Determination of the gas diffusion coefficient of a peat grassland soil

Summary Peatland habitats are important carbon stocks that also have the potential to be significant sources of greenhouse gases, particularly when subject to changes such as artificial drainage and application of fertilizer. Models aiming to estimate greenhouse gas release from peatlands require an...

Full description

Saved in:
Bibliographic Details
Published inEuropean journal of soil science Vol. 64; no. 5; pp. 681 - 687
Main Authors Boon, A., Robinson, J. S., Nightingale, P. D., Cardenas, L., Chadwick, D. R., Verhoef, A.
Format Journal Article
LanguageEnglish
Published Oxford, UK Blackwell Publishing Ltd 01.10.2013
Blackwell
Subjects
Online AccessGet full text
ISSN1351-0754
1365-2389
DOI10.1111/ejss.12056

Cover

Loading…
Abstract Summary Peatland habitats are important carbon stocks that also have the potential to be significant sources of greenhouse gases, particularly when subject to changes such as artificial drainage and application of fertilizer. Models aiming to estimate greenhouse gas release from peatlands require an accurate estimate of the diffusion coefficient of gas transport through soil (Ds). The availability of specific measurements for peatland soils is currently limited. This study measured Ds for a peat soil with an overlying clay horizon and compared values with those from widely available models. The Ds value of a sandy loam reference soil was measured for comparison. Using the Currie (1960) method, Ds was measured between an air‐filled porosity (ϵ) range of 0 and 0.5 cm3 cm−3. Values of Ds for the peat cores ranged between 3.2 × 10−4 and 4.4 × 10−3 m2 hour−1, for loamy clay cores between 0 and 4.7 × 10−3 m2 hour−1 and for the sandy reference soil they were between 5.4 × 10−4 and 3.4 × 10−3 m2 hour−1. The agreement of measured and modelled values of relative diffusivity (Ds/D0, with D0 the diffusion coefficient through free air) varied with soil type; however, the Campbell (1985) model provided the best replication of measured values for all soils. This research therefore suggests that the use of the Campbell model in the absence of accurately measured Ds and porosity values for a study soil would be appropriate. Future research into methods to reduce shrinkage of peat during measurement and therefore allow measurement of Ds for a greater range of ϵ would be beneficial.
AbstractList Peatland habitats are important carbon stocks that also have the potential to be significant sources of greenhouse gases, particularly when subject to changes such as artificial drainage and application of fertilizer. Models aiming to estimate greenhouse gas release from peatlands require an accurate estimate of the diffusion coefficient of gas transport through soil (D sub(s)). The availability of specific measurements for peatland soils is currently limited. This study measured D sub(s) for a peat soil with an overlying clay horizon and compared values with those from widely available models. The D sub(s) value of a sandy loam reference soil was measured for comparison. Using the Currie (1960) method, D sub(s) was measured between an air-filled porosity ( epsilon ) range of 0 and 0.5 cm super(3) cm super(-3). Values of D sub(s) for the peat cores ranged between 3.2 x 10 super(-4) and 4.4 x 10 super(-3) m super(2) hour super(-1), for loamy clay cores between 0 and 4.7 x 10 super(-3) m super(2) hour super(-1) and for the sandy reference soil they were between 5.4 x 10 super(-4) and 3.4 x 10 super(-3) m super(2) hour super(-1). The agreement of measured and modelled values of relative diffusivity (D sub(s)/D sub(0), with D sub(0) the diffusion coefficient through free air) varied with soil type; however, the Campbell (1985) model provided the best replication of measured values for all soils. This research therefore suggests that the use of the Campbell model in the absence of accurately measured D sub(s) and porosity values for a study soil would be appropriate. Future research into methods to reduce shrinkage of peat during measurement and therefore allow measurement of D sub(s) for a greater range of epsilon would be beneficial.
Peatland habitats are important carbon stocks that also have the potential to be significant sources of greenhouse gases, particularly when subject to changes such as artificial drainage and application of fertilizer. Models aiming to estimate greenhouse gas release from peatlands require an accurate estimate of the diffusion coefficient of gas transport through soil ( D s ). The availability of specific measurements for peatland soils is currently limited. This study measured D s for a peat soil with an overlying clay horizon and compared values with those from widely available models. The D s value of a sandy loam reference soil was measured for comparison. Using the Currie (1960) method, D s was measured between an air‐filled porosity ( ϵ ) range of 0 and 0.5 cm 3 cm −3 . Values of D s for the peat cores ranged between 3.2 × 10 −4 and 4.4 × 10 −3 m 2 hour −1 , for loamy clay cores between 0 and 4.7 × 10 −3 m 2 hour −1 and for the sandy reference soil they were between 5.4 × 10 −4 and 3.4 × 10 −3 m 2 hour −1 . The agreement of measured and modelled values of relative diffusivity ( D s / D 0 , with D 0 the diffusion coefficient through free air) varied with soil type; however, the Campbell (1985) model provided the best replication of measured values for all soils. This research therefore suggests that the use of the C ampbell model in the absence of accurately measured D s and porosity values for a study soil would be appropriate. Future research into methods to reduce shrinkage of peat during measurement and therefore allow measurement of D s for a greater range of ϵ would be beneficial.
Peatland habitats are important carbon stocks that also have the potential to be significant sources of greenhouse gases, particularly when subject to changes such as artificial drainage and application of fertilizer. Models aiming to estimate greenhouse gas release from peatlands require an accurate estimate of the diffusion coefficient of gas transport through soil (Dₛ). The availability of specific measurements for peatland soils is currently limited. This study measured Dₛ for a peat soil with an overlying clay horizon and compared values with those from widely available models. The Dₛ value of a sandy loam reference soil was measured for comparison. Using the Currie (1960) method, Dₛ was measured between an air‐filled porosity (ϵ) range of 0 and 0.5 cm³ cm⁻³. Values of Dₛ for the peat cores ranged between 3.2 × 10⁻⁴ and 4.4 × 10⁻³ m² hour⁻¹, for loamy clay cores between 0 and 4.7 × 10⁻³ m² hour⁻¹ and for the sandy reference soil they were between 5.4 × 10⁻⁴ and 3.4 × 10⁻³ m² hour⁻¹. The agreement of measured and modelled values of relative diffusivity (Dₛ/D₀, with D₀ the diffusion coefficient through free air) varied with soil type; however, the Campbell (1985) model provided the best replication of measured values for all soils. This research therefore suggests that the use of the Campbell model in the absence of accurately measured Dₛ and porosity values for a study soil would be appropriate. Future research into methods to reduce shrinkage of peat during measurement and therefore allow measurement of Dₛ for a greater range of ϵ would be beneficial.
Summary Peatland habitats are important carbon stocks that also have the potential to be significant sources of greenhouse gases, particularly when subject to changes such as artificial drainage and application of fertilizer. Models aiming to estimate greenhouse gas release from peatlands require an accurate estimate of the diffusion coefficient of gas transport through soil (Ds). The availability of specific measurements for peatland soils is currently limited. This study measured Ds for a peat soil with an overlying clay horizon and compared values with those from widely available models. The Ds value of a sandy loam reference soil was measured for comparison. Using the Currie (1960) method, Ds was measured between an air‐filled porosity (ϵ) range of 0 and 0.5 cm3 cm−3. Values of Ds for the peat cores ranged between 3.2 × 10−4 and 4.4 × 10−3 m2 hour−1, for loamy clay cores between 0 and 4.7 × 10−3 m2 hour−1 and for the sandy reference soil they were between 5.4 × 10−4 and 3.4 × 10−3 m2 hour−1. The agreement of measured and modelled values of relative diffusivity (Ds/D0, with D0 the diffusion coefficient through free air) varied with soil type; however, the Campbell (1985) model provided the best replication of measured values for all soils. This research therefore suggests that the use of the Campbell model in the absence of accurately measured Ds and porosity values for a study soil would be appropriate. Future research into methods to reduce shrinkage of peat during measurement and therefore allow measurement of Ds for a greater range of ϵ would be beneficial.
Author Boon, A.
Cardenas, L.
Chadwick, D. R.
Nightingale, P. D.
Verhoef, A.
Robinson, J. S.
Author_xml – sequence: 1
  givenname: A.
  surname: Boon
  fullname: Boon, A.
  email: Alex.Boon@reading.ac.uk
  organization: Department of Geography and Environmental Science, University of Reading, Whiteknights, PO Box 233, RG6 6DW, Reading, UK
– sequence: 2
  givenname: J. S.
  surname: Robinson
  fullname: Robinson, J. S.
  organization: Department of Geography and Environmental Science, University of Reading, Whiteknights, PO Box 233, RG6 6DW, Reading, UK
– sequence: 3
  givenname: P. D.
  surname: Nightingale
  fullname: Nightingale, P. D.
  organization: Plymouth Marine Laboratory, Prospect Pl, Devon, PL1 3DH, Plymouth, UK
– sequence: 4
  givenname: L.
  surname: Cardenas
  fullname: Cardenas, L.
  organization: Rothamsted Research North Wyke, Devon, EX20 2SB, Okehampton, UK
– sequence: 5
  givenname: D. R.
  surname: Chadwick
  fullname: Chadwick, D. R.
  organization: Rothamsted Research North Wyke, Devon, EX20 2SB, Okehampton, UK
– sequence: 6
  givenname: A.
  surname: Verhoef
  fullname: Verhoef, A.
  organization: Department of Geography and Environmental Science, University of Reading, Whiteknights, PO Box 233, RG6 6DW, Reading, UK
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=27746187$$DView record in Pascal Francis
BookMark eNqNkU1P3DAQhi0EEh_thV-QC1JVKdRjx058RJQuVJQetlW5WeOsDabZZOvxCvj3TVjooUJVfRlr9Dyj0bz7bLsfes_YIfBjGN8Hf0d0DIIrvcX2QGpVCtmY7emvoOS1qnbZPtEd5yDBmD02--izT8vYY45DXwyhyLe-uEEqFjGENU3NdvAhxDb6Pk8AFiuPubhJSNRhvyhoiN0bthOwI__2uR6w75_Ovp2el5dfZxenJ5clKil06RonnQDpdSWE003ttDdmobkRAbTGoDRWLjgc6wg2tTEKXKukbpQTCykP2LvN3FUafq09ZbuM1PpuXMQPa7JQGa6ganj1H6hqVCUB1IgePaNILXYhYd9GsqsUl5gerajrSkNTjxzfcG0aiJIPto356XI5YewscDvFYKcY7FMMo_L-L-Vl6qswbOD72PnHf5D27PN8_uKUGydS9g9_HEw_ra5lreyPq5mVGuZCwLX9In8DCeenuQ
CitedBy_id crossref_primary_10_1080_03650340_2022_2049766
crossref_primary_10_1007_s11356_020_08594_7
crossref_primary_10_1016_j_agee_2022_107866
crossref_primary_10_1111_ejss_13363
crossref_primary_10_1016_j_ijheatmasstransfer_2016_11_097
crossref_primary_10_1016_j_agee_2014_01_008
crossref_primary_10_1016_j_geodrs_2019_e00230
crossref_primary_10_1111_ejss_12312
crossref_primary_10_5194_bg_19_5041_2022
crossref_primary_10_7567_JJAP_55_01AB06
crossref_primary_10_1016_j_ijheatmasstransfer_2019_01_108
Cites_doi 10.1039/b809461f
10.1255/jnirs.244
10.2307/2532051
10.1111/j.1475-2743.2007.00125.x
10.1097/00010694-199902000-00001
10.1071/SR04106
10.1007/BF02183033
10.1007/BF00055156
10.2136/sssaj2010.0102
10.1111/j.1747-0765.2005.tb00049.x
10.1007/BF00000574
10.1016/j.agrformet.2005.03.005
10.1046/j.1529-8817.2003.00710x
10.2136/vzj2004.3000
10.1016/S0038-0717(03)00092-0
10.2136/vzj2004.0164
10.1039/tf9615701200
10.2136/sssaj2006.0101
10.1088/0508-3443/11/8/302
10.1029/2006GL027509
10.1029/1999GB900091
10.1016/S0168-1923(99)00036-2
10.1111/j.1600-0889.2007.00278.x
10.1111/j.1475-2743.2006.00028.x
10.1016/j.soilbio.2008.03.019
10.1111/j.0006-341X.2000.00324.x
10.1007/BF02186048
10.2307/1941811
ContentType Journal Article
Copyright 2013 The Authors. published by John Wiley & Sons Ltd on behalf of British Society of Soil Science
2014 INIST-CNRS
Copyright_xml – notice: 2013 The Authors. published by John Wiley & Sons Ltd on behalf of British Society of Soil Science
– notice: 2014 INIST-CNRS
DBID BSCLL
24P
AAYXX
CITATION
IQODW
7QH
7ST
7TV
7U6
7UA
C1K
F1W
H97
L.G
7S9
L.6
DOI 10.1111/ejss.12056
DatabaseName Istex
Wiley Online Library Open Access
CrossRef
Pascal-Francis
Aqualine
Environment Abstracts
Pollution Abstracts
Sustainability Science Abstracts
Water Resources Abstracts
Environmental Sciences and Pollution Management
ASFA: Aquatic Sciences and Fisheries Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality
Aquatic Science & Fisheries Abstracts (ASFA) Professional
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Sustainability Science Abstracts
ASFA: Aquatic Sciences and Fisheries Abstracts
Pollution Abstracts
Aqualine
Environment Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality
Water Resources Abstracts
Environmental Sciences and Pollution Management
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList Aquatic Science & Fisheries Abstracts (ASFA) Professional
CrossRef
AGRICOLA

Database_xml – sequence: 1
  dbid: 24P
  name: Wiley Online Library Open Access
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Agriculture
EISSN 1365-2389
EndPage 687
ExternalDocumentID 27746187
10_1111_ejss_12056
EJSS12056
ark_67375_WNG_361S221X_M
Genre article
GrantInformation_xml – fundername: UK Natural Environment Research Council (NERC)
– fundername: Biotechnology and Biological Sciences Research Council (BBSRC)
GroupedDBID -~X
.3N
.GA
.Y3
05W
0R~
10A
1OB
1OC
29G
31~
33P
3SF
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5GY
5HH
5LA
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHBH
AAHHS
AANLZ
AAONW
AASGY
AAXRX
AAYJJ
AAZKR
ABCQN
ABCUV
ABEML
ABJNI
ABOGM
ABPVW
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACFBH
ACGFS
ACPOU
ACPRK
ACSCC
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFEBI
AFFNX
AFFPM
AFGKR
AFPWT
AFRAH
AFZJQ
AHBTC
AHEFC
AI.
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BSCLL
BY8
C45
CAG
COF
CS3
D-E
D-F
DC6
DCZOG
DDYGU
DPXWK
DR2
DRFUL
DRSTM
DU5
EBS
ECGQY
EJD
ESX
F00
F01
F04
FEDTE
FZ0
G-S
G.N
GODZA
H.T
H.X
HF~
HGLYW
HVGLF
HZI
HZ~
IHE
IX1
J0M
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NHB
O66
O9-
OIG
OVD
P2P
P2W
P2X
P4D
PALCI
Q.N
Q11
QB0
R.K
RIWAO
RJQFR
ROL
RX1
SAMSI
SUPJJ
TEORI
TWZ
UB1
VH1
W8V
W99
WBKPD
WIH
WIK
WOHZO
WQJ
WRC
WUPDE
WXSBR
WYISQ
XG1
XOL
Y6R
ZZTAW
~02
~IA
~KM
~WT
24P
AAHQN
AAMNL
AANHP
AAYCA
ACRPL
ACYXJ
ADNMO
AFWVQ
ALVPJ
AAYXX
AEYWJ
AGHNM
AGQPQ
AGYGG
CITATION
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
IQODW
7QH
7ST
7TV
7U6
7UA
C1K
F1W
H97
L.G
7S9
L.6
ID FETCH-LOGICAL-a5326-b8b3b213e6422b687b6e99d6092f166af56a4bfba56a3b2879951bc53685b2d33
IEDL.DBID 24P
ISSN 1351-0754
IngestDate Fri Jul 11 18:34:31 EDT 2025
Thu Jul 10 23:51:20 EDT 2025
Mon Jul 21 09:16:51 EDT 2025
Thu Apr 24 23:05:40 EDT 2025
Tue Jul 01 04:19:24 EDT 2025
Wed Jan 22 17:08:50 EST 2025
Wed Oct 30 09:51:32 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 5
Keywords Gaseous diffusion
Meadow soils
Peat soil
Organic soil
Soil science
Determination
Earth science
soils
Diffusion coefficient
Language English
License Attribution
CC BY 4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a5326-b8b3b213e6422b687b6e99d6092f166af56a4bfba56a3b2879951bc53685b2d33
Notes UK Natural Environment Research Council (NERC)
ArticleID:EJSS12056
ark:/67375/WNG-361S221X-M
Biotechnology and Biological Sciences Research Council (BBSRC)
istex:3917FDADC472A9EF2E3C5DD424B68AC2D8961BBE
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fejss.12056
PQID 1458543115
PQPubID 23462
PageCount 7
ParticipantIDs proquest_miscellaneous_1490514804
proquest_miscellaneous_1458543115
pascalfrancis_primary_27746187
crossref_citationtrail_10_1111_ejss_12056
crossref_primary_10_1111_ejss_12056
wiley_primary_10_1111_ejss_12056_EJSS12056
istex_primary_ark_67375_WNG_361S221X_M
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate October 2013
PublicationDateYYYYMMDD 2013-10-01
PublicationDate_xml – month: 10
  year: 2013
  text: October 2013
PublicationDecade 2010
PublicationPlace Oxford, UK
PublicationPlace_xml – name: Oxford, UK
– name: Oxford
PublicationTitle European journal of soil science
PublicationTitleAlternate Eur J Soil Sci
PublicationYear 2013
Publisher Blackwell Publishing Ltd
Blackwell
Publisher_xml – name: Blackwell Publishing Ltd
– name: Blackwell
References Allaire, S.E., Lafond, J.A., Cobral, A.R. & Lange, S.F. 2008. Measurement of gas diffusion through soils: comparison of laboratory methods. Journal of Environmental Monitoring, 10, 1326-1336.
Li, Z. & Kelliher, F.M. 2005. Determining nitrous oxide emissions from subsurface measurements in grazed pasture: a field trial of alternative technology. Australian Journal of Soil Research, 43, 677-687.
Pingintha, N., Leclerc, M.Y., Beasley, J.P., Zhang, G. & Senthong, C. 2010. Assessment of the soil CO2 gradient method for soil CO2 efflux measurements: comparison of six models in the calculation of the relative gas diffusion coefficient. Tellus, 62B, 57-58.
Fang, C. & Moncrieff, J.B. 1999. A model for CO2 production and transport 1: model development. Agricultural & Forest Meteorology, 95, 225-236.
Rowell, D.L. 1994. Soil Science Methods and Applications. Prentice Hall, Harlow.
Turcu, V.E., Jones, S.B. & Or, D. 2005. Continuous soil carbon dioxide and oxygen measurements and estimation of gradient-based gaseous flux. Vadose Zone Journal, 4, 1161-1169.
Moldrup, P., Olesen, T., Yamaguchi, T., Schjonning, P. & Rolston, D.E. 1999. Modelling diffusion and reaction in soils: VIII. Gas diffusion predicted from single-potential diffusivity or permeability measurements. Soil Science, 164, 75-81.
Freeman, C., Lock, M.A. & Reynolds, B. 1993. Fluxes of CO2, CH4 and N2O from a Welsh peatland following simulation of water table draw-down: potential feedback to climatic change. Biogeochemistry, 19, 51-60.
Price, S.J., Sherlock, R.R., Kelliher, F.M., McSeveny, T.M., Tate, K.R. & Condron, L.M. 2004. Pristine New Zealand forest soil is a strong methane sink. Global Change Biology, 10, 16-26.
Iiyama, I. & Hasegawa, S. 2005. Gas diffusion coefficient of undisturbed peat soils. Soil Science & Plant Nutrition, 51, 431-435.
Regina, K., Nykänen, H., Silvola, J. & Martikainen, P.J. 1996. Fluxes of nitrous oxide from boreal peatlands as affected by peatland type, water table level and nitrification capacity. Biogeochemistry, 35, 401-418.
Dunfield, P.F., Topp, E., Archambault, C. & Knowles, A. 1995. Effect of nitrogen fertilisers and moisture content on CH4 and N2O fluxes in a humisol: measurements in the field and intact soil cores. Biogeochemistry, 29, 199-222.
Dhanoa, M.S., Lister, S.J., France, J. & Barnes, R.J. 1999. Use of mean square prediction error analysis and reproducibility measures to study near infrared calibration equation performance. Journal of Near Infrared Spectroscopy, 7, 133-143.
Findlay, D.C., Colborne, G.J.N., Cope, D.W., Harrod, T.R., Hogan, D.V. & Staines, S.J. 1984. Soils and their Use in South West England Soil Survey of England and Wales Bulletin No. 14. Lawes Agricultural Trust (Soil Survey of England and Wales). Rothamsted Experimental Station. Harpenden.
Currie, J.A. 1960. Gaseous diffusion in porous media. Part 1. A non steady state method. British Journal of Applied Physics, 11, 314-317.
DeSutter, T.M., Sauer, T.J., Parkin, T.B. & Heitman, J.L. 2008. A subsurface, closed-loop system for soil carbon dioxide and its application to the gradient efflux approach. Soil Science Society of America Journal, 72, 126-134.
Cardenas, L.M., Hawkins, J.M.B., Chadwick, D. & Scholefield, D. 2003. Biogenic gas emissions from soils measured using a new automated laboratory incubation system. Soil Biology & Biochemistry, 35, 867-870.
Falloon, P., Smith, P., Bradley, R.I., Milne, R., Tomlinson, R., Viner, D. et al. 2006. RothCUK-a dynamic modelling system for estimating changes in soil C from mineral soils at 1-km resolution in the UK. Soil Use & Management, 22, 274-288.
Knorr, K-H., Oosterwoud, M.R. & Blodau, C. 2008. Experimental drought alters rates of soil respiration and methanogenesis but not carbon exchange in soil of a temperate fen. Soil Biology & Biochemistry, 40, 1781-1791.
Campbell, G.S. 1985. Soil Physics in BASIC. Transport Models for Soil-Plant Systems. Volume 14: Developments in Soil Science. Elsevier, Amsterdam.
Pihlatie, M. Pumpanen, J., Rinne, J., Ilvesniemim, H., Simojoki, A., Hari, P., et al. 2007. Gas concentration driven fluxes of nitrous oxide and carbon dioxide in boreal forest soil. Tellus, 59B, 458-469.
Kechavarzi, C., Dawson, Q., Leeds-Harrison, P.B., SzatyŁowicz, J. & Gnatowski, T. 2007. Water-table management in lowland UK peat soils and its potential impact on CO2 emission. Soil Use & Management, 23, 359-367.
Lin, L.I.-K. 1989. A concordance correlation coefficient to evaluate reproducibility. Biometrics, 45, 255-268.
Kellner, E., Baird, A.J., Oosterwoud, M., Harrison, K. & Waddington, J.M. 2006. Effect of temperature and atmospheric pressure on methane (CH4) ebullition from near-surface peats. Geophysical Research Letters, 33, L18405.
Millington, R.J. & Quirk, J.P. 1961. Permeability of porous solids. Transactions of the Faraday Society, 57, 1200-1207.
Rudolph, J., Rothfuss, F. & Conrad, R. 1996. Flux between soil and atmosphere, vertical concentration profiles in soil, and turnover or nitric oxide: 1. Measurements on a model soil core. Journal of Atmospheric Chemistry, 23, 253-273.
Lin, L.I.-K. 2000. A note on the concordance correlation coefficient. Biometrics, 56, 324-325.
Bonroy, J., Volckaert, M. & Seuntjens, P. 2011. Rapid automated measurement system for simultaneous determination of effective air-filled porosity and soil gas diffusivity. Soil Science Society of America Journal, 75, 408-417.
Gorham, E. 1991. Northern peatlands; role in the carbon cycle and probable responses to climatic warming. Ecological Applications, 1, 182-195.
Jassal, R., Black, A., Novak, M., Morgenstern, K., Nesic, Z. & Gaumont-Guay, D. 2005. Relationship between soil CO2 concentrations and forest-floor CO2 effluxes. Agricultural & Forest Meteorology, 130, 176-192.
Caron, J. & Nkongolo, N.V. 2004. Assessing gas diffusion coefficients in growing media from in situ water flow and storage measurements. Vadose Zone Journal, 3, 300-311.
Nightingale, P.D. Malin, G., Law, C.S., Watson, A.J., Liss, P.S., Liddicoat, M.I., et al. 2000. In situ evaluation of air-sea-gas exchange parameterizations using novel conservative and volatile tracers. Global Biogeochemical Cycles, 14, 373-387.
1991; 1
1960; 11
1989; 45
2005; 130
2006; 33
2011; 75
2003; 35
1999; 164
2004; 3
2005; 43
2008; 10
1994
2002
2008; 72
1999; 7
1996; 35
1961; 57
2004; 10
1993; 19
2000; 14
2000; 56
2006; 22
2005; 51
2005; 4
1985
1984
1999; 95
1995; 29
2008; 40
2010; 62B
2007; 23
1989
2007; 59B
1996; 23
Romano N. (e_1_2_6_33_1) 2002
e_1_2_6_10_1
e_1_2_6_31_1
e_1_2_6_30_1
e_1_2_6_19_1
Firestone M.K. (e_1_2_6_14_1) 1989
Rowell D.L. (e_1_2_6_34_1) 1994
e_1_2_6_36_1
e_1_2_6_35_1
e_1_2_6_11_1
e_1_2_6_12_1
e_1_2_6_17_1
Pingintha N. (e_1_2_6_29_1) 2010; 62
e_1_2_6_18_1
e_1_2_6_15_1
e_1_2_6_16_1
Findlay D.C. (e_1_2_6_13_1) 1984
e_1_2_6_21_1
e_1_2_6_20_1
e_1_2_6_9_1
e_1_2_6_8_1
e_1_2_6_5_1
Rolston D.E. (e_1_2_6_32_1) 2002
e_1_2_6_7_1
Campbell G.S. (e_1_2_6_4_1) 1985
e_1_2_6_6_1
e_1_2_6_25_1
e_1_2_6_24_1
e_1_2_6_3_1
e_1_2_6_23_1
e_1_2_6_2_1
e_1_2_6_22_1
e_1_2_6_28_1
e_1_2_6_27_1
e_1_2_6_26_1
References_xml – reference: Rowell, D.L. 1994. Soil Science Methods and Applications. Prentice Hall, Harlow.
– reference: Caron, J. & Nkongolo, N.V. 2004. Assessing gas diffusion coefficients in growing media from in situ water flow and storage measurements. Vadose Zone Journal, 3, 300-311.
– reference: Findlay, D.C., Colborne, G.J.N., Cope, D.W., Harrod, T.R., Hogan, D.V. & Staines, S.J. 1984. Soils and their Use in South West England Soil Survey of England and Wales Bulletin No. 14. Lawes Agricultural Trust (Soil Survey of England and Wales). Rothamsted Experimental Station. Harpenden.
– reference: Bonroy, J., Volckaert, M. & Seuntjens, P. 2011. Rapid automated measurement system for simultaneous determination of effective air-filled porosity and soil gas diffusivity. Soil Science Society of America Journal, 75, 408-417.
– reference: Pingintha, N., Leclerc, M.Y., Beasley, J.P., Zhang, G. & Senthong, C. 2010. Assessment of the soil CO2 gradient method for soil CO2 efflux measurements: comparison of six models in the calculation of the relative gas diffusion coefficient. Tellus, 62B, 57-58.
– reference: Turcu, V.E., Jones, S.B. & Or, D. 2005. Continuous soil carbon dioxide and oxygen measurements and estimation of gradient-based gaseous flux. Vadose Zone Journal, 4, 1161-1169.
– reference: Kechavarzi, C., Dawson, Q., Leeds-Harrison, P.B., SzatyŁowicz, J. & Gnatowski, T. 2007. Water-table management in lowland UK peat soils and its potential impact on CO2 emission. Soil Use & Management, 23, 359-367.
– reference: Cardenas, L.M., Hawkins, J.M.B., Chadwick, D. & Scholefield, D. 2003. Biogenic gas emissions from soils measured using a new automated laboratory incubation system. Soil Biology & Biochemistry, 35, 867-870.
– reference: Iiyama, I. & Hasegawa, S. 2005. Gas diffusion coefficient of undisturbed peat soils. Soil Science & Plant Nutrition, 51, 431-435.
– reference: Li, Z. & Kelliher, F.M. 2005. Determining nitrous oxide emissions from subsurface measurements in grazed pasture: a field trial of alternative technology. Australian Journal of Soil Research, 43, 677-687.
– reference: Pihlatie, M. Pumpanen, J., Rinne, J., Ilvesniemim, H., Simojoki, A., Hari, P., et al. 2007. Gas concentration driven fluxes of nitrous oxide and carbon dioxide in boreal forest soil. Tellus, 59B, 458-469.
– reference: Campbell, G.S. 1985. Soil Physics in BASIC. Transport Models for Soil-Plant Systems. Volume 14: Developments in Soil Science. Elsevier, Amsterdam.
– reference: Freeman, C., Lock, M.A. & Reynolds, B. 1993. Fluxes of CO2, CH4 and N2O from a Welsh peatland following simulation of water table draw-down: potential feedback to climatic change. Biogeochemistry, 19, 51-60.
– reference: Price, S.J., Sherlock, R.R., Kelliher, F.M., McSeveny, T.M., Tate, K.R. & Condron, L.M. 2004. Pristine New Zealand forest soil is a strong methane sink. Global Change Biology, 10, 16-26.
– reference: Allaire, S.E., Lafond, J.A., Cobral, A.R. & Lange, S.F. 2008. Measurement of gas diffusion through soils: comparison of laboratory methods. Journal of Environmental Monitoring, 10, 1326-1336.
– reference: DeSutter, T.M., Sauer, T.J., Parkin, T.B. & Heitman, J.L. 2008. A subsurface, closed-loop system for soil carbon dioxide and its application to the gradient efflux approach. Soil Science Society of America Journal, 72, 126-134.
– reference: Dunfield, P.F., Topp, E., Archambault, C. & Knowles, A. 1995. Effect of nitrogen fertilisers and moisture content on CH4 and N2O fluxes in a humisol: measurements in the field and intact soil cores. Biogeochemistry, 29, 199-222.
– reference: Fang, C. & Moncrieff, J.B. 1999. A model for CO2 production and transport 1: model development. Agricultural & Forest Meteorology, 95, 225-236.
– reference: Currie, J.A. 1960. Gaseous diffusion in porous media. Part 1. A non steady state method. British Journal of Applied Physics, 11, 314-317.
– reference: Knorr, K-H., Oosterwoud, M.R. & Blodau, C. 2008. Experimental drought alters rates of soil respiration and methanogenesis but not carbon exchange in soil of a temperate fen. Soil Biology & Biochemistry, 40, 1781-1791.
– reference: Kellner, E., Baird, A.J., Oosterwoud, M., Harrison, K. & Waddington, J.M. 2006. Effect of temperature and atmospheric pressure on methane (CH4) ebullition from near-surface peats. Geophysical Research Letters, 33, L18405.
– reference: Regina, K., Nykänen, H., Silvola, J. & Martikainen, P.J. 1996. Fluxes of nitrous oxide from boreal peatlands as affected by peatland type, water table level and nitrification capacity. Biogeochemistry, 35, 401-418.
– reference: Nightingale, P.D. Malin, G., Law, C.S., Watson, A.J., Liss, P.S., Liddicoat, M.I., et al. 2000. In situ evaluation of air-sea-gas exchange parameterizations using novel conservative and volatile tracers. Global Biogeochemical Cycles, 14, 373-387.
– reference: Lin, L.I.-K. 1989. A concordance correlation coefficient to evaluate reproducibility. Biometrics, 45, 255-268.
– reference: Millington, R.J. & Quirk, J.P. 1961. Permeability of porous solids. Transactions of the Faraday Society, 57, 1200-1207.
– reference: Falloon, P., Smith, P., Bradley, R.I., Milne, R., Tomlinson, R., Viner, D. et al. 2006. RothCUK-a dynamic modelling system for estimating changes in soil C from mineral soils at 1-km resolution in the UK. Soil Use & Management, 22, 274-288.
– reference: Rudolph, J., Rothfuss, F. & Conrad, R. 1996. Flux between soil and atmosphere, vertical concentration profiles in soil, and turnover or nitric oxide: 1. Measurements on a model soil core. Journal of Atmospheric Chemistry, 23, 253-273.
– reference: Lin, L.I.-K. 2000. A note on the concordance correlation coefficient. Biometrics, 56, 324-325.
– reference: Dhanoa, M.S., Lister, S.J., France, J. & Barnes, R.J. 1999. Use of mean square prediction error analysis and reproducibility measures to study near infrared calibration equation performance. Journal of Near Infrared Spectroscopy, 7, 133-143.
– reference: Moldrup, P., Olesen, T., Yamaguchi, T., Schjonning, P. & Rolston, D.E. 1999. Modelling diffusion and reaction in soils: VIII. Gas diffusion predicted from single-potential diffusivity or permeability measurements. Soil Science, 164, 75-81.
– reference: Gorham, E. 1991. Northern peatlands; role in the carbon cycle and probable responses to climatic warming. Ecological Applications, 1, 182-195.
– reference: Jassal, R., Black, A., Novak, M., Morgenstern, K., Nesic, Z. & Gaumont-Guay, D. 2005. Relationship between soil CO2 concentrations and forest-floor CO2 effluxes. Agricultural & Forest Meteorology, 130, 176-192.
– year: 1985
– volume: 1,
  start-page: 182
  year: 1991
  end-page: 195
  article-title: Northern peatlands; role in the carbon cycle and probable responses to climatic warming
  publication-title: Ecological Applications
– volume: 22,
  start-page: 274
  year: 2006
  end-page: 288
  article-title: RothCUK—a dynamic modelling system for estimating changes in soil C from mineral soils at 1‐km resolution in the UK
  publication-title: Soil Use & Management
– volume: 33,
  start-page: L18405
  year: 2006
  article-title: Effect of temperature and atmospheric pressure on methane (CH ) ebullition from near‐surface peats
  publication-title: Geophysical Research Letters
– volume: 62B,
  start-page: 57
  year: 2010
  end-page: 58
  article-title: Assessment of the soil CO gradient method for soil CO efflux measurements: comparison of six models in the calculation of the relative gas diffusion coefficient
  publication-title: Tellus
– volume: 19,
  start-page: 51
  year: 1993
  end-page: 60
  article-title: Fluxes of CO , CH and N O from a Welsh peatland following simulation of water table draw‐down: potential feedback to climatic change
  publication-title: Biogeochemistry
– volume: 45,
  start-page: 255
  year: 1989
  end-page: 268
  article-title: A concordance correlation coefficient to evaluate reproducibility
  publication-title: Biometrics
– volume: 14,
  start-page: 373
  year: 2000
  end-page: 387
  article-title: In situ evaluation of air‐sea‐gas exchange parameterizations using novel conservative and volatile tracers
  publication-title: Global Biogeochemical Cycles
– volume: 56,
  start-page: 324
  year: 2000
  end-page: 325
  article-title: A note on the concordance correlation coefficient
  publication-title: Biometrics
– volume: 75,
  start-page: 408
  year: 2011
  end-page: 417
  article-title: Rapid automated measurement system for simultaneous determination of effective air‐filled porosity and soil gas diffusivity
  publication-title: Soil Science Society of America Journal
– start-page: 7
  year: 1989
  end-page: 21
– volume: 23,
  start-page: 359
  year: 2007
  end-page: 367
  article-title: Water‐table management in lowland UK peat soils and its potential impact on CO emission
  publication-title: Soil Use & Management
– volume: 72,
  start-page: 126
  year: 2008
  end-page: 134
  article-title: A subsurface, closed‐loop system for soil carbon dioxide and its application to the gradient efflux approach
  publication-title: Soil Science Society of America Journal
– start-page: 1159
  year: 2002
  end-page: 1182
– volume: 95,
  start-page: 225
  year: 1999
  end-page: 236
  article-title: A model for CO production and transport 1: model development
  publication-title: Agricultural & Forest Meteorology
– volume: 35,
  start-page: 867
  year: 2003
  end-page: 870
  article-title: Biogenic gas emissions from soils measured using a new automated laboratory incubation system
  publication-title: Soil Biology & Biochemistry
– year: 1994
– volume: 130,
  start-page: 176
  year: 2005
  end-page: 192
  article-title: Relationship between soil CO concentrations and forest‐floor CO effluxes
  publication-title: Agricultural & Forest Meteorology
– volume: 57,
  start-page: 1200
  year: 1961
  end-page: 1207
  article-title: Permeability of porous solids
  publication-title: Transactions of the Faraday Society
– volume: 10,
  start-page: 1326
  year: 2008
  end-page: 1336
  article-title: Measurement of gas diffusion through soils: comparison of laboratory methods
  publication-title: Journal of Environmental Monitoring
– year: 1984
– volume: 23,
  start-page: 253
  year: 1996
  end-page: 273
  article-title: Flux between soil and atmosphere, vertical concentration profiles in soil, and turnover or nitric oxide: 1. Measurements on a model soil core
  publication-title: Journal of Atmospheric Chemistry
– start-page: 692
  year: 2002
  end-page: 698
– volume: 4,
  start-page: 1161
  year: 2005
  end-page: 1169
  article-title: Continuous soil carbon dioxide and oxygen measurements and estimation of gradient‐based gaseous flux
  publication-title: Vadose Zone Journal
– volume: 7,
  start-page: 133
  year: 1999
  end-page: 143
  article-title: Use of mean square prediction error analysis and reproducibility measures to study near infrared calibration equation performance
  publication-title: Journal of Near Infrared Spectroscopy
– volume: 11,
  start-page: 314
  year: 1960
  end-page: 317
  article-title: Gaseous diffusion in porous media. Part 1. A non steady state method
  publication-title: British Journal of Applied Physics
– volume: 43
  start-page: 677
  year: 2005
  end-page: 687
  article-title: Determining nitrous oxide emissions from subsurface measurements in grazed pasture: a field trial of alternative technology
  publication-title: Australian Journal of Soil Research
– volume: 59B
  start-page: 458
  year: 2007
  end-page: 469
  article-title: Gas concentration driven fluxes of nitrous oxide and carbon dioxide in boreal forest soil
  publication-title: Tellus
– volume: 40,
  start-page: 1781
  year: 2008
  end-page: 1791
  article-title: Experimental drought alters rates of soil respiration and methanogenesis but not carbon exchange in soil of a temperate fen
  publication-title: Soil Biology & Biochemistry
– volume: 3,
  start-page: 300
  year: 2004
  end-page: 311
  article-title: Assessing gas diffusion coefficients in growing media from in situ water flow and storage measurements
  publication-title: Vadose Zone Journal
– volume: 29,
  start-page: 199
  year: 1995
  end-page: 222
  article-title: Effect of nitrogen fertilisers and moisture content on CH and N O fluxes in a humisol: measurements in the field and intact soil cores
  publication-title: Biogeochemistry
– volume: 164,
  start-page: 75
  year: 1999
  end-page: 81
  article-title: Modelling diffusion and reaction in soils: VIII. Gas diffusion predicted from single‐potential diffusivity or permeability measurements
  publication-title: Soil Science
– volume: 35,
  start-page: 401
  year: 1996
  end-page: 418
  article-title: Fluxes of nitrous oxide from boreal peatlands as affected by peatland type, water table level and nitrification capacity
  publication-title: Biogeochemistry
– volume: 10,
  start-page: 16
  year: 2004
  end-page: 26
  article-title: Pristine New Zealand forest soil is a strong methane sink
  publication-title: Global Change Biology
– volume: 51,
  start-page: 431
  year: 2005
  end-page: 435
  article-title: Gas diffusion coefficient of undisturbed peat soils
  publication-title: Soil Science & Plant Nutrition
– ident: e_1_2_6_2_1
  doi: 10.1039/b809461f
– ident: e_1_2_6_9_1
  doi: 10.1255/jnirs.244
– ident: e_1_2_6_23_1
  doi: 10.2307/2532051
– ident: e_1_2_6_19_1
  doi: 10.1111/j.1475-2743.2007.00125.x
– start-page: 1159
  volume-title: Methods of Soil Analysis: Part 4. Physical Methods
  year: 2002
  ident: e_1_2_6_32_1
– ident: e_1_2_6_26_1
  doi: 10.1097/00010694-199902000-00001
– ident: e_1_2_6_22_1
  doi: 10.1071/SR04106
– ident: e_1_2_6_31_1
  doi: 10.1007/BF02183033
– ident: e_1_2_6_35_1
  doi: 10.1007/BF00055156
– ident: e_1_2_6_3_1
  doi: 10.2136/sssaj2010.0102
– ident: e_1_2_6_17_1
  doi: 10.1111/j.1747-0765.2005.tb00049.x
– ident: e_1_2_6_15_1
  doi: 10.1007/BF00000574
– ident: e_1_2_6_18_1
  doi: 10.1016/j.agrformet.2005.03.005
– ident: e_1_2_6_30_1
  doi: 10.1046/j.1529-8817.2003.00710x
– ident: e_1_2_6_6_1
  doi: 10.2136/vzj2004.3000
– ident: e_1_2_6_5_1
  doi: 10.1016/S0038-0717(03)00092-0
– ident: e_1_2_6_36_1
  doi: 10.2136/vzj2004.0164
– ident: e_1_2_6_25_1
  doi: 10.1039/tf9615701200
– ident: e_1_2_6_8_1
  doi: 10.2136/sssaj2006.0101
– volume-title: Soil Science Methods and Applications
  year: 1994
  ident: e_1_2_6_34_1
– ident: e_1_2_6_7_1
  doi: 10.1088/0508-3443/11/8/302
– volume-title: Soils and their Use in South West England
  year: 1984
  ident: e_1_2_6_13_1
– volume-title: Soil Physics in BASIC. Transport Models for Soil‐Plant Systems
  year: 1985
  ident: e_1_2_6_4_1
– ident: e_1_2_6_20_1
  doi: 10.1029/2006GL027509
– ident: e_1_2_6_27_1
  doi: 10.1029/1999GB900091
– ident: e_1_2_6_12_1
  doi: 10.1016/S0168-1923(99)00036-2
– start-page: 7
  volume-title: Exchange of Trace Gases between Terrestrial Ecosystems and the Atmosphere
  year: 1989
  ident: e_1_2_6_14_1
– ident: e_1_2_6_28_1
  doi: 10.1111/j.1600-0889.2007.00278.x
– ident: e_1_2_6_11_1
  doi: 10.1111/j.1475-2743.2006.00028.x
– start-page: 692
  volume-title: Methods of Soil Analysis: Part 4. Physical Methods
  year: 2002
  ident: e_1_2_6_33_1
– ident: e_1_2_6_21_1
  doi: 10.1016/j.soilbio.2008.03.019
– ident: e_1_2_6_24_1
  doi: 10.1111/j.0006-341X.2000.00324.x
– ident: e_1_2_6_10_1
  doi: 10.1007/BF02186048
– ident: e_1_2_6_16_1
  doi: 10.2307/1941811
– volume: 62
  start-page: 57
  year: 2010
  ident: e_1_2_6_29_1
  article-title: Assessment of the soil CO2 gradient method for soil CO2 efflux measurements: comparison of six models in the calculation of the relative gas diffusion coefficient
  publication-title: Tellus
SSID ssj0013199
Score 2.1149125
Snippet Summary Peatland habitats are important carbon stocks that also have the potential to be significant sources of greenhouse gases, particularly when subject to...
Peatland habitats are important carbon stocks that also have the potential to be significant sources of greenhouse gases, particularly when subject to changes...
SourceID proquest
pascalfrancis
crossref
wiley
istex
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 681
SubjectTerms Agronomy. Soil science and plant productions
air
Biological and medical sciences
carbon sinks
clay
diffusivity
drainage systems
Earth sciences
Earth, ocean, space
Exact sciences and technology
fertilizer application
Fundamental and applied biological sciences. Psychology
grassland soils
greenhouse gases
habitats
peat
peat soils
peatlands
porosity
shrinkage
Soil science
Soils
Surficial geology
Title Determination of the gas diffusion coefficient of a peat grassland soil
URI https://api.istex.fr/ark:/67375/WNG-361S221X-M/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fejss.12056
https://www.proquest.com/docview/1458543115
https://www.proquest.com/docview/1490514804
Volume 64
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Na9wwEB3S5NIeSj-p2yYotBRacLFkSZahl5BPAgml29C9GcmWlrRhHdZZ6M_vjGxvslACudg-jLCZsTRP0ug9gI9FHTJbFzJVhsuUKN9SV0uVKp9Zk-eWK0_rHWfn-uRCnk7VdAO-jWdhen6I1YIb9Yw4XlMHt66708n97677ygUm8EewRWdrSb9AyO-3ewi9eiRJ0KWYGOVATkp1PLdt19LRFnn2L5VH2g49FHppizXseRfBxhR09AyeDtiR7fXBfg4bfv4CnuzNFgN_hn8JxwdjeQs5nLWBIcBjM9sxUkJZ0tIYq1sfeSMw3ZCBZdc4HrPZAmE0lTmyrr28egUXR4c_90_SQSshtQoRWOqMy53gucf5hHDaFE77smx0VorAtbZBaStdcBbvaGiIB467WhH_vBNNnr-GzXk792-Ala4JvDHBWB9kjRCwzksMXWhKU2eNMgl8Hl1W1QOROOlZXFXjhILcW0X3JvBhZXvd02f81-pT9PzKxC7-UMFZoapf58dVrvlECD6tzhLYWQvNqoFAFKu5KRLYHWNVYT-hzQ879-0SXyRxYiSJW-g-G2IrkyaTCXyJgb7no6vD08kkPr19iPE7eCxIUSPWA76HzZvF0m8jrrlxO_H3xevBD_EP4_fy-g
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3daxQxEA_aPqgP4ieuHzWiCAorm2ySzT4WbXvW3iFci_cWkmxyqOW23PbAP9-Z7N61B1Lwafdhwi4zmcwvk8lvCHlX-VhYX4lcaiZypHzLnRcyl6GwuiwtkwHzHeOJGp2J45mcDbU5eBem54fYJNzQM9J6jQ6OCelrXh5-dd0nxiGC3ya7AoA5Tmouvl8dIvTtI7EHXQ6RUQzspFjIczV2Kx7tomr_YH2k7UBFse9tsQU-r0PYFIMOH5D7A3ik-721H5JbYfGI3NufLwcCjfCYHH1Z17egxmkbKSA8OrcdxVYoK8yNUd-GRBwB8QYFLL2ABZnOl4Cjsc6Rdu3P8yfk7PDg9PMoH5ol5FYCBMuddqXjrAywoeBO6cqpUNeNKmoemVI2SmWFi87CEwQ1EsEx5yUS0DvelOVTsrNoF-EZobVrImt01DZE4QED-rIG28Wm1r5opM7Ih7XKjB-YxLGhxblZ7yhQvSapNyNvN7IXPX_GP6XeJ81vROzyN1acVdL8mByZUrEp52xmxhnZ2zLNZgAHGKuYrjLyZm0rA46Cpx92EdoVfEjAzkggudBNMkhXJnQhMvIxGfqGnzYHx9Npenv-P8KvyZ3R6fjEnHydfHtB7nJsr5GKA1-SncvlKrwCkHPp9tJU_gtjS_WG
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3da9swED-6Fsb2MPbJvI9OY2OwgYclS7YMeylr065bQyEry5uQZCmsLXGIG9ifP51spw2Mwp7shxM2dzrdT7rT7wDel9Zn2pY8FZLyFCnfUmO5SIXLtMxzTYXD846TcXF0xo-nYroFX4a7MB0_xPrADT0jrtfo4Iva33Byd962nykLAfwO7GC2Dwv6GD-9ziF03SOxBV0aAiPvyUmxjud67EY42kHN_sHySN0GDfmutcUG9ryJYGMIGj2EBz12JHudsR_Blps_hvt7s2XPn-GewOH-UN6CCieNJwHgkZluCXZCWeHRGLGNi7wRIdyggCaLsB6T2TLAaCxzJG3z-_IpnI0Ofn49SvteCakWAYGlRprcMJq7sJ9gppClKVxV1UVWMU-LQntRaG680eEZBCXywFFjBfLPG1bn-TPYnjdz9xxIZWpPa-mldp7bAAFtXgXT-bqSNquFTODjoDJleyJx7GdxqYYNBapXRfUm8G4tu-joM_4p9SFqfi2ilxdYcFYK9Wt8qPKCThijU3WSwO6GadYDWECxBZVlAm8HW6ngJ5j80HPXrMKHwhTBe_9U3CaDbGVcZjyBT9HQt_y0OjieTOLbi_8RfgN3T_dH6se38feXcI9hc41YGvgKtq-WK_c6QJwrsxtn8l_kXvSv
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Determination+of+the+gas+diffusion+coefficient+of+a+peat+grassland+soil&rft.jtitle=European+journal+of+soil+science&rft.au=Boon%2C+A.&rft.au=Robinson%2C+J.+S.&rft.au=Nightingale%2C+P.+D.&rft.au=Cardenas%2C+L.&rft.date=2013-10-01&rft.issn=1351-0754&rft.eissn=1365-2389&rft.volume=64&rft.issue=5&rft.spage=681&rft.epage=687&rft_id=info:doi/10.1111%2Fejss.12056&rft.externalDBID=n%2Fa&rft.externalDocID=10_1111_ejss_12056
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1351-0754&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1351-0754&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1351-0754&client=summon