Effect of Water on a Hydrophobic Deep Eutectic Solvent

Deep eutectic solvents (DESs) formed by hydrogen bond donors and acceptors are a promising new class of solvents. Both hydrophilic and hydrophobic binary DESs readily absorb water, making them ternary mixtures, and a small water content is always inevitable under ambient conditions. We present a tho...

Full description

Saved in:
Bibliographic Details
Published inThe journal of physical chemistry. B Vol. 126; no. 2; pp. 513 - 527
Main Authors Kivelä, Henri, Salomäki, Mikko, Vainikka, Petteri, Mäkilä, Ermei, Poletti, Fabrizio, Ruggeri, Stefano, Terzi, Fabio, Lukkari, Jukka
Format Journal Article
LanguageEnglish
Published United States American Chemical Society 20.01.2022
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Deep eutectic solvents (DESs) formed by hydrogen bond donors and acceptors are a promising new class of solvents. Both hydrophilic and hydrophobic binary DESs readily absorb water, making them ternary mixtures, and a small water content is always inevitable under ambient conditions. We present a thorough study of a typical hydrophobic DES formed by a 1:2 mole ratio of tetrabutyl ammonium chloride and decanoic acid, focusing on the effects of a low water content caused by absorbed water vapor, using multinuclear NMR techniques, molecular modeling, and several other physicochemical techniques. Already very low water contents cause dynamic nanoscale phase segregation, reduce solvent viscosity and fragility, increase self-diffusion coefficients and conductivity, and enhance local dynamics. Water interferes with the hydrogen-bonding network between the chloride ions and carboxylic acid groups by solvating them, which enhances carboxylic acid self-correlation and ion pair formation between tetrabutyl ammonium and chloride. Simulations show that the component molar ratio can be varied, with an effect on the internal structure. The water-induced changes in the physical properties are beneficial for most prospective applications but water creates an acidic aqueous nanophase with a high halide ion concentration, which may have chemically adverse effects.
AbstractList Deep eutectic solvents (DESs) formed by hydrogen bond donors and acceptors are a promising new class of solvents. Both hydrophilic and hydrophobic binary DESs readily absorb water, making them ternary mixtures, and a small water content is always inevitable under ambient conditions. We present a thorough study of a typical hydrophobic DES formed by a 1:2 mole ratio of tetrabutyl ammonium chloride and decanoic acid, focusing on the effects of a low water content caused by absorbed water vapor, using multinuclear NMR techniques, molecular modeling, and several other physicochemical techniques. Already very low water contents cause dynamic nanoscale phase segregation, reduce solvent viscosity and fragility, increase self-diffusion coefficients and conductivity, and enhance local dynamics. Water interferes with the hydrogen-bonding network between the chloride ions and carboxylic acid groups by solvating them, which enhances carboxylic acid self-correlation and ion pair formation between tetrabutyl ammonium and chloride. Simulations show that the component molar ratio can be varied, with an effect on the internal structure. The water-induced changes in the physical properties are beneficial for most prospective applications but water creates an acidic aqueous nanophase with a high halide ion concentration, which may have chemically adverse effects.Deep eutectic solvents (DESs) formed by hydrogen bond donors and acceptors are a promising new class of solvents. Both hydrophilic and hydrophobic binary DESs readily absorb water, making them ternary mixtures, and a small water content is always inevitable under ambient conditions. We present a thorough study of a typical hydrophobic DES formed by a 1:2 mole ratio of tetrabutyl ammonium chloride and decanoic acid, focusing on the effects of a low water content caused by absorbed water vapor, using multinuclear NMR techniques, molecular modeling, and several other physicochemical techniques. Already very low water contents cause dynamic nanoscale phase segregation, reduce solvent viscosity and fragility, increase self-diffusion coefficients and conductivity, and enhance local dynamics. Water interferes with the hydrogen-bonding network between the chloride ions and carboxylic acid groups by solvating them, which enhances carboxylic acid self-correlation and ion pair formation between tetrabutyl ammonium and chloride. Simulations show that the component molar ratio can be varied, with an effect on the internal structure. The water-induced changes in the physical properties are beneficial for most prospective applications but water creates an acidic aqueous nanophase with a high halide ion concentration, which may have chemically adverse effects.
Deep eutectic solvents (DESs) formed by hydrogen bond donors and acceptors are a promising new class of solvents. Both hydrophilic and hydrophobic binary DESs readily absorb water, making them ternary mixtures, and a small water content is always inevitable under ambient conditions. We present a thorough study of a typical hydrophobic DES formed by a 1:2 mole ratio of tetrabutyl ammonium chloride and decanoic acid, focusing on the effects of a low water content caused by absorbed water vapor, using multinuclear NMR techniques, molecular modeling, and several other physicochemical techniques. Already very low water contents cause dynamic nanoscale phase segregation, reduce solvent viscosity and fragility, increase self-diffusion coefficients and conductivity, and enhance local dynamics. Water interferes with the hydrogen-bonding network between the chloride ions and carboxylic acid groups by solvating them, which enhances carboxylic acid self-correlation and ion pair formation between tetrabutyl ammonium and chloride. Simulations show that the component molar ratio can be varied, with an effect on the internal structure. The water-induced changes in the physical properties are beneficial for most prospective applications but water creates an acidic aqueous nanophase with a high halide ion concentration, which may have chemically adverse effects.
Deep eutectic solvents (DESs) formed by hydrogen bond donors and acceptors are a promising new class of solvents. Both hydrophilic and hydrophobic binary DESs readily absorb water, making them ternary mixtures, and a small water content is always inevitable under ambient conditions. We present a thorough study of a typical hydrophobic DES formed by a 1:2 mole ratio of tetrabutyl ammonium chloride and decanoic acid, focusing on the effects of a low water content caused by absorbed water vapor, using multinuclear NMR techniques, molecular modeling, and several other physicochemical techniques. Already very low water contents cause dynamic nanoscale phase segregation, reduce solvent viscosity and fragility, increase self-diffusion coefficients and conductivity, and enhance local dynamics. Water interferes with the hydrogen-bonding network between the chloride ions and carboxylic acid groups by solvating them, which enhances carboxylic acid self-correlation and ion pair formation between tetrabutyl ammonium and chloride. Simulations show that the component molar ratio can be varied, with an effect on the internal structure. The water-induced changes in the physical properties are beneficial for most prospective applications but water creates an acidic aqueous nanophase with a high halide ion concentration, which may have chemically adverse effects.
Author Ruggeri, Stefano
Lukkari, Jukka
Salomäki, Mikko
Mäkilä, Ermei
Poletti, Fabrizio
Vainikka, Petteri
Kivelä, Henri
Terzi, Fabio
AuthorAffiliation Department of Chemistry
University of Turku
Doctoral School for Chemical and Physical Sciences
Department of Physics and Astronomy
Electrochemical Sensors Group, Department of Chemical and Geological Sciences
Turku University Centre for Surfaces and Materials (MatSurf)
AuthorAffiliation_xml – name: Electrochemical Sensors Group, Department of Chemical and Geological Sciences
– name: Department of Chemistry
– name: Department of Physics and Astronomy
– name: Turku University Centre for Surfaces and Materials (MatSurf)
– name: University of Turku
– name: Doctoral School for Chemical and Physical Sciences
Author_xml – sequence: 1
  givenname: Henri
  orcidid: 0000-0003-1414-8893
  surname: Kivelä
  fullname: Kivelä, Henri
  organization: Turku University Centre for Surfaces and Materials (MatSurf)
– sequence: 2
  givenname: Mikko
  orcidid: 0000-0001-6190-2073
  surname: Salomäki
  fullname: Salomäki, Mikko
  organization: Turku University Centre for Surfaces and Materials (MatSurf)
– sequence: 3
  givenname: Petteri
  orcidid: 0000-0002-3570-0977
  surname: Vainikka
  fullname: Vainikka, Petteri
  organization: University of Turku
– sequence: 4
  givenname: Ermei
  orcidid: 0000-0002-8300-6533
  surname: Mäkilä
  fullname: Mäkilä, Ermei
  organization: University of Turku
– sequence: 5
  givenname: Fabrizio
  surname: Poletti
  fullname: Poletti, Fabrizio
  email: fabrizio.poletti@unimore.it
  organization: Electrochemical Sensors Group, Department of Chemical and Geological Sciences
– sequence: 6
  givenname: Stefano
  surname: Ruggeri
  fullname: Ruggeri, Stefano
  organization: Electrochemical Sensors Group, Department of Chemical and Geological Sciences
– sequence: 7
  givenname: Fabio
  surname: Terzi
  fullname: Terzi, Fabio
  organization: Electrochemical Sensors Group, Department of Chemical and Geological Sciences
– sequence: 8
  givenname: Jukka
  orcidid: 0000-0002-9409-7995
  surname: Lukkari
  fullname: Lukkari, Jukka
  email: jukka.lukkari@utu.fi
  organization: Turku University Centre for Surfaces and Materials (MatSurf)
BackLink https://www.ncbi.nlm.nih.gov/pubmed/35001628$$D View this record in MEDLINE/PubMed
BookMark eNqNkc1LwzAYxoNM3IfePUmPHuxM0iZNLoLM6YSBBxWPIU1T19E1NWkH--_NXB0qKB5CEt7f8-TN-wxBrzKVBuAUwTGCGF1K5cbLWqVjpCBDCTwAA0QwDP1Ket2ZIkj7YOjcEkJMMKNHoB8RCBHFbADoNM-1agKTBy-y0TYwVSCD2Sazpl6YtFDBjdZ1MG0bT_nboynXumqOwWEuS6dPun0Enm-nT5NZOH-4u59cz0NJItyEKOMsI6mMsxSxmEuI0zjSCuecRYgyzqVKCI1ZFBEOY8k1iglNdZwmGSYZJdEIXO186zZd6Uz5p60sRW2LlbQbYWQhvleqYiFezVqwhBHEkTc47wyseWu1a8SqcEqXpay0aZ3ANKIxZDCh_0AR83PjHHv07Gtb-34-5-oBuAOUNc5Zne8RBMU2OuGjE9voRBedl9AfElU0sinM9mNF-ZfwYif8qJjWVj6R3_F3ewus3w
CitedBy_id crossref_primary_10_1016_j_molliq_2022_120043
crossref_primary_10_1016_j_molliq_2022_120285
crossref_primary_10_1002_app_53285
crossref_primary_10_1021_acs_iecr_4c02346
crossref_primary_10_1016_j_molliq_2024_124849
crossref_primary_10_3390_molecules27228098
crossref_primary_10_1016_j_mineng_2023_108306
crossref_primary_10_1016_j_molliq_2024_126427
crossref_primary_10_1016_j_molliq_2024_124326
crossref_primary_10_1016_j_molliq_2024_126102
crossref_primary_10_3390_en15249333
crossref_primary_10_1016_j_molliq_2024_126031
crossref_primary_10_1002_elsa_202100199
crossref_primary_10_1021_acs_iecr_3c04481
crossref_primary_10_1016_j_fluid_2024_114287
crossref_primary_10_1007_s10765_024_03374_8
crossref_primary_10_1016_j_cej_2024_149344
crossref_primary_10_1016_j_envres_2022_115207
crossref_primary_10_1039_D2CP03423A
crossref_primary_10_1021_acssusresmgt_4c00339
crossref_primary_10_1016_j_molliq_2022_119524
crossref_primary_10_5189_revpolarography_70_65
crossref_primary_10_1063_5_0244255
crossref_primary_10_1016_j_cej_2024_158172
crossref_primary_10_1016_j_molliq_2023_121481
crossref_primary_10_1021_acs_iecr_2c03702
crossref_primary_10_1016_j_jece_2023_110562
crossref_primary_10_3390_ph17010124
crossref_primary_10_1016_j_molliq_2024_126757
crossref_primary_10_1039_D3EE02978F
crossref_primary_10_1016_j_molliq_2023_121322
crossref_primary_10_1134_S0040579525601062
crossref_primary_10_1021_acs_jced_3c00002
crossref_primary_10_1016_j_molliq_2025_127110
crossref_primary_10_1039_D3GC00080J
crossref_primary_10_1039_D4GC01361A
crossref_primary_10_1021_acsapm_3c02361
crossref_primary_10_1080_10408347_2022_2125284
crossref_primary_10_1016_j_fuel_2025_134784
crossref_primary_10_1016_j_molliq_2022_119672
crossref_primary_10_3390_biom15020181
crossref_primary_10_1016_j_jece_2024_113960
crossref_primary_10_1002_cphc_202200239
crossref_primary_10_1021_acs_iecr_4c03336
crossref_primary_10_3390_pharmaceutics15092351
crossref_primary_10_1016_j_jmgm_2023_108561
crossref_primary_10_1021_acssuschemeng_2c06137
crossref_primary_10_1039_D4CP03878A
crossref_primary_10_1016_j_molliq_2023_123895
crossref_primary_10_1063_1674_0068_cjcp2304039
crossref_primary_10_1016_j_microc_2024_110841
crossref_primary_10_1016_j_seppur_2024_129214
crossref_primary_10_1016_j_eng_2023_10_020
crossref_primary_10_1016_j_foodres_2023_113368
crossref_primary_10_1016_j_jcis_2024_12_092
crossref_primary_10_1016_j_molliq_2024_124517
crossref_primary_10_1021_acssuschemeng_4c09183
crossref_primary_10_1080_01496395_2024_2315614
crossref_primary_10_1021_acsmaterialslett_3c00938
crossref_primary_10_1016_j_ccr_2024_216406
crossref_primary_10_1016_j_seppur_2025_132341
crossref_primary_10_1039_D3CP03587E
crossref_primary_10_1016_j_molliq_2024_124871
crossref_primary_10_1021_acs_energyfuels_4c03623
crossref_primary_10_1080_05704928_2024_2390962
crossref_primary_10_1016_j_molliq_2024_125569
crossref_primary_10_1016_j_jil_2024_100126
crossref_primary_10_1016_j_molliq_2023_123643
crossref_primary_10_1021_acs_jced_2c00440
crossref_primary_10_1016_j_polymer_2024_127262
crossref_primary_10_1002_tcr_202300267
crossref_primary_10_1016_j_seppur_2024_128510
crossref_primary_10_1063_5_0223828
crossref_primary_10_1038_s41598_022_27106_w
crossref_primary_10_1016_j_heliyon_2023_e17810
Cites_doi 10.1146/annurev-matsci-071312-121640
10.1021/acssuschemeng.8b04255
10.1039/C3CP53456A
10.1021/jp0671998
10.1021/acssuschemeng.7b04235
10.1021/acs.jpcb.9b11753
10.1039/C8CP07383J
10.1039/c1cp20373h
10.1021/acssuschemeng.9b02402
10.1021/ar2001809
10.1021/je200349t
10.1021/acssuschemeng.8b03520
10.1063/1.4775741
10.1021/acssuschemeng.8b05449
10.1016/j.ssi.2018.05.016
10.1039/C1CS15146K
10.1002/anie.201207548
10.1021/acs.jpcb.7b05454
10.1016/j.trac.2018.05.001
10.1002/cphc.200400190
10.1021/acssuschemeng.5b00532
10.1021/acssuschemeng.6b01542
10.1038/srep29225
10.1016/j.fluid.2017.04.002
10.1016/j.molliq.2019.02.107
10.1016/j.trac.2015.11.006
10.1002/anie.201702486
10.1002/aic.17427
10.1039/C4CP02600D
10.1021/jp077714h
10.1039/b804794d
10.1002/cphc.201900307
10.1021/jp5110455
10.1021/acs.jpcb.7b08472
10.1021/acs.jpcb.0c11147
10.1016/j.jct.2005.04.009
10.1016/j.jiec.2021.03.011
10.1039/D0CP05407K
10.1016/j.molliq.2019.01.053
10.1021/acs.chemrev.0c00385
10.1021/acsomega.8b02447
10.1021/acssuschemeng.9b05096
10.1039/a701949a
10.1063/1.4919946
10.1021/acs.jpclett.5b01192
10.1021/acs.jpcb.0c03647
10.1155/2018/9579872
10.1021/ef5028873
10.1039/C7CP06494B
10.1021/cr300162p
10.1021/acs.jpcb.6b04187
10.1039/C4CP01164C
10.1021/je300997v
10.1016/j.fluid.2019.02.010
10.1021/acs.jpca.5b07244
10.1021/acs.jpcb.8b02378
10.1021/acssuschemeng.0c00559
10.1063/1.1801031
10.1039/C0GC00395F
10.1016/j.jpowsour.2015.11.072
10.1021/acs.jpca.7b10264
10.1002/ejoc.201501197
10.1016/0022-3093(88)90396-1
10.1021/jp510420h
10.1021/sc500439w
10.1021/jp075913v
10.1002/jssc.201701282
10.1021/acssuschemeng.7b01707
10.1039/C4CP00637B
10.1021/bm300200e
10.1039/C5NJ02677F
10.1021/acs.jpcb.7b09540
10.1063/5.0047369
10.1002/cphc.200500489
10.1016/j.aca.2012.12.019
10.1039/C5GC03080C
10.1021/acssuschemeng.9b00315
10.1021/acssuschemeng.8b01203
10.1039/C9CP00742C
10.1016/j.electacta.2018.10.086
10.1039/C8CS00325D
10.1063/1.466117
10.1021/acsomega.0c02665
10.1039/C5CP00768B
10.1063/1.341681
10.1063/1.3684633
10.1016/j.jclepro.2021.127965
10.1016/j.apmt.2017.11.005
10.1073/pnas.0911705106
10.1021/acs.jctc.0c00120
10.1063/1.3656696
10.1039/C8CP06728G
10.1103/PhysRevB.40.7040
10.1039/c1cp22554e
10.1039/C5CP01493J
10.1038/35065704
10.1021/je5001796
10.1021/acs.cgd.5b00328
10.1039/C9CP00036D
10.1021/jp404619x
10.1039/C8CC05815F
10.1039/C8CC04152K
10.1063/5.0054699
10.1107/S0108768197014821
10.1021/jp960779s
10.1021/je500320c
10.1039/c2cs35178a
10.1016/j.molliq.2016.10.115
10.1021/acs.jpcb.0c02231
10.1039/C5GC01451D
10.1007/s10953-018-0793-1
10.1103/PhysRevE.50.2064
10.1021/sc500096j
10.1039/C4CS00093E
10.1039/C5GC02914G
10.1016/S0010-938X(99)00012-8
10.1039/D0CP01560A
10.6028/jres.102.015
10.1021/cr0006831
ContentType Journal Article
Copyright 2022 The Authors. Published by American Chemical Society
2022 The Authors. Published by American Chemical Society 2022 The Authors
Copyright_xml – notice: 2022 The Authors. Published by American Chemical Society
– notice: 2022 The Authors. Published by American Chemical Society 2022 The Authors
DBID AAYXX
CITATION
NPM
7X8
7S9
L.6
5PM
DOI 10.1021/acs.jpcb.1c08170
DatabaseName CrossRef
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList MEDLINE - Academic
AGRICOLA
PubMed


Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1520-5207
EndPage 527
ExternalDocumentID PMC8785191
35001628
10_1021_acs_jpcb_1c08170
a132312812
Genre Journal Article
GroupedDBID -
02
123
29L
4.4
55A
5VS
7~N
85S
AABXI
ABFLS
ABFRP
ABMVS
ABPTK
ABUCX
ACGFS
ACNCT
ACS
AEESW
AENEX
AFEFF
AHGAQ
ALMA_UNASSIGNED_HOLDINGS
AQSVZ
BAANH
CS3
DU5
EBS
ED
F5P
GGK
GNL
IH9
IHE
JG
K2
PZZ
RNS
ROL
TAE
TN5
UI2
UKR
UPT
VF5
VG9
VQA
W1F
WH7
X
XOL
YZZ
ZGI
---
-~X
.DC
.K2
53G
AAHBH
AAYXX
ABBLG
ABJNI
ABLBI
ABQRX
ACBEA
ADHLV
CITATION
CUPRZ
ED~
JG~
XSW
YQT
~02
NPM
7X8
7S9
L.6
5PM
ID FETCH-LOGICAL-a532t-1d98d5ba4db1849a02b43ec2f98316899ac75648335904a9e1456be4b7d25d653
IEDL.DBID ACS
ISSN 1520-6106
1520-5207
IngestDate Thu Aug 21 14:36:11 EDT 2025
Thu Jul 10 18:34:01 EDT 2025
Fri Jul 11 05:10:47 EDT 2025
Mon Jul 21 06:06:04 EDT 2025
Tue Jul 01 04:08:24 EDT 2025
Thu Apr 24 23:10:13 EDT 2025
Thu Jan 27 04:11:33 EST 2022
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
License https://creativecommons.org/licenses/by/4.0
Permits the broadest form of re-use including for commercial purposes, provided that author attribution and integrity are maintained (https://creativecommons.org/licenses/by/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a532t-1d98d5ba4db1849a02b43ec2f98316899ac75648335904a9e1456be4b7d25d653
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0001-6190-2073
0000-0002-3570-0977
0000-0003-1414-8893
0000-0002-8300-6533
0000-0002-9409-7995
OpenAccessLink https://pubmed.ncbi.nlm.nih.gov/PMC8785191
PMID 35001628
PQID 2618500992
PQPubID 23479
PageCount 15
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_8785191
proquest_miscellaneous_2636408076
proquest_miscellaneous_2618500992
pubmed_primary_35001628
crossref_primary_10_1021_acs_jpcb_1c08170
crossref_citationtrail_10_1021_acs_jpcb_1c08170
acs_journals_10_1021_acs_jpcb_1c08170
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-01-20
PublicationDateYYYYMMDD 2022-01-20
PublicationDate_xml – month: 01
  year: 2022
  text: 2022-01-20
  day: 20
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle The journal of physical chemistry. B
PublicationTitleAlternate J. Phys. Chem. B
PublicationYear 2022
Publisher American Chemical Society
Publisher_xml – name: American Chemical Society
References ref45/cit45
ref99/cit99
ref3/cit3
ref81/cit81
ref16/cit16
ref52/cit52
ref114/cit114
ref23/cit23
ref116/cit116
ref110/cit110
ref111/cit111
ref2/cit2
ref112/cit112
ref77/cit77
ref113/cit113
ref71/cit71
ref117/cit117
ref20/cit20
ref48/cit48
ref118/cit118
ref74/cit74
ref119/cit119
ref10/cit10
ref35/cit35
ref89/cit89
ref19/cit19
ref93/cit93
ref42/cit42
ref96/cit96
ref107/cit107
ref120/cit120
ref109/cit109
ref13/cit13
ref122/cit122
ref105/cit105
ref61/cit61
ref67/cit67
ref38/cit38
ref90/cit90
ref64/cit64
ref54/cit54
ref6/cit6
ref18/cit18
ref65/cit65
ref97/cit97
ref101/cit101
ref11/cit11
ref102/cit102
ref29/cit29
ref76/cit76
ref86/cit86
Bockris J. O. (ref22/cit22) 1977
ref32/cit32
ref39/cit39
ref5/cit5
ref43/cit43
ref80/cit80
ref28/cit28
ref91/cit91
ref55/cit55
ref12/cit12
ref66/cit66
ref121/cit121
ref33/cit33
ref87/cit87
ref106/cit106
ref44/cit44
ref70/cit70
ref98/cit98
ref9/cit9
ref27/cit27
ref63/cit63
ref56/cit56
ref92/cit92
Levitt M. H. (ref115/cit115) 2009; 37
ref8/cit8
ref31/cit31
ref59/cit59
ref85/cit85
ref34/cit34
ref37/cit37
ref60/cit60
ref88/cit88
ref17/cit17
ref82/cit82
ref53/cit53
ref21/cit21
ref46/cit46
ref49/cit49
ref75/cit75
ref24/cit24
ref50/cit50
ref78/cit78
ref36/cit36
ref83/cit83
ref79/cit79
ref100/cit100
ref25/cit25
ref103/cit103
ref72/cit72
ref14/cit14
ref57/cit57
ref51/cit51
ref40/cit40
ref68/cit68
ref94/cit94
ref26/cit26
ref73/cit73
ref69/cit69
ref15/cit15
ref62/cit62
ref41/cit41
ref58/cit58
ref95/cit95
ref108/cit108
ref104/cit104
ref4/cit4
ref30/cit30
ref47/cit47
ref84/cit84
ref1/cit1
ref123/cit123
ref7/cit7
35266693 - J Phys Chem B. 2022 Mar 24;126(11):2324
References_xml – ident: ref46/cit46
  doi: 10.1146/annurev-matsci-071312-121640
– ident: ref33/cit33
  doi: 10.1021/acssuschemeng.8b04255
– ident: ref18/cit18
  doi: 10.1039/C3CP53456A
– ident: ref21/cit21
  doi: 10.1021/jp0671998
– ident: ref59/cit59
  doi: 10.1021/acssuschemeng.7b04235
– ident: ref68/cit68
  doi: 10.1021/acs.jpcb.9b11753
– ident: ref73/cit73
  doi: 10.1039/C8CP07383J
– ident: ref102/cit102
  doi: 10.1039/c1cp20373h
– ident: ref39/cit39
  doi: 10.1021/acssuschemeng.9b02402
– ident: ref113/cit113
  doi: 10.1021/ar2001809
– ident: ref93/cit93
  doi: 10.1021/je200349t
– ident: ref58/cit58
  doi: 10.1021/acssuschemeng.8b03520
– ident: ref101/cit101
  doi: 10.1063/1.4775741
– ident: ref60/cit60
  doi: 10.1021/acssuschemeng.8b05449
– ident: ref112/cit112
  doi: 10.1016/j.ssi.2018.05.016
– ident: ref92/cit92
  doi: 10.1039/C1CS15146K
– ident: ref5/cit5
  doi: 10.1002/anie.201207548
– ident: ref45/cit45
  doi: 10.1021/acs.jpcb.7b05454
– ident: ref11/cit11
  doi: 10.1016/j.trac.2018.05.001
– ident: ref19/cit19
  doi: 10.1002/cphc.200400190
– ident: ref53/cit53
  doi: 10.1021/acssuschemeng.5b00532
– ident: ref25/cit25
  doi: 10.1021/acssuschemeng.6b01542
– ident: ref47/cit47
  doi: 10.1038/srep29225
– ident: ref57/cit57
  doi: 10.1016/j.fluid.2017.04.002
– ident: ref69/cit69
  doi: 10.1016/j.molliq.2019.02.107
– ident: ref10/cit10
  doi: 10.1016/j.trac.2015.11.006
– ident: ref67/cit67
  doi: 10.1002/anie.201702486
– ident: ref63/cit63
  doi: 10.1002/aic.17427
– ident: ref41/cit41
  doi: 10.1039/C4CP02600D
– ident: ref116/cit116
  doi: 10.1021/jp077714h
– ident: ref107/cit107
  doi: 10.1039/b804794d
– ident: ref88/cit88
  doi: 10.1002/cphc.201900307
– ident: ref14/cit14
  doi: 10.1021/jp5110455
– ident: ref86/cit86
  doi: 10.1021/acs.jpcb.7b08472
– ident: ref66/cit66
  doi: 10.1021/acs.jpcb.0c11147
– ident: ref108/cit108
  doi: 10.1016/j.jct.2005.04.009
– ident: ref71/cit71
  doi: 10.1016/j.jiec.2021.03.011
– ident: ref64/cit64
  doi: 10.1039/D0CP05407K
– ident: ref27/cit27
  doi: 10.1016/j.molliq.2019.01.053
– ident: ref2/cit2
  doi: 10.1021/acs.chemrev.0c00385
– ident: ref35/cit35
  doi: 10.1021/acsomega.8b02447
– ident: ref37/cit37
  doi: 10.1021/acssuschemeng.9b05096
– ident: ref83/cit83
  doi: 10.1039/a701949a
– ident: ref24/cit24
  doi: 10.1063/1.4919946
– ident: ref42/cit42
  doi: 10.1021/acs.jpclett.5b01192
– ident: ref62/cit62
  doi: 10.1021/acs.jpcb.0c03647
– ident: ref122/cit122
  doi: 10.1155/2018/9579872
– ident: ref13/cit13
  doi: 10.1021/ef5028873
– ident: ref123/cit123
  doi: 10.1039/C7CP06494B
– ident: ref1/cit1
  doi: 10.1021/cr300162p
– ident: ref43/cit43
  doi: 10.1021/acs.jpcb.6b04187
– ident: ref84/cit84
  doi: 10.1039/C4CP01164C
– ident: ref109/cit109
  doi: 10.1021/je300997v
– ident: ref70/cit70
  doi: 10.1016/j.fluid.2019.02.010
– ident: ref120/cit120
  doi: 10.1021/acs.jpca.5b07244
– volume-title: Modern Electrochemistry 1
  year: 1977
  ident: ref22/cit22
– ident: ref34/cit34
  doi: 10.1021/acs.jpcb.8b02378
– ident: ref3/cit3
  doi: 10.1021/acssuschemeng.0c00559
– ident: ref85/cit85
  doi: 10.1063/1.1801031
– ident: ref30/cit30
  doi: 10.1039/C0GC00395F
– ident: ref110/cit110
  doi: 10.1016/j.jpowsour.2015.11.072
– ident: ref87/cit87
  doi: 10.1021/acs.jpca.7b10264
– ident: ref9/cit9
  doi: 10.1002/ejoc.201501197
– ident: ref96/cit96
  doi: 10.1016/0022-3093(88)90396-1
– ident: ref49/cit49
  doi: 10.1021/jp510420h
– ident: ref7/cit7
  doi: 10.1021/sc500439w
– ident: ref80/cit80
  doi: 10.1021/jp075913v
– ident: ref121/cit121
  doi: 10.1002/jssc.201701282
– ident: ref17/cit17
  doi: 10.1021/acssuschemeng.7b01707
– ident: ref118/cit118
  doi: 10.1039/C4CP00637B
– ident: ref91/cit91
  doi: 10.1021/bm300200e
– ident: ref50/cit50
  doi: 10.1039/C5NJ02677F
– ident: ref8/cit8
  doi: 10.1021/acs.jpcb.7b09540
– ident: ref77/cit77
  doi: 10.1063/5.0047369
– ident: ref20/cit20
  doi: 10.1002/cphc.200500489
– ident: ref16/cit16
  doi: 10.1016/j.aca.2012.12.019
– ident: ref54/cit54
  doi: 10.1039/C5GC03080C
– ident: ref117/cit117
  doi: 10.1021/acssuschemeng.9b00315
– ident: ref26/cit26
  doi: 10.1021/acssuschemeng.8b01203
– ident: ref28/cit28
  doi: 10.1039/C9CP00742C
– ident: ref56/cit56
  doi: 10.1016/j.electacta.2018.10.086
– ident: ref51/cit51
  doi: 10.1039/C8CS00325D
– ident: ref98/cit98
  doi: 10.1063/1.466117
– ident: ref61/cit61
  doi: 10.1021/acsomega.0c02665
– ident: ref100/cit100
  doi: 10.1039/C5CP00768B
– ident: ref105/cit105
  doi: 10.1063/1.341681
– ident: ref81/cit81
  doi: 10.1063/1.3684633
– ident: ref72/cit72
  doi: 10.1016/j.jclepro.2021.127965
– ident: ref12/cit12
  doi: 10.1016/j.apmt.2017.11.005
– ident: ref95/cit95
  doi: 10.1073/pnas.0911705106
– ident: ref36/cit36
  doi: 10.1021/acs.jctc.0c00120
– ident: ref114/cit114
  doi: 10.1063/1.3656696
– ident: ref38/cit38
  doi: 10.1039/C8CP06728G
– ident: ref94/cit94
  doi: 10.1103/PhysRevB.40.7040
– ident: ref23/cit23
  doi: 10.1039/c1cp22554e
– ident: ref31/cit31
  doi: 10.1039/C5CP01493J
– ident: ref106/cit106
  doi: 10.1038/35065704
– volume: 37
  volume-title: Spin Dynamics: Basics of Nuclear Magnetic Resonance
  year: 2009
  ident: ref115/cit115
– ident: ref48/cit48
  doi: 10.1039/C4CP02600D
– ident: ref89/cit89
  doi: 10.1021/je5001796
– ident: ref75/cit75
  doi: 10.1021/acs.cgd.5b00328
– ident: ref40/cit40
  doi: 10.1039/C9CP00036D
– ident: ref32/cit32
  doi: 10.1021/jp404619x
– ident: ref29/cit29
  doi: 10.1039/C8CC05815F
– ident: ref55/cit55
  doi: 10.1039/C8CC04152K
– ident: ref65/cit65
  doi: 10.1063/5.0054699
– ident: ref82/cit82
  doi: 10.1107/S0108768197014821
– ident: ref119/cit119
  doi: 10.1021/jp960779s
– ident: ref90/cit90
  doi: 10.1021/je500320c
– ident: ref6/cit6
  doi: 10.1039/c2cs35178a
– ident: ref111/cit111
  doi: 10.1016/j.molliq.2016.10.115
– ident: ref74/cit74
  doi: 10.1021/acs.jpcb.0c02231
– ident: ref52/cit52
  doi: 10.1039/C5GC01451D
– ident: ref4/cit4
  doi: 10.1007/s10953-018-0793-1
– ident: ref104/cit104
  doi: 10.1103/PhysRevE.50.2064
– ident: ref15/cit15
  doi: 10.1021/sc500096j
– ident: ref99/cit99
  doi: 10.1039/C4CS00093E
– ident: ref44/cit44
  doi: 10.1039/C5GC02914G
– ident: ref76/cit76
  doi: 10.1016/S0010-938X(99)00012-8
– ident: ref97/cit97
  doi: 10.1039/D0CP01560A
– ident: ref103/cit103
  doi: 10.6028/jres.102.015
– ident: ref78/cit78
  doi: 10.1021/cr0006831
– ident: ref79/cit79
  doi: 10.1021/acs.jpcb.7b05454
– reference: 35266693 - J Phys Chem B. 2022 Mar 24;126(11):2324
SSID ssj0025286
Score 2.6136835
Snippet Deep eutectic solvents (DESs) formed by hydrogen bond donors and acceptors are a promising new class of solvents. Both hydrophilic and hydrophobic binary DESs...
Deep eutectic solvents (DESs) formed by hydrogen bond donors and acceptors are a promising new class of solvents. Both hydrophilic and hydrophobic binary DESs...
SourceID pubmedcentral
proquest
pubmed
crossref
acs
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 513
SubjectTerms ammonium chloride
B: Liquids; Chemical and Dynamical Processes in Solution
decanoic acid
hydrogen bonding
hydrophilicity
hydrophobicity
solvents
tetrabutylammonium compounds
viscosity
water content
water vapor
Title Effect of Water on a Hydrophobic Deep Eutectic Solvent
URI http://dx.doi.org/10.1021/acs.jpcb.1c08170
https://www.ncbi.nlm.nih.gov/pubmed/35001628
https://www.proquest.com/docview/2618500992
https://www.proquest.com/docview/2636408076
https://pubmed.ncbi.nlm.nih.gov/PMC8785191
Volume 126
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3JTsMwELWgHODCvpRNRoIDh5TYsZ34iApVhQQXQHCLvFVsSqqmPcDXM07SQgFVHJPYiTz2ZN7T2G8QOgZKwlyUuCCyJgwYiW2gEk0Cbi03gkrWc54oXt-I7j27euSPXzI5PzP4lJwpU7Re-ka3iAm9mtw8WqACfNjDoPbthFxxWlZ1hHDk6VA4Tkn-9QYfiEwxHYh-ocufmyS_RZ3OSlW-qCjFCv1mk9fWaKhb5uO3lOM_BrSKlmvwic-r1bKG5ly2jhbb45pvG0hUYsY47-EHAKEDnGdY4e67HeT9p1w_G3zhXB9fjnzqAa5u8ze_X3IT3Xcu79rdoK6sECge0WFArEws14pZDQxPqpBqFjlDezLxhaykVCbmgvkDWTJkSjoCOEs7pmNLuRU82kKNLM_cDsJaUrARV3EP3M0JeKeSigHJ0wyolmNNdAIDTmvPKNIy6U1JWt4EK6S1FZrobDwdqanlyX2VjLcZPU4nPfqVNMeMtkfjGU7BpD4pojKXj4oUGGTCPU6ms9pEggG0jkUTbVerYvLFiHvUTJMmiqfWy6SB1--efpI9P5U63kkMcFeS3X9aaA8tUX_2IiTwa9tHjeFg5A4AEQ31YekKn_gFBSs
linkProvider American Chemical Society
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3PT9swFH6C7sAuG9vY6DaYJ20HDimxYyfxsSqgsgGHARq3yL8qGCipmvYw_nqe0yRbAVVwjGM79vNz3vf07O8BfEOXhLsodUFkTRhwmthApZoGwlphYib5yHlH8fgkHp7zHxfiYgVocxcGB1FiT2UVxP_HLkB3fdmfsdE9akJPKrcKLxCLMK_U_cFp62MJViV3RKvkvaKwiUw-1oO3R6ZctEcPQOb9s5L_GZ-D1_CrHXZ15uS6N5vqnrm9x-j4rHmtw6saipL-XHfewIrL38LaoMkA9w7iObUxKUbkN0LSCSlyosjwr50U48tCXxmy59yY7M98IAKfTosbf3pyA84P9s8Gw6DOsxAoEbFpQK1MrdCKW43-nlQh0zxyho1k6tNaSalMImLur2fJkCvpKKIu7bhOLBM2FtF76ORF7jaBaMlQVEIlI9x8LsY-lVQcXT7N0fFyvAvfccJZvU_KrAqBM5pVhSiFrJZCF3abVclMTVbuc2bcLGmx07YYz4k6ltT92ix0hiL1IRKVu2JWZuhPpsKjZrasThRzBNpJ3IUPc-VovxgJj6FZ2oVkQW3aCp7Ne_FNfnVZsXqnCYJfST8-UUJfYG14dnyUHR2e_PwEL5m_lRFS_Ol9hs50MnNbiJWmervaHXeNKA2M
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB6VIgEXngWWZ5DogUO2sWMn8bHadrW8KqS20FvkV9RClUSb3QP8emayScQWtCrHOLZjj2fibzT2NwBv0SURPs58GDsbhYKlLtSZYaF0TtqEK1F4chQ_HyWzU_HhTJ5tgezvwuAgGuypaYP4ZNW1KzqGAbZH5d9ra8bMRkQsdwNuUtSOFHt_cjz4WZK3CR5xZyLPKOqjk__qgfYk26zvSX8BzavnJf_YgKb34Osw9PbcyY_xcmHG9tcVVsf_ntt9uNtB0mB_pUMPYMuXD-H2pM8E9wiSFcVxUBXBN4Sm86AqAx3Mfrp5VZ9X5sIGB97XweGSAhL4dFxd0inKHTidHp5MZmGXbyHUMuaLkDmVOWm0cAb9PqUjbkTsLS9URumtlNI2lYmga1oqElp5hujLeGFSx6VLZPwYtsuq9E8hMIqjuKROCzRCn2CfWmmBrp8R6IB5MYJdnHDe2UuTt6FwzvK2EKWQd1IYwV6_MrntSMspd8blhhbvhhb1irBjQ903_WLnKFIKlejSV8smR78yk4Se-aY6cSIQcKfJCJ6sFGT4YiwJS_NsBOma6gwViNV7_U15cd6ye2cpgmDFnl1TQq_h1peDaf7p_dHH53CH0-WMiOG_7wVsL-ZL_xIh08K8ag3kN0eEEA8
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Effect+of+Water+on+a+Hydrophobic+Deep+Eutectic+Solvent&rft.jtitle=The+journal+of+physical+chemistry.+B&rft.au=Kivel%C3%A4%2C+Henri&rft.au=Salom%C3%A4ki%2C+Mikko&rft.au=Vainikka%2C+Petteri&rft.au=M%C3%A4kil%C3%A4%2C+Ermei&rft.date=2022-01-20&rft.issn=1520-5207&rft.volume=126&rft.issue=2+p.513-527&rft.spage=513&rft.epage=527&rft_id=info:doi/10.1021%2Facs.jpcb.1c08170&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1520-6106&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1520-6106&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1520-6106&client=summon