ident: ref79/cit79 doi: 10.1021/acs.jpcb.7b05454 – reference: 35266693 - J Phys Chem B. 2022 Mar 24;126(11):2324 |
SSID | ssj0025286 |
Score | 2.6136835 |
Snippet | Deep eutectic solvents (DESs) formed by hydrogen bond donors and acceptors are a promising new class of solvents. Both hydrophilic and hydrophobic binary DESs... Deep eutectic solvents (DESs) formed by hydrogen bond donors and acceptors are a promising new class of solvents. Both hydrophilic and hydrophobic binary DESs... |
SourceID | pubmedcentral proquest pubmed crossref acs |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 513 |
SubjectTerms | ammonium chloride B: Liquids; Chemical and Dynamical Processes in Solution decanoic acid hydrogen bonding hydrophilicity hydrophobicity solvents tetrabutylammonium compounds viscosity water content water vapor |
Title | Effect of Water on a Hydrophobic Deep Eutectic Solvent |
URI | http://dx.doi.org/10.1021/acs.jpcb.1c08170 https://www.ncbi.nlm.nih.gov/pubmed/35001628 https://www.proquest.com/docview/2618500992 https://www.proquest.com/docview/2636408076 https://pubmed.ncbi.nlm.nih.gov/PMC8785191 |
Volume | 126 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3JTsMwELWgHODCvpRNRoIDh5TYsZ34iApVhQQXQHCLvFVsSqqmPcDXM07SQgFVHJPYiTz2ZN7T2G8QOgZKwlyUuCCyJgwYiW2gEk0Cbi03gkrWc54oXt-I7j27euSPXzI5PzP4lJwpU7Re-ka3iAm9mtw8WqACfNjDoPbthFxxWlZ1hHDk6VA4Tkn-9QYfiEwxHYh-ocufmyS_RZ3OSlW-qCjFCv1mk9fWaKhb5uO3lOM_BrSKlmvwic-r1bKG5ly2jhbb45pvG0hUYsY47-EHAKEDnGdY4e67HeT9p1w_G3zhXB9fjnzqAa5u8ze_X3IT3Xcu79rdoK6sECge0WFArEws14pZDQxPqpBqFjlDezLxhaykVCbmgvkDWTJkSjoCOEs7pmNLuRU82kKNLM_cDsJaUrARV3EP3M0JeKeSigHJ0wyolmNNdAIDTmvPKNIy6U1JWt4EK6S1FZrobDwdqanlyX2VjLcZPU4nPfqVNMeMtkfjGU7BpD4pojKXj4oUGGTCPU6ms9pEggG0jkUTbVerYvLFiHvUTJMmiqfWy6SB1--efpI9P5U63kkMcFeS3X9aaA8tUX_2IiTwa9tHjeFg5A4AEQ31YekKn_gFBSs |
linkProvider | American Chemical Society |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3PT9swFH6C7sAuG9vY6DaYJ20HDimxYyfxsSqgsgGHARq3yL8qGCipmvYw_nqe0yRbAVVwjGM79vNz3vf07O8BfEOXhLsodUFkTRhwmthApZoGwlphYib5yHlH8fgkHp7zHxfiYgVocxcGB1FiT2UVxP_HLkB3fdmfsdE9akJPKrcKLxCLMK_U_cFp62MJViV3RKvkvaKwiUw-1oO3R6ZctEcPQOb9s5L_GZ-D1_CrHXZ15uS6N5vqnrm9x-j4rHmtw6saipL-XHfewIrL38LaoMkA9w7iObUxKUbkN0LSCSlyosjwr50U48tCXxmy59yY7M98IAKfTosbf3pyA84P9s8Gw6DOsxAoEbFpQK1MrdCKW43-nlQh0zxyho1k6tNaSalMImLur2fJkCvpKKIu7bhOLBM2FtF76ORF7jaBaMlQVEIlI9x8LsY-lVQcXT7N0fFyvAvfccJZvU_KrAqBM5pVhSiFrJZCF3abVclMTVbuc2bcLGmx07YYz4k6ltT92ix0hiL1IRKVu2JWZuhPpsKjZrasThRzBNpJ3IUPc-VovxgJj6FZ2oVkQW3aCp7Ne_FNfnVZsXqnCYJfST8-UUJfYG14dnyUHR2e_PwEL5m_lRFS_Ol9hs50MnNbiJWmervaHXeNKA2M |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB6VIgEXngWWZ5DogUO2sWMn8bHadrW8KqS20FvkV9RClUSb3QP8emayScQWtCrHOLZjj2fibzT2NwBv0SURPs58GDsbhYKlLtSZYaF0TtqEK1F4chQ_HyWzU_HhTJ5tgezvwuAgGuypaYP4ZNW1KzqGAbZH5d9ra8bMRkQsdwNuUtSOFHt_cjz4WZK3CR5xZyLPKOqjk__qgfYk26zvSX8BzavnJf_YgKb34Osw9PbcyY_xcmHG9tcVVsf_ntt9uNtB0mB_pUMPYMuXD-H2pM8E9wiSFcVxUBXBN4Sm86AqAx3Mfrp5VZ9X5sIGB97XweGSAhL4dFxd0inKHTidHp5MZmGXbyHUMuaLkDmVOWm0cAb9PqUjbkTsLS9URumtlNI2lYmga1oqElp5hujLeGFSx6VLZPwYtsuq9E8hMIqjuKROCzRCn2CfWmmBrp8R6IB5MYJdnHDe2UuTt6FwzvK2EKWQd1IYwV6_MrntSMspd8blhhbvhhb1irBjQ903_WLnKFIKlejSV8smR78yk4Se-aY6cSIQcKfJCJ6sFGT4YiwJS_NsBOma6gwViNV7_U15cd6ye2cpgmDFnl1TQq_h1peDaf7p_dHH53CH0-WMiOG_7wVsL-ZL_xIh08K8ag3kN0eEEA8 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Effect+of+Water+on+a+Hydrophobic+Deep+Eutectic+Solvent&rft.jtitle=The+journal+of+physical+chemistry.+B&rft.au=Kivel%C3%A4%2C+Henri&rft.au=Salom%C3%A4ki%2C+Mikko&rft.au=Vainikka%2C+Petteri&rft.au=M%C3%A4kil%C3%A4%2C+Ermei&rft.date=2022-01-20&rft.issn=1520-5207&rft.volume=126&rft.issue=2+p.513-527&rft.spage=513&rft.epage=527&rft_id=info:doi/10.1021%2Facs.jpcb.1c08170&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1520-6106&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1520-6106&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1520-6106&client=summon |