Stochastic modeling of salt accumulation in the root zone due to capillary flux from brackish groundwater

Groundwater can be a source of both water and salts in semiarid areas, and therefore, capillary pressure–induced upward water flow may cause root zone salinization. To identify which conditions result in hazardous salt concentrations in the root zone, we combined the mass balance equations for salt...

Full description

Saved in:
Bibliographic Details
Published inWater resources research Vol. 47; no. 9
Main Authors Shah, S. H. H., Vervoort, R. W., Suweis, S., Guswa, A. J., Rinaldo, A., van der Zee, S. E. A. T. M.
Format Journal Article
LanguageEnglish
Published Washington Blackwell Publishing Ltd 01.09.2011
John Wiley & Sons, Inc
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Groundwater can be a source of both water and salts in semiarid areas, and therefore, capillary pressure–induced upward water flow may cause root zone salinization. To identify which conditions result in hazardous salt concentrations in the root zone, we combined the mass balance equations for salt and water, further assuming a Poisson‐distributed daily rainfall and brackish groundwater quality. For the water fluxes (leaching, capillary upflow, and evapotranspiration), we account for osmotic effects of the dissolved salt mass using Van‘t Hoff's law. Root zone salinity depends on salt transport via capillary flux and on evapotranspiration, which concentrates salt in the root zone. Both a wet climate and shallow groundwater lead to wetter root zone conditions, which in combination with periodic rainfall enhances salt removal by leaching. For wet climates, root zone salinity (concentrations) increases as groundwater is more shallow (larger groundwater influence). For dry climates, salinity increases as groundwater is deeper because of a drier root zone and less leaching. For intermediate climates, opposing effects can push the salt balance either way. Root zone salinity increases almost linearly with groundwater salinity. With a simple analytical approximation, maximum concentrations can be related to the mean capillary flow rate, leaching rate, water saturation, and groundwater salinity for different soils, climates, and groundwater depths. Key Points Root zone salinity depends on the mean fluxes (P,U,L,ET) Root zone salinity increases almost linear with groundwater salinity If U>L root zone concentration becomes larger than in groundwater and vice versa
AbstractList Groundwater can be a source of both water and salts in semiarid areas, and therefore, capillary pressure-induced upward water flow may cause root zone salinization. To identify which conditions result in hazardous salt concentrations in the root zone, we combined the mass balance equations for salt and water, further assuming a Poisson-distributed daily rainfall and brackish groundwater quality. For the water fluxes (leaching, capillary upflow, and evapotranspiration), we account for osmotic effects of the dissolved salt mass using Van't Hoff's law. Root zone salinity depends on salt transport via capillary flux and on evapotranspiration, which concentrates salt in the root zone. Both a wet climate and shallow groundwater lead to wetter root zone conditions, which in combination with periodic rainfall enhances salt removal by leaching. For wet climates, root zone salinity (concentrations) increases as groundwater is more shallow (larger groundwater influence). For dry climates, salinity increases as groundwater is deeper because of a drier root zone and less leaching. For intermediate climates, opposing effects can push the salt balance either way. Root zone salinity increases almost linearly with groundwater salinity. With a simple analytical approximation, maximum concentrations can be related to the mean capillary flow rate, leaching rate, water saturation, and groundwater salinity for different soils, climates, and groundwater depths.
Groundwater can be a source of both water and salts in semiarid areas, and therefore, capillary pressure–induced upward water flow may cause root zone salinization. To identify which conditions result in hazardous salt concentrations in the root zone, we combined the mass balance equations for salt and water, further assuming a Poisson‐distributed daily rainfall and brackish groundwater quality. For the water fluxes (leaching, capillary upflow, and evapotranspiration), we account for osmotic effects of the dissolved salt mass using Van‘t Hoff's law. Root zone salinity depends on salt transport via capillary flux and on evapotranspiration, which concentrates salt in the root zone. Both a wet climate and shallow groundwater lead to wetter root zone conditions, which in combination with periodic rainfall enhances salt removal by leaching. For wet climates, root zone salinity (concentrations) increases as groundwater is more shallow (larger groundwater influence). For dry climates, salinity increases as groundwater is deeper because of a drier root zone and less leaching. For intermediate climates, opposing effects can push the salt balance either way. Root zone salinity increases almost linearly with groundwater salinity. With a simple analytical approximation, maximum concentrations can be related to the mean capillary flow rate, leaching rate, water saturation, and groundwater salinity for different soils, climates, and groundwater depths. Key Points Root zone salinity depends on the mean fluxes (P,U,L,ET) Root zone salinity increases almost linear with groundwater salinity If U>L root zone concentration becomes larger than in groundwater and vice versa
Groundwater can be a source of both water and salts in semiarid areas, and therefore, capillary pressureinduced upward water flow may cause root zone salinization. To identify which conditions result in hazardous salt concentrations in the root zone, we combined the mass balance equations for salt and water, further assuming a Poisson-distributed daily rainfall and brackish groundwater quality. For the water fluxes (leaching, capillary upflow, and evapotranspiration), we account for osmotic effects of the dissolved salt mass using Vant Hoff's law. Root zone salinity depends on salt transport via capillary flux and on evapotranspiration, which concentrates salt in the root zone. Both a wet climate and shallow groundwater lead to wetter root zone conditions, which in combination with periodic rainfall enhances salt removal by leaching. For wet climates, root zone salinity (concentrations) increases as groundwater is more shallow (larger groundwater influence). For dry climates, salinity increases as groundwater is deeper because of a drier root zone and less leaching. For intermediate climates, opposing effects can push the salt balance either way. Root zone salinity increases almost linearly with groundwater salinity. With a simple analytical approximation, maximum concentrations can be related to the mean capillary flow rate, leaching rate, water saturation, and groundwater salinity for different soils, climates, and groundwater depths.
Author Vervoort, R. W.
Shah, S. H. H.
Suweis, S.
Guswa, A. J.
van der Zee, S. E. A. T. M.
Rinaldo, A.
Author_xml – sequence: 1
  givenname: S. H. H.
  surname: Shah
  fullname: Shah, S. H. H.
  email: syed.shah@wur.nl
  organization: Soil Physics, Ecohydrology and Groundwater Management, Environmental Sciences Group, Wageningen University, Wageningen, Netherlands
– sequence: 2
  givenname: R. W.
  surname: Vervoort
  fullname: Vervoort, R. W.
  organization: Hydrology Research Laboratory, Faculty of Agriculture, Food and Natural Resources, University of Sydney, New South Wales, Sydney, Australia
– sequence: 3
  givenname: S.
  surname: Suweis
  fullname: Suweis, S.
  organization: Laboratory of Ecohydrology, IEE, ENAC, École Polytechnique Fédérale, Lausanne, Switzerland
– sequence: 4
  givenname: A. J.
  surname: Guswa
  fullname: Guswa, A. J.
  organization: Picker Engineering Program, Smith College, Massachusetts, Northampton, USA
– sequence: 5
  givenname: A.
  surname: Rinaldo
  fullname: Rinaldo, A.
  organization: Laboratory of Ecohydrology, IEE, ENAC, École Polytechnique Fédérale, Lausanne, Switzerland
– sequence: 6
  givenname: S. E. A. T. M.
  surname: van der Zee
  fullname: van der Zee, S. E. A. T. M.
  organization: Soil Physics, Ecohydrology and Groundwater Management, Environmental Sciences Group, Wageningen University, Wageningen, Netherlands
BookMark eNp9kU1vEzEQhi1UJNLCjR9gceHCUnvtXa-5oagNqBVIaaVIXKxZx5u49drBH0rDr2ejVAhx4DSX53lnXs05OvPBG4TeUvKRklpe1oSS1ZIQKSR5gWZUcl4JKdgZmhHCWUWZFK_QeUoPhFDetGKG7F0OegspW43HsDbO-g0OA07gMgaty1gcZBs8th7nrcExhIx_TXvxuhicA9aws85BPODBlSc8xDDiPoJ-tGmLNzEUv95DNvE1ejmAS-bN87xA99dX9_Mv1e33xdf559sKGka7yhBNBNS6b4TQrG8074DLwYi61cJA3fC-Ez0ZYNCw1lND2UpdG2j6gXMG7AJ9OsXuYWP81MZ45SFqm1QAq5ydbosHtS9ReXccu9InxYnkhE3y-5O8i-FnMSmr0SZtpnrehJJUJyVtG87IRL77h3wIJfqpmJKUs7rl7Bj34QTpGFKKZlC7aMfjekrU8WPq749NOHs-3Tpz-C-rVsv5ktZd001WdbJsyubpjwXxUbWCiUatvi3UzUJcMyp_qDv2G850q7s
CitedBy_id crossref_primary_10_1016_j_jhydrol_2023_129138
crossref_primary_10_1016_j_agwat_2014_08_003
crossref_primary_10_1016_j_chemosphere_2014_05_084
crossref_primary_10_1016_j_scitotenv_2021_145572
crossref_primary_10_1029_2020WR029397
crossref_primary_10_1016_j_jhydrol_2021_127036
crossref_primary_10_1002_2013WR015208
crossref_primary_10_1073_pnas_2005925117
crossref_primary_10_1029_2020WR027456
crossref_primary_10_1029_2018GL079766
crossref_primary_10_1016_j_jenvman_2021_113820
crossref_primary_10_1029_2023WR034750
crossref_primary_10_1016_j_jhydrol_2020_124785
crossref_primary_10_1002_ldr_4128
crossref_primary_10_1007_s11104_013_1803_0
crossref_primary_10_1016_j_agwat_2024_108868
crossref_primary_10_3390_w11112273
crossref_primary_10_1002_vzj2_20064
crossref_primary_10_1002_eco_1288
crossref_primary_10_1002_hyp_11095
crossref_primary_10_1016_j_agwat_2013_07_017
crossref_primary_10_1016_j_scitotenv_2021_150599
crossref_primary_10_1111_sum_12869
crossref_primary_10_1007_s11269_016_1315_9
crossref_primary_10_69631_ipj_v1i1nr15
crossref_primary_10_5194_hess_18_2287_2014
crossref_primary_10_1016_j_envexpbot_2012_10_004
crossref_primary_10_3389_fenvs_2023_1130455
crossref_primary_10_1007_s11269_018_1940_6
crossref_primary_10_1016_j_jhydrol_2018_11_004
crossref_primary_10_1038_s41598_022_15104_x
crossref_primary_10_1007_s10530_014_0829_4
crossref_primary_10_3390_w11102089
crossref_primary_10_1175_JHM_D_22_0014_1
crossref_primary_10_1016_j_scitotenv_2020_143029
crossref_primary_10_1007_s11356_022_20912_9
crossref_primary_10_1029_2011RG000383
crossref_primary_10_1007_s11769_019_1027_1
crossref_primary_10_1016_j_jenvman_2020_111678
Cites_doi 10.1111/j.1469-8137.2010.03306.x
10.2134/jeq1974.00472425000300040002x
10.1029/2010WR009464
10.1007/BF00317126
10.1029/2008WR007293
10.1023/A:1004378602378
10.1016/j.agwat.2007.02.007
10.1029/2008WR007292
10.1016/S0016-7061(01)00138-0
10.1098/rspa.1999.0477
10.2136/vzj2002.1580
10.1029/2008WR007245
10.1016/0022-1694(75)90057-8
10.1029/2004GL021935
10.1111/j.1469-8137.2010.03245.x
10.1201/9781439833544
10.1016/j.jhydrol.2005.1001.1009
10.1016/S0378-3774(02)00058-6
10.1029/2007WR006707
10.1007/s00442-005-0108-2
10.1016/0378-3774(81)90043-3
10.1111/j.1365‐2486.2005.01093.x
10.1007/978-3-642-68324-4
10.1029/WR020i011p01611
10.1016/j.advwatres.2004.1003.1001
10.1007/BF00317442
10.1029/2010GL042495
10.1016/j.advwatres.2010.12.003
10.1002/eco.1148
10.1029/WR014i005p00722
10.1029/WR023i007p01153
10.1007/s00271‐00010‐00223‐00277
10.1016/S0378-3774(96)01277-2
10.1016/j.agwat.2007.09.010
10.1007/s10584-005-4787-9
10.1126/science.1168572
10.1175/1520-0442(1992)005<0798:VILSWB>2.0.CO;2
10.1016/S0309-1708(01)00006-9
10.1029/2006WR005313
10.1016/j.foreco.2004.01.026
10.2136/vzj2007.0083
10.1111/j.1475-2743.2010.00280.x
10.1093/jxb/erj108
10.2307/2404628
10.1029/2008WR006889
10.1007/s004420050363
10.1016/S0309-1708(01)00005-7
10.1061/JRCEA4.0000425
10.1111/j.1469-8137.2008.02531.x
10.1016/S0378-3774(01)00100-7
10.1017/CBO9780511535680
10.1029/2000WR900337
10.1029/2001WR000826
10.1007/BF00316957
10.1016/j.agwat.2009.08.009
ContentType Journal Article
Copyright Copyright 2011 by the American Geophysical Union.
Copyright 2011 by American Geophysical Union
Wageningen University & Research
Copyright_xml – notice: Copyright 2011 by the American Geophysical Union.
– notice: Copyright 2011 by American Geophysical Union
– notice: Wageningen University & Research
DBID BSCLL
24P
WIN
AAYXX
CITATION
3V.
7QH
7QL
7T7
7TG
7U9
7UA
7WY
7WZ
7XB
87Z
8FD
8FE
8FG
8FK
8FL
8G5
ABJCF
ABUWG
AFKRA
ATCPS
AZQEC
BENPR
BEZIV
BGLVJ
BHPHI
BKSAR
C1K
CCPQU
DWQXO
F1W
FR3
FRNLG
F~G
GNUQQ
GUQSH
H94
H96
HCIFZ
K60
K6~
KL.
KR7
L.-
L.G
L6V
M0C
M2O
M7N
M7S
MBDVC
P64
PATMY
PCBAR
PQBIZ
PQBZA
PQEST
PQQKQ
PQUKI
PTHSS
PYCSY
Q9U
QVL
DOI 10.1029/2010WR009790
DatabaseName Istex
Wiley Online Library Open Access
Wiley Online Library Free Content
CrossRef
ProQuest Central (Corporate)
Aqualine
Bacteriology Abstracts (Microbiology B)
Industrial and Applied Microbiology Abstracts (Microbiology A)
Meteorological & Geoastrophysical Abstracts
Virology and AIDS Abstracts
Water Resources Abstracts
ABI/INFORM Collection
ABI/INFORM Global (PDF only)
ProQuest Central (purchase pre-March 2016)
ABI/INFORM Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ABI/INFORM Collection (Alumni Edition)
Research Library (Alumni Edition)
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central
Agricultural & Environmental Science Collection
ProQuest Central Essentials
ProQuest Central
Business Premium Collection
Technology Collection
Natural Science Collection
Earth, Atmospheric & Aquatic Science Collection
Environmental Sciences and Pollution Management
ProQuest One Community College
ProQuest Central Korea
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Business Premium Collection (Alumni)
ABI/INFORM Global (Corporate)
ProQuest Central Student
Research Library Prep
AIDS and Cancer Research Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
SciTech Premium Collection
ProQuest Business Collection (Alumni Edition)
ProQuest Business Collection
Meteorological & Geoastrophysical Abstracts - Academic
Civil Engineering Abstracts
ABI/INFORM Professional Advanced
Aquatic Science & Fisheries Abstracts (ASFA) Professional
ProQuest Engineering Collection
ABI/INFORM Global
Research Library
Algology Mycology and Protozoology Abstracts (Microbiology C)
Engineering Database
Research Library (Corporate)
Biotechnology and BioEngineering Abstracts
Environmental Science Database
Earth, Atmospheric & Aquatic Science Database
One Business (ProQuest)
ProQuest One Business (Alumni)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
Engineering Collection
Environmental Science Collection
ProQuest Central Basic
NARCIS:Publications
DatabaseTitle CrossRef
ProQuest Business Collection (Alumni Edition)
Research Library Prep
ProQuest Central Student
ProQuest Central Essentials
SciTech Premium Collection
ABI/INFORM Complete
Water Resources Abstracts
Environmental Sciences and Pollution Management
Meteorological & Geoastrophysical Abstracts
Natural Science Collection
Industrial and Applied Microbiology Abstracts (Microbiology A)
Engineering Collection
Business Premium Collection
ABI/INFORM Global
Engineering Database
Virology and AIDS Abstracts
ProQuest One Academic Eastern Edition
Earth, Atmospheric & Aquatic Science Database
ProQuest Technology Collection
ProQuest Business Collection
Aqualine
Biotechnology and BioEngineering Abstracts
Environmental Science Collection
ProQuest One Academic UKI Edition
Environmental Science Database
Engineering Research Database
ProQuest One Academic
Meteorological & Geoastrophysical Abstracts - Academic
ABI/INFORM Global (Corporate)
ProQuest One Business
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Technology Collection
Technology Research Database
ProQuest Central (Alumni Edition)
ProQuest One Community College
Research Library (Alumni Edition)
ProQuest Central
Earth, Atmospheric & Aquatic Science Collection
ABI/INFORM Professional Advanced
ProQuest Engineering Collection
ProQuest Central Korea
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
Agricultural & Environmental Science Collection
AIDS and Cancer Research Abstracts
ProQuest Research Library
ABI/INFORM Complete (Alumni Edition)
Civil Engineering Abstracts
ABI/INFORM Global (Alumni Edition)
ProQuest Central Basic
ProQuest SciTech Collection
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
ASFA: Aquatic Sciences and Fisheries Abstracts
Materials Science & Engineering Collection
ProQuest One Business (Alumni)
ProQuest Central (Alumni)
Business Premium Collection (Alumni)
DatabaseTitleList Aquatic Science & Fisheries Abstracts (ASFA) Professional
CrossRef


ProQuest Business Collection (Alumni Edition)
Database_xml – sequence: 1
  dbid: 24P
  name: Wiley Online Library Open Access
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
– sequence: 2
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Geography
Economics
EISSN 1944-7973
EndPage n/a
ExternalDocumentID oai_library_wur_nl_wurpubs_409403
2554433051
10_1029_2010WR009790
WRCR12858
ark_67375_WNG_KG7F319Z_S
Genre article
Feature
GroupedDBID -~X
..I
.DC
05W
0R~
123
1OB
1OC
24P
31~
33P
3V.
50Y
5VS
6TJ
7WY
7XC
8-1
8CJ
8FE
8FG
8FH
8FL
8G5
8R4
8R5
8WZ
A00
A6W
AAESR
AAHHS
AAIHA
AAIKC
AAJUZ
AAMNW
AANLZ
AASGY
AAXRX
AAYJJ
AAYOK
AAZKR
ABCUV
ABCVL
ABHUG
ABJCF
ABJNI
ABPPZ
ABTAH
ABUWG
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFO
ACGFS
ACIWK
ACKIV
ACNCT
ACPOU
ACPRK
ACXBN
ACXQS
ADAWD
ADBBV
ADDAD
ADEOM
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
AEEZP
AEIGN
AENEX
AEQDE
AETEA
AEUQT
AEUYR
AFBPY
AFGKR
AFKRA
AFMIJ
AFPWT
AFRAH
AFVGU
AFZJQ
AGJLS
AIDBO
AIURR
AIWBW
AJBDE
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALXUD
AMYDB
ASPBG
ATCPS
AVWKF
AZFZN
AZQEC
AZVAB
BDRZF
BENPR
BEZIV
BFHJK
BGLVJ
BHPHI
BKSAR
BMXJE
BPHCQ
BRXPI
BSCLL
CCPQU
CS3
D0L
D1J
DCZOG
DDYGU
DPXWK
DRFUL
DRSTM
DU5
DWQXO
EBS
EJD
F5P
FEDTE
FRNLG
G-S
GNUQQ
GODZA
GROUPED_ABI_INFORM_COMPLETE
GUQSH
HCIFZ
HVGLF
HZ~
K60
K6~
L6V
LATKE
LEEKS
LITHE
LK5
LOXES
LUTES
LYRES
M0C
M2O
M7R
M7S
MEWTI
MSFUL
MSSTM
MVM
MW2
MXFUL
MXSTM
MY~
O9-
OHT
OK1
P-X
P2P
P2W
PALCI
PATMY
PCBAR
PQBIZ
PQQKQ
PROAC
PTHSS
PYCSY
Q2X
R.K
RIWAO
RJQFR
ROL
SAMSI
SUPJJ
TAE
TN5
TWZ
UQL
VJK
VOH
WBKPD
WXSBR
WYJ
XOL
XSW
YHZ
YV5
ZCG
ZY4
ZZTAW
~02
~KM
~OA
~~A
AAHBH
PQBZA
WIN
AAYXX
CITATION
7QH
7QL
7T7
7TG
7U9
7UA
7XB
8FD
8FK
C1K
F1W
FR3
H94
H96
KL.
KR7
L.-
L.G
M7N
MBDVC
P64
PQEST
PQUKI
Q9U
02
08R
0R
31
A
AAPBV
ABFLS
ACDCL
ACVYA
ADKFC
HZ
K6
KM
LA8
MRJOP
MY
MYA
OA
PADUT
PRINS
QVL
RIG
X
XHC
ID FETCH-LOGICAL-a5318-e0c07a2cb577c3b5c48a49fe726c7ea254b87b0fafcadc944969c2ea5bf443a3
IEDL.DBID 24P
ISSN 0043-1397
IngestDate Tue Jan 05 18:05:35 EST 2021
Fri Jun 28 05:10:07 EDT 2024
Sat Oct 05 10:49:25 EDT 2024
Thu Sep 26 16:13:17 EDT 2024
Sat Aug 24 00:50:35 EDT 2024
Wed Jan 17 04:59:58 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 9
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a5318-e0c07a2cb577c3b5c48a49fe726c7ea254b87b0fafcadc944969c2ea5bf443a3
Notes istex:550D6B2DE89C571BB24F22980A67756C5A105BDD
ark:/67375/WNG-KG7F319Z-S
Tab-delimited Table 1.Tab-delimited Table 2.Tab-delimited Table 3.Tab-delimited Table 4.
ArticleID:2010WR009790
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://onlinelibrary.wiley.com/doi/abs/10.1029%2F2010WR009790
PQID 914326433
PQPubID 105507
PageCount 17
ParticipantIDs wageningen_narcis_oai_library_wur_nl_wurpubs_409403
proquest_miscellaneous_899165430
proquest_journals_914326433
crossref_primary_10_1029_2010WR009790
wiley_primary_10_1029_2010WR009790_WRCR12858
istex_primary_ark_67375_WNG_KG7F319Z_S
ProviderPackageCode QVL
PublicationCentury 2000
PublicationDate September 2011
PublicationDateYYYYMMDD 2011-09-01
PublicationDate_xml – month: 09
  year: 2011
  text: September 2011
PublicationDecade 2010
PublicationPlace Washington
PublicationPlace_xml – name: Washington
PublicationTitle Water resources research
PublicationTitleAlternate Water Resour. Res
PublicationYear 2011
Publisher Blackwell Publishing Ltd
John Wiley & Sons, Inc
Publisher_xml – name: Blackwell Publishing Ltd
– name: John Wiley & Sons, Inc
References Laio, F., S. Tamea, L. Ridolfi, P. D'Odorico, and I. Rodriguez-Iturbe (2009), Ecohydrology of groundwater-dependent ecosystems: 1. Stochastic water table dynamics, Water Resour. Res., 45, W05419, doi:10.1029/2008WR007292.
Szabolcs, I. (1989), Salt Affected Soils, 274 pp., CRC Press, Boca Raton, Fla.
Minasny, B., and A. B. McBratney (2002), The efficiency of various approaches to obtaining estimates of soil hydraulic properties, Geoderma, 107, 55-70.
Pichu, R. (2006), World salinization with emphasis on Australia, J. Exp. Bot., 57(5), 1017-1023.
Raats, P. A. C. (1975), Distribution of salts in the root zone, J. Hydrol., 27, 237-248.
Somma, F., J. W. Hopmans, and V. Clausnitzer (1998), Transient three-dimensional modeling of soil water and solute transport with simultaneous root growth, root water and nutrient uptake, Plant Soil, 202, 281-293.
Mensforth, L. J., P. J. Thorburn, S. D. Tyerman, and G. R. Walker (1994), Sources of water used by riparian Eucalyptus camaldulensis overlying highly saline groundwater, Oecologia, 100, 21-28.
van der Zee, S. E. A. T. M., S. H. H. Shah, C. G. R. Van Uffelen, P. A. C. Raats, and N. dal Ferro (2010), Soil sodicity as a result of periodical drought, Agric. Water Manage., 97, 41-49, doi:10.1016/j.agwat.2009.08.009.
Rodriguez-Iturbe, I., V. K. Gupta, and E. Waymire (1984), Scale considerations in the modeling of temporal rainfall, Water Resour. Res., 20(11), 1611-1619, doi:10.1029/WR020i011p01611.
Guswa, A. J., M. A. Celia, and I. Rodriguez-Iturbe (2004), Effect of vertical resolution on predictions of transpiration in water-limited ecosystems, Adv. Water Resour., 27, 467-480, doi:10.1016/j.advwatres.2004.1003.1001.
Rhoades, J. D., J. D. Oster, R. D. Ingvalson, J. M. Tucker, and M. Clark (1973), Minimizing the salt burdens of irrigation drainage waters, J. Environ. Qual., 3, 311-316.
Ridolfi, L., P. D'Odorico, F. Laio, S. Tamea, and I. Rodriguez-Iturbe (2008), Coupled stochastic dynamics of water table and soil moisture in bare soil condition, Water Resour. Res., 44, W01435, doi:10.1029/2007WR006707.
Appels, W. M., P. W. Bogaart, and S. E. A. T. M. van der Zee (2011), Influence of spatial variations of microtopography and infiltration on surface runoff and field scale hydrological connectivity, Adv. Water Resour., 34, 303-313.
Flowers, T. J., and T. D. Colmer (2008), Salinity tolerance in halophytes, New Phytol., 179, 945-963.
Bolt, G. H., and M. G. M. Bruggenwert (1976), Soil Chemistry: A. Basic Elements, 281 pp., Elsevier, Amsterdam.
Suweis, S., A. Rinaldo, S. E. A. T. M. van der Zee, A. Maritan, and A. Porporato (2010), Stochastic modeling of soil salinity, Geophys. Res. Lett., 37, L07404, doi:10.1029/2010GL042495.
Guswa, A. J., M. A. Celia, and I. Rodriguez-Iturbe (2002), Models of soil moisture dynamics in ecohydrology: A comparative study, Water Resour. Res., 38(9), 1166, doi:10.1029/2001WR000826.
Vervoort, R. W., and S. E. A. T. M. van der Zee (2008), Simulating the effect of capillary flux on the soil water balance in a stochastic ecohydrological framework, Water Resour. Res., 44, W08425, doi:10.1029/2008WR006889.
Porporato, A., F. Laio, L. Ridolfi, and I. Rodriguez-Iturbe (2001), Plants in water-controlled ecosystems: Active role in hydrologic processes and response to water stress: III. Vegetation water stress, Adv. Water Resour., 24, 725-744.
Richards, L. A., L. E. Allison, L. Bernstein, C. A. Brown, J. W. Fireman, M. Hatcher, J. T. Hayward, H. E. Pearson, G. A. Reeve, and R. C. Wilcox (1954), Diagnosis and Improvement of Saline and Alkali Soils, Agric. Handb., vol. 60, 160 pp., U.S. Dep. of Agric., Washington, D. C.
Toth, T., and G. Szendrei (2006), Types and distribution of salt affected soils in Hungary, and the characterisation of the processes of salt accumulation (in Hungarian), Topogr. Mineral. Hungariae, IX, 7-20.
Shani, U., A. Ben-Gal, E. Tripler, and L. M. Dudley (2007), Plant response to the soil environment: An analytical model integrating yield, water, soil type, and salinity, Water Resour. Res., 43, W08418, doi:10.1029/2006WR005313.
Domec, J. C., J. S. King, A. Noormets, E. Treasure, M. J. Gavazzi, G. Sun, and S. G. McNulty (2010), Hydraulic redistribution of soil water by roots affects whole-stand evapotranspiration and net ecosystem carbon exchange, New Phytol., 187, 171-183, doi:110.1111/j.1469-8137.2010.03245.x.
Van Beek, C. L., et al. (2010), The need for harmonizing methodologies for assessing soil threats in Europe, Soil Use Manage., 26, 299-309.
Caldwell, M. M., T. E. Dawson, and J. H. Richards (1998), Hydraulic lift: Consequences of water efflux from the roots of plants, Oecologia, 113, 151-161.
Corwin, D. L., J. D. Rhoades, and J. Simunek (2007), Leaching requirements for soil salinity control: Steady-state versus transient models, Agric. Water Manage., 90, 165-180, doi:10.1016/j.agwat.2007.02.007.
Walker, J., F. Bullen, and B. G. Williams (1993), Ecohydrological changes in the Murray-Darling Basin. I-The number of trees cleared over two centuries, J. Appl. Ecol., 30, 265-273.
Teuling, A. J., and P. A. Troch (2005), Improved understanding of soil moisture variability dynamics, Geophys. Res. Lett., 32, L05404, doi:10.1029/2004GL021935.
Katul, G. G., and M. B. Siqueira (2010), Biotic and abiotic factors act in coordination to amplify hydraulic redistribution and lift, New Phytol., 187, 3-6.
Appelo, C. A. J., and D. Postma (2005), Geochemistry, Groundwater and Pollution, 2nd Edition, 649 pp., A. A. Balkema, Leiden, Netherlands.
Rozema, J., and T. Flowers (2008), Crops for a salinized world, Science, 322, 1578-1582.
Bras, R. L., and D. Seo (1987), Irrigation control in the presence of salinity: Extended linear quadratic approach, Water Resour. Res., 23(7), 1153-1161, doi:10.1029/WR023i007p01153.
Varrallyay, G. (1989), Soil mapping in Hungary, Agrokemiaes Talajtan, 38, 696-714.
Eagleson, P. S. (Ed.) (2002), Ecohydrology: Darwinian Expression of Vegetation Form and Function, 496 pp., Cambridge Univ. Press, Cambridge, U. K.
Nadezhdina, N., et al. (2010), Trees never rest: The multiple facets of hydraulic redistribution, Ecohydrology, 3, 431-444, doi:10.1002/eco.1148.
Rodriguez-Iturbe, I., and A. Porporato (2004), Ecohydrology of Water-Controlled Ecosystems: Soil Moisture and Plant Dynamics, Cambridge Univ. Press, Cambridge, U. K.
Rodriguez-Iturbe, I., A. Porporato, L. Ridolfi, V. Isham, and D. R. Cox (1999), Probabilistic modelling of water balance at a point: The role of climate soil and vegetation, Proc. R. Soc. London, Ser. A, 455, 3789-3805.
Entekhabi, D., I. Rodriguez-Iturbe, and R. L. Bras (1992), Variability in large-scale water balance with land surface-atmosphere interaction, J. Clim., 5, 798-813.
Bolt, G. H. (1982), Soil Chemistry, 2nd ed., Elsevier, Amsterdam.
Brooks, R. N., and A. T. Corey (1966), Properties of porous media affecting fluid flow, J. Irrig. Drain. Div. Am. Soc. Civ. Eng., 92(IR2), 61-68.
Dawson, T. E. (1993), Hydraulic lift and water use by plants: Implications for water balance, performance and plant-plant interactions, Oecologia, 95, 565-574.
Green, S. R., B. E. Clothier, and D. J. McLeod (1997), The response of sap flow in apple roots to localised irrigation, Agric. Water Manage., 33, 63-78.
Laio, F., A. Porporato, L. Ridolfi, and I. Rodriguez-Iturbe (2001), Plants in water-controlled ecosystems: Active role in hydrologic processes and response to water stress: II. Probabilistic soil moisture dynamics, Adv. Water Resour., 24, 707-723.
Jalali, M., H. Merikhpour, M. J. Kaledhonkar, and S. E. A. T. M. van der Zee (2008), Effects of wastewater irrigation on soil sodicity and nutrient leaching in calcareous soils, Agric. Water Manage., 95, 143-153.
Howell, T. A. (1988), Irrigation Efficiencies: Handbook of Engineering in Agriculture, pp. 173-184 pp., CRC Press, Boca Raton, Fla.
Oliveira, R. S., T. E. Dawson, S. S. O. Burgess, and D. C. Nepstad (2005), Hydraulic redistribution in three Amazonian trees, Oecologia, 145, 354-363.
Tamea, S., F. Laio, L. Ridolfi, P. D'Odorico, and I. Rodriguez-Iturbe (2009), Ecohydrology of groundwater-dependent ecosystems: 2. Stochastic soil moisture dynamics, Water Resour. Res., 45, W05420, doi:10.1029/2008WR007293.
Datta, K. K., and C. D. Jong (2002), Adverse effect of waterlogging and soil salinity on crop and land productivity in northwest region of Haryana India, Agric. Water Manage., 57, 223-238.
Vervoort, R. W., and S. E. A. T. M. van der Zee (2009), Stochastic soil water dynamics of phreatophyte vegetation with dimorphic root systems, Water Resour. Res., 45, W10439, doi:10.1029/2008WR007245.
Bresler, E. (1981), Transport of salts in soils and subsoils, Agric. Water Manage., 4, 35-62.
De Jong van Lier, Q., J. C. van Dam, K. Metselaar, R. de Jong, and W. H. M. Duijnisveld (2008), Macroscopic root water uptake distribution using a matric flux potential approach, Vadose Zone J., 7, 1065-1078, doi:10.2136/vzj2007.0083.
Scott, R., T. E. Huxman, D. G. Williams, and D. C. Goodrich (2006), Ecohydrological impacts of woody-plant encroachment: Seasonal patterns of water and carbon dioxide exchange within a semiarid riparian environment, Global Change Biol., 12, 311-324, doi:10.1111/j.1365-2486.2005.01093.x.
Isidoro, D., and S. R. Grattan (2011), Predicting soil salinity in response to different irrigation practices, soil types and rainfall scenarios, Irrig. Sci., 29, 197-211, doi:10.1007/s00271-00010-00223-00277.
Whitehead, D., and C. L. Beadle (2004), Physiological regulation of productivity and water use in Eucalyptus: A review, For. Ecol. Manage., 193, 113-140.
Kaledhonkar, M. J., N. K. Tyagi, and S. E. A. T. M. van der Zee (2001), Solute transport modelling in soil for irrigation field experiments with alkali water, Agric. Water Manage., 51, 153-171.
Milly, P. C. D. (2001), A minimalist probabilistic description of root zone soil water, Water Resour. Res., 37(3), 457-463, doi:10.1029/2000WR900337.
Thorburn, P. J., and G. R. Walker (1994), Variations in stream water uptake by Eucalyptus camaldulensis with differing access to stream water, Oecologia, 1
2009; 45
1984; 20
2010; 97
2004; 27
2002; 57
1976
1966; 92
2010; 187
2008; 7
1974
1998; 113
2005; 68
1994; 100
2010; 26
2005; 145
1993; 30
2002; 107
2005; 32
1982
1999; 455
1998; 202
2010; 3
1989; 38
2011; 29
2001; 51
1989
1992; 5
1988
2002; 38
1954; 60
2010; 37
2006; 12
2006; 57
2005; 310
1981; 4
2002; 1
1998
2007; 90
2008
1996
2005
2011; 34
2004
1978; 14
2002
2008; 322
2008; 95
2001; 24
2006; IX
2003; 253
1999
1987; 23
2010; 46
1993; 95
1997; 33
1975; 27
2004; 193
2001; 37
2008; 44
2008; 179
2007; 43
1973; 3
e_1_2_7_3_1
e_1_2_7_9_1
e_1_2_7_7_1
e_1_2_7_19_1
e_1_2_7_60_1
e_1_2_7_17_1
e_1_2_7_62_1
e_1_2_7_15_1
e_1_2_7_41_1
e_1_2_7_13_1
e_1_2_7_43_1
e_1_2_7_66_1
e_1_2_7_11_1
e_1_2_7_45_1
e_1_2_7_68_1
e_1_2_7_47_1
e_1_2_7_26_1
e_1_2_7_49_1
e_1_2_7_28_1
Rodriguez‐Iturbe I. (e_1_2_7_46_1) 2004
Berret‐Lennard E. G. (e_1_2_7_4_1) 2003
Bolt G. H. (e_1_2_7_6_1) 1976
Rhoades J. D. (e_1_2_7_42_1) 1974
e_1_2_7_50_1
e_1_2_7_71_1
Simunek J. (e_1_2_7_55_1) 1998
e_1_2_7_25_1
e_1_2_7_31_1
e_1_2_7_52_1
e_1_2_7_23_1
e_1_2_7_33_1
Szabolcs I. (e_1_2_7_59_1) 1989
e_1_2_7_21_1
e_1_2_7_35_1
e_1_2_7_37_1
e_1_2_7_58_1
Richards L. A. (e_1_2_7_44_1) 1954
Brooks R. N. (e_1_2_7_10_1) 1966; 92
Toth T. (e_1_2_7_63_1) 2008
e_1_2_7_8_1
e_1_2_7_18_1
e_1_2_7_16_1
e_1_2_7_40_1
e_1_2_7_61_1
e_1_2_7_2_1
e_1_2_7_14_1
Howell T. A. (e_1_2_7_24_1) 1988
Bolt G. H. (e_1_2_7_5_1) 1982
e_1_2_7_12_1
e_1_2_7_65_1
Pichu R. (e_1_2_7_39_1) 2006; 57
e_1_2_7_48_1
e_1_2_7_69_1
e_1_2_7_27_1
e_1_2_7_29_1
Varrallyay G. (e_1_2_7_67_1) 1989; 38
e_1_2_7_51_1
e_1_2_7_70_1
Simunek J. (e_1_2_7_54_1) 1996
e_1_2_7_30_1
e_1_2_7_53_1
e_1_2_7_32_1
e_1_2_7_22_1
e_1_2_7_34_1
e_1_2_7_57_1
Simunek J. (e_1_2_7_56_1) 1999
e_1_2_7_20_1
e_1_2_7_36_1
e_1_2_7_38_1
Toth T. (e_1_2_7_64_1) 2006
References_xml – volume: 38
  start-page: 696
  year: 1989
  end-page: 714
  article-title: Soil mapping in Hungary
  publication-title: Agrokemiaes Talajtan
– volume: 95
  start-page: 565
  year: 1993
  end-page: 574
  article-title: Hydraulic lift and water use by plants: Implications for water balance, performance and plant‐plant interactions
  publication-title: Oecologia
– volume: 45
  year: 2009
  article-title: Stochastic soil water dynamics of phreatophyte vegetation with dimorphic root systems
  publication-title: Water Resour. Res.
– volume: 30
  start-page: 265
  year: 1993
  end-page: 273
  article-title: Ecohydrological changes in the Murray‐Darling Basin. I—The number of trees cleared over two centuries
  publication-title: J. Appl. Ecol.
– year: 2005
– volume: 44
  year: 2008
  article-title: Coupled stochastic dynamics of water table and soil moisture in bare soil condition
  publication-title: Water Resour. Res.
– volume: 107
  start-page: 55
  year: 2002
  end-page: 70
  article-title: The efficiency of various approaches to obtaining estimates of soil hydraulic properties
  publication-title: Geoderma
– year: 1989
– volume: 45
  year: 2009
  article-title: Ecohydrology of groundwater‐dependent ecosystems: 2. Stochastic soil moisture dynamics
  publication-title: Water Resour. Res.
– volume: 27
  start-page: 237
  year: 1975
  end-page: 248
  article-title: Distribution of salts in the root zone
  publication-title: J. Hydrol.
– volume: 12
  start-page: 311
  year: 2006
  end-page: 324
  article-title: Ecohydrological impacts of woody‐plant encroachment: Seasonal patterns of water and carbon dioxide exchange within a semiarid riparian environment
  publication-title: Global Change Biol.
– year: 1998
– volume: 187
  start-page: 3
  year: 2010
  end-page: 6
  article-title: Biotic and abiotic factors act in coordination to amplify hydraulic redistribution and lift
  publication-title: New Phytol.
– volume: 202
  start-page: 281
  year: 1998
  end-page: 293
  article-title: Transient three‐dimensional modeling of soil water and solute transport with simultaneous root growth, root water and nutrient uptake
  publication-title: Plant Soil
– volume: 26
  start-page: 299
  year: 2010
  end-page: 309
  article-title: The need for harmonizing methodologies for assessing soil threats in Europe
  publication-title: Soil Use Manage.
– volume: 179
  start-page: 945
  year: 2008
  end-page: 963
  article-title: Salinity tolerance in halophytes
  publication-title: New Phytol.
– year: 1982
– volume: 68
  start-page: 153
  year: 2005
  end-page: 168
  article-title: A projection of the effects of the climate change induced by increased CO on extreme hydrologic events in the western U.S.
  publication-title: Clim. Change
– volume: 34
  start-page: 303
  year: 2011
  end-page: 313
  article-title: Influence of spatial variations of microtopography and infiltration on surface runoff and field scale hydrological connectivity
  publication-title: Adv. Water Resour.
– volume: 5
  start-page: 798
  year: 1992
  end-page: 813
  article-title: Variability in large‐scale water balance with land surface‐atmosphere interaction
  publication-title: J. Clim.
– year: 2008
– volume: 32
  year: 2005
  article-title: Improved understanding of soil moisture variability dynamics
  publication-title: Geophys. Res. Lett.
– volume: 57
  start-page: 223
  year: 2002
  end-page: 238
  article-title: Adverse effect of waterlogging and soil salinity on crop and land productivity in northwest region of Haryana India
  publication-title: Agric. Water Manage.
– volume: 51
  start-page: 153
  year: 2001
  end-page: 171
  article-title: Solute transport modelling in soil for irrigation field experiments with alkali water
  publication-title: Agric. Water Manage.
– start-page: 433
  year: 1974
  end-page: 461
– year: 2004
– volume: 1
  start-page: 158
  year: 2002
  end-page: 171
  article-title: Analytical model for vadose zone solute transport with root water and solute uptake
  publication-title: Vadose Zone J.
– volume: 145
  start-page: 354
  year: 2005
  end-page: 363
  article-title: Hydraulic redistribution in three Amazonian trees
  publication-title: Oecologia
– volume: 3
  start-page: 431
  year: 2010
  end-page: 444
  article-title: Trees never rest: The multiple facets of hydraulic redistribution
  publication-title: Ecohydrology
– volume: 113
  start-page: 151
  year: 1998
  end-page: 161
  article-title: Hydraulic lift: Consequences of water efflux from the roots of plants
  publication-title: Oecologia
– volume: 33
  start-page: 63
  year: 1997
  end-page: 78
  article-title: The response of sap flow in apple roots to localised irrigation
  publication-title: Agric. Water Manage.
– volume: 38
  issue: 9
  year: 2002
  article-title: Models of soil moisture dynamics in ecohydrology: A comparative study
  publication-title: Water Resour. Res.
– volume: 92
  start-page: 61
  issue: IR2
  year: 1966
  end-page: 68
  article-title: Properties of porous media affecting fluid flow
  publication-title: J. Irrig. Drain. Div. Am. Soc. Civ. Eng.
– volume: 37
  start-page: 457
  issue: 3
  year: 2001
  end-page: 463
  article-title: A minimalist probabilistic description of root zone soil water
  publication-title: Water Resour. Res.
– start-page: 75
  year: 2008
  end-page: 81
– start-page: 173
  year: 1988
  end-page: 184
– volume: 95
  start-page: 143
  year: 2008
  end-page: 153
  article-title: Effects of wastewater irrigation on soil sodicity and nutrient leaching in calcareous soils
  publication-title: Agric. Water Manage.
– year: 1976
– volume: 46
  year: 2010
  article-title: Ecohydrological feedbacks between salt accumulation and vegetation dynamics: Role of vegetation‐groundwater interactions
  publication-title: Water Resour. Res.
– volume: 44
  year: 2008
  article-title: Simulating the effect of capillary flux on the soil water balance in a stochastic ecohydrological framework
  publication-title: Water Resour. Res.
– volume: 100
  start-page: 21
  year: 1994
  end-page: 28
  article-title: Sources of water used by riparian overlying highly saline groundwater
  publication-title: Oecologia
– volume: 97
  start-page: 41
  year: 2010
  end-page: 49
  article-title: Soil sodicity as a result of periodical drought
  publication-title: Agric. Water Manage.
– volume: 23
  start-page: 1153
  issue: 7
  year: 1987
  end-page: 1161
  article-title: Irrigation control in the presence of salinity: Extended linear quadratic approach
  publication-title: Water Resour. Res.
– volume: 20
  start-page: 1611
  issue: 11
  year: 1984
  end-page: 1619
  article-title: Scale considerations in the modeling of temporal rainfall
  publication-title: Water Resour. Res.
– volume: 29
  start-page: 197
  year: 2011
  end-page: 211
  article-title: Predicting soil salinity in response to different irrigation practices, soil types and rainfall scenarios
  publication-title: Irrig. Sci.
– volume: IX
  start-page: 7
  year: 2006
  end-page: 20
  article-title: Types and distribution of salt affected soils in Hungary, and the characterisation of the processes of salt accumulation (in Hungarian)
  publication-title: Topogr. Mineral. Hungariae
– year: 1996
– volume: 100
  start-page: 293
  year: 1994
  end-page: 301
  article-title: Variations in stream water uptake by with differing access to stream water
  publication-title: Oecologia
– volume: 322
  start-page: 1578
  year: 2008
  end-page: 1582
  article-title: Crops for a salinized world
  publication-title: Science
– volume: 310
  start-page: 280
  year: 2005
  end-page: 293
  article-title: Groundwater use by vegetation in a tropical savanna riparian zone (Daly River, Australia)
  publication-title: J. Hydrol.
– volume: 187
  start-page: 171
  year: 2010
  end-page: 183
  article-title: Hydraulic redistribution of soil water by roots affects whole‐stand evapotranspiration and net ecosystem carbon exchange
  publication-title: New Phytol.
– volume: 27
  start-page: 467
  year: 2004
  end-page: 480
  article-title: Effect of vertical resolution on predictions of transpiration in water‐limited ecosystems
  publication-title: Adv. Water Resour.
– volume: 57
  start-page: 1017
  issue: 5
  year: 2006
  end-page: 1023
  article-title: World salinization with emphasis on Australia
  publication-title: J. Exp. Bot.
– volume: 43
  year: 2007
  article-title: Plant response to the soil environment: An analytical model integrating yield, water, soil type, and salinity
  publication-title: Water Resour. Res.
– volume: 24
  start-page: 725
  year: 2001
  end-page: 744
  article-title: Plants in water‐controlled ecosystems: Active role in hydrologic processes and response to water stress: III. Vegetation water stress
  publication-title: Adv. Water Resour.
– volume: 45
  year: 2009
  article-title: Ecohydrology of groundwater‐dependent ecosystems: 1. Stochastic water table dynamics
  publication-title: Water Resour. Res.
– volume: 455
  start-page: 3789
  year: 1999
  end-page: 3805
  article-title: Probabilistic modelling of water balance at a point: The role of climate soil and vegetation
  publication-title: Proc. R. Soc. London, Ser. A
– volume: 37
  year: 2010
  article-title: Stochastic modeling of soil salinity
  publication-title: Geophys. Res. Lett.
– year: 2002
– volume: 4
  start-page: 35
  year: 1981
  end-page: 62
  article-title: Transport of salts in soils and subsoils
  publication-title: Agric. Water Manage.
– volume: 90
  start-page: 165
  year: 2007
  end-page: 180
  article-title: Leaching requirements for soil salinity control: Steady‐state versus transient models
  publication-title: Agric. Water Manage.
– volume: 253
  start-page: 35
  year: 2003
  end-page: 54
– volume: 60
  year: 1954
– volume: 24
  start-page: 707
  year: 2001
  end-page: 723
  article-title: Plants in water‐controlled ecosystems: Active role in hydrologic processes and response to water stress: II. Probabilistic soil moisture dynamics
  publication-title: Adv. Water Resour.
– volume: 7
  start-page: 1065
  year: 2008
  end-page: 1078
  article-title: Macroscopic root water uptake distribution using a matric flux potential approach
  publication-title: Vadose Zone J.
– volume: 14
  start-page: 722
  issue: 5
  year: 1978
  end-page: 730
  article-title: Climate, soil, and vegetation: 3. A simplified model of soil moisture in the liquid phase
  publication-title: Water Resour. Res.
– volume: 193
  start-page: 113
  year: 2004
  end-page: 140
  article-title: Physiological regulation of productivity and water use in : A review
  publication-title: For. Ecol. Manage.
– volume: 3
  start-page: 311
  year: 1973
  end-page: 316
  article-title: Minimizing the salt burdens of irrigation drainage waters
  publication-title: J. Environ. Qual.
– year: 1999
– volume: 38
  start-page: 696
  year: 1989
  ident: e_1_2_7_67_1
  article-title: Soil mapping in Hungary
  publication-title: Agrokemiaes Talajtan
  contributor:
    fullname: Varrallyay G.
– ident: e_1_2_7_28_1
  doi: 10.1111/j.1469-8137.2010.03306.x
– ident: e_1_2_7_43_1
  doi: 10.2134/jeq1974.00472425000300040002x
– ident: e_1_2_7_50_1
  doi: 10.1029/2010WR009464
– ident: e_1_2_7_34_1
  doi: 10.1007/BF00317126
– ident: e_1_2_7_60_1
  doi: 10.1029/2008WR007293
– ident: e_1_2_7_57_1
  doi: 10.1023/A:1004378602378
– ident: e_1_2_7_12_1
  doi: 10.1016/j.agwat.2007.02.007
– ident: e_1_2_7_32_1
  doi: 10.1029/2008WR007292
– ident: e_1_2_7_36_1
  doi: 10.1016/S0016-7061(01)00138-0
– ident: e_1_2_7_48_1
  doi: 10.1098/rspa.1999.0477
– volume-title: Diagnosis and Improvement of Saline and Alkali Soils, Agric. Handb.
  year: 1954
  ident: e_1_2_7_44_1
  contributor:
    fullname: Richards L. A.
– ident: e_1_2_7_51_1
  doi: 10.2136/vzj2002.1580
– ident: e_1_2_7_69_1
  doi: 10.1029/2008WR007245
– ident: e_1_2_7_41_1
  doi: 10.1016/0022-1694(75)90057-8
– ident: e_1_2_7_61_1
  doi: 10.1029/2004GL021935
– ident: e_1_2_7_16_1
  doi: 10.1111/j.1469-8137.2010.03245.x
– ident: e_1_2_7_2_1
  doi: 10.1201/9781439833544
– ident: e_1_2_7_30_1
– ident: e_1_2_7_33_1
  doi: 10.1016/j.jhydrol.2005.1001.1009
– volume-title: Soil Chemistry: A. Basic Elements
  year: 1976
  ident: e_1_2_7_6_1
  contributor:
    fullname: Bolt G. H.
– start-page: 433
  volume-title: Drainage for Agriculture
  year: 1974
  ident: e_1_2_7_42_1
  contributor:
    fullname: Rhoades J. D.
– ident: e_1_2_7_13_1
  doi: 10.1016/S0378-3774(02)00058-6
– ident: e_1_2_7_45_1
  doi: 10.1029/2007WR006707
– start-page: 173
  volume-title: Irrigation Efficiencies: Handbook of Engineering in Agriculture
  year: 1988
  ident: e_1_2_7_24_1
  contributor:
    fullname: Howell T. A.
– ident: e_1_2_7_38_1
  doi: 10.1007/s00442-005-0108-2
– ident: e_1_2_7_8_1
  doi: 10.1016/0378-3774(81)90043-3
– ident: e_1_2_7_52_1
  doi: 10.1111/j.1365‐2486.2005.01093.x
– ident: e_1_2_7_9_1
  doi: 10.1007/978-3-642-68324-4
– volume-title: Res. Rep. 141
  year: 1996
  ident: e_1_2_7_54_1
  contributor:
    fullname: Simunek J.
– ident: e_1_2_7_47_1
  doi: 10.1029/WR020i011p01611
– ident: e_1_2_7_23_1
  doi: 10.1016/j.advwatres.2004.1003.1001
– volume-title: Soil Chemistry
  year: 1982
  ident: e_1_2_7_5_1
  contributor:
    fullname: Bolt G. H.
– ident: e_1_2_7_14_1
  doi: 10.1007/BF00317442
– ident: e_1_2_7_58_1
  doi: 10.1029/2010GL042495
– volume-title: Ecohydrology of Water‐Controlled Ecosystems: Soil Moisture and Plant Dynamics
  year: 2004
  ident: e_1_2_7_46_1
  contributor:
    fullname: Rodriguez‐Iturbe I.
– ident: e_1_2_7_3_1
  doi: 10.1016/j.advwatres.2010.12.003
– ident: e_1_2_7_37_1
  doi: 10.1002/eco.1148
– ident: e_1_2_7_18_1
  doi: 10.1029/WR014i005p00722
– start-page: 75
  volume-title: Needs and Priorities for Research and Education in Biotechnology Applied to Emerging Environmental Challenges in SEE Countries: Workshop Proceedings,
  year: 2008
  ident: e_1_2_7_63_1
  contributor:
    fullname: Toth T.
– ident: e_1_2_7_7_1
  doi: 10.1029/WR023i007p01153
– start-page: 35
  year: 2003
  ident: e_1_2_7_4_1
  contributor:
    fullname: Berret‐Lennard E. G.
– ident: e_1_2_7_25_1
  doi: 10.1007/s00271‐00010‐00223‐00277
– year: 1999
  ident: e_1_2_7_56_1
  contributor:
    fullname: Simunek J.
– ident: e_1_2_7_21_1
  doi: 10.1016/S0378-3774(96)01277-2
– ident: e_1_2_7_26_1
  doi: 10.1016/j.agwat.2007.09.010
– ident: e_1_2_7_29_1
  doi: 10.1007/s10584-005-4787-9
– ident: e_1_2_7_49_1
  doi: 10.1126/science.1168572
– ident: e_1_2_7_19_1
  doi: 10.1175/1520-0442(1992)005<0798:VILSWB>2.0.CO;2
– ident: e_1_2_7_40_1
  doi: 10.1016/S0309-1708(01)00006-9
– ident: e_1_2_7_53_1
  doi: 10.1029/2006WR005313
– ident: e_1_2_7_71_1
  doi: 10.1016/j.foreco.2004.01.026
– ident: e_1_2_7_15_1
  doi: 10.2136/vzj2007.0083
– ident: e_1_2_7_65_1
  doi: 10.1111/j.1475-2743.2010.00280.x
– volume: 57
  start-page: 1017
  issue: 5
  year: 2006
  ident: e_1_2_7_39_1
  article-title: World salinization with emphasis on Australia
  publication-title: J. Exp. Bot.
  doi: 10.1093/jxb/erj108
  contributor:
    fullname: Pichu R.
– ident: e_1_2_7_70_1
  doi: 10.2307/2404628
– volume-title: Rep. IGWMC‐TPS‐70
  year: 1998
  ident: e_1_2_7_55_1
  contributor:
    fullname: Simunek J.
– volume-title: Salt Affected Soils
  year: 1989
  ident: e_1_2_7_59_1
  contributor:
    fullname: Szabolcs I.
– start-page: 7
  year: 2006
  ident: e_1_2_7_64_1
  article-title: Types and distribution of salt affected soils in Hungary, and the characterisation of the processes of salt accumulation (in Hungarian)
  publication-title: Topogr. Mineral. Hungariae
  contributor:
    fullname: Toth T.
– ident: e_1_2_7_68_1
  doi: 10.1029/2008WR006889
– ident: e_1_2_7_11_1
  doi: 10.1007/s004420050363
– ident: e_1_2_7_31_1
  doi: 10.1016/S0309-1708(01)00005-7
– volume: 92
  start-page: 61
  issue: 2
  year: 1966
  ident: e_1_2_7_10_1
  article-title: Properties of porous media affecting fluid flow
  publication-title: J. Irrig. Drain. Div. Am. Soc. Civ. Eng.
  doi: 10.1061/JRCEA4.0000425
  contributor:
    fullname: Brooks R. N.
– ident: e_1_2_7_20_1
  doi: 10.1111/j.1469-8137.2008.02531.x
– ident: e_1_2_7_27_1
  doi: 10.1016/S0378-3774(01)00100-7
– ident: e_1_2_7_17_1
  doi: 10.1017/CBO9780511535680
– ident: e_1_2_7_35_1
  doi: 10.1029/2000WR900337
– ident: e_1_2_7_22_1
  doi: 10.1029/2001WR000826
– ident: e_1_2_7_62_1
  doi: 10.1007/BF00316957
– ident: e_1_2_7_66_1
  doi: 10.1016/j.agwat.2009.08.009
SSID ssj0014567
Score 2.2771678
Snippet Groundwater can be a source of both water and salts in semiarid areas, and therefore, capillary pressure–induced upward water flow may cause root zone...
Groundwater can be a source of both water and salts in semiarid areas, and therefore, capillary pressureinduced upward water flow may cause root zone...
Groundwater can be a source of both water and salts in semiarid areas, and therefore, capillary pressure-induced upward water flow may cause root zone...
SourceID wageningen
proquest
crossref
wiley
istex
SourceType Open Access Repository
Aggregation Database
Publisher
SubjectTerms active-role
bodem-plant relaties
bodemchemie
capillary upflow
eucalyptus-camaldulensis
Evapotranspiration
Flow rates
grondwater
Groundwater
hydraulic redistribution
Hydraulics
hydrologic processes
Hydrology
irrigation
Leaching
modellen
Moisture content
Net losses
Precipitation
Rain
Root zone
root zone flux
Salinity
Salinization
salt accumulation
Salt balance
semi-arid climate
soil chemistry
soil plant relationships
soil-moisture dynamics
Soils
solute transport
stochastic
Vegetation
verzilting
Water flow
Water quality
water-controlled ecosystems
Wet climates
wortelzonestroom
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3Nb9MwFLfGemCXiU9RBsgH4ETU1HFi-4RgWjuBqFA31ImL5Ti2Oq0kXT7Ujb-e99KkbJedEimR4_j5vfd7X36EvB_7UBopfSBNBAYKcyxIvUeCGC5YLBOlsDj5xyw5_cW_XcQXe2Ta18JgWmUvE1tBnRUWfeQjBYodlHcUjUyKTgBbjz6vrwNsH4Vh1q6XxiMyYGOO8drB15PZz_kuoAA4QfTBZgQ9XQ58yNQI48GLORY0oGC-o50GuNA396DnwQa4PG_Lnu6j2VYdTZ6Qww5H0i9bwj8ley5_Rh73ZcYV3HftzZe3z8nlWV3YpcEjmWnb-gaGpoWnlVnV1Fjb_OmaeNHLnAIipACna_q3yB3NGkfrglqzxvZE5S31q-aGYlEKBTvbAvxcUqwMybMNoNbyBTmfnJwfnwZdj4XAAPfJwIU2FIbZNBbCRmlsuTRceSdYYoUzYD6mUqShN96azCrOVaIscyZOPeeRiV6S_Rxm84rQhNvExTZNEjfm1jA1zpTkWSq8wxgCG5IP_dLq9fYkDd1GwJnSd0kwJB_bdd-9ZMorzD4TsV7Mpvr7VExAbPzWZ0Ny1BNGd4xX6d02GRK6ewocg2EQk7uiqbRESBzzCL4U_SenzrF3U6XxuO3OgaY3TanzFV6ANyqNpnAIA39q6f7gT-jF_HgOqj-Wrx-c5RE52DqpMWntDdmvy8a9BZRTp--6HfwPHw_8SQ
  priority: 102
  providerName: ProQuest
Title Stochastic modeling of salt accumulation in the root zone due to capillary flux from brackish groundwater
URI https://api.istex.fr/ark:/67375/WNG-KG7F319Z-S/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1029%2F2010WR009790
https://www.proquest.com/docview/914326433/abstract/
https://search.proquest.com/docview/899165430
http://www.narcis.nl/publication/RecordID/oai:library.wur.nl:wurpubs%2F409403
Volume 47
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3db9MwELfQ-sBe0PgSZTD5AXgiInWc2H6Eae00RDV1Q514sWzHVie6ZMqHuvHXc5em3fqCxEsSKf5I7nz273y-O0I-jEIsjZQhkiYBBYV5FtkQkCGGC5bKTCl0Tv4xzU5_8rOr9KrfcENfmHV8iO2GG0pGN1-jgBtb98EGMEYmmnHnM_RDUKCyDwDZSBzVjJ9vrQgADsTGwoxIpz_4DvW_PK69syQNkLp3O3hzfwWiXXS-TrsQtluDxgfkWQ8e6dc1t5-TJ754QZ5ufItreO5zmi_uX5Lri6Z0C4NxmGmX7waapmWgtVk21DjX3vSZu-h1QQEGUsDQDf1TFp7mradNSZ25xZxE1T0Ny_aOoicKBYo5wJwLiu4gRb4CqFq9Ipfjk8vj06hPrBAZEDkZ-djFwjBnUyFcYlPHpeEqeMEyJ7wBndFKYeNggjO5U5yrTDnmTWoD54lJXpO9Ar7mDaEZd5lPnc0yP-LOMDXKleS5FcGj4YANyccNafXtOnyG7szeTOnHLBiSTx3dt4VM9RuPnIlUz6cT_X0ixjBX_NIXQ3K4YYzupa3WCkAfALskGRK6fQtigrYPU_iyrbVEHJzyBHpKHtipC0zYVGuMsd2POb1qK10s8QYCUWvUf2No-HPH93_-hJ7Pjmew3qfy7f8VPyT7661qPLr2juw1VevfA9Zp7FE3oOEqx5MjMvh2Mj2f_QWDFfrp
link.rule.ids 230,315,786,790,891,11589,12792,21416,27957,27958,33408,33409,33779,33780,43635,43840,46087,46511,74392,74659
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV07b9swECbaZEiWok_UTR8c2k4VIlOUSE5FEdR2m8SD48JBF4KiSDioK7l6wEl_fe9kyU2WTBIggaJ4PN53vDt-hLwf-lAaKX0gTQQOCnMsSL1HgRguWCwTpbA4-XyaTH7w75fxZZebU3Vplf2a2C7UWWFxj_xYgWEH4x1Fn9d_AiSNwuBqx6DxkOzzCCwnFoqPxrsgAmAD0QeYEeh0ee8hU8cYA17MsIgBF-NbFmkfB_f6Dtw83IBm522p010E25qg0WPyqMOO9MtW2E_IA5c_JQd9aXEF9x2l-fLmGbm6qAu7NHgMM23pbqBpWnhamVVNjbXN7464i17lFFAgBQhd079F7mjWOFoX1Jo1UhKVN9SvmmuKhSgUfGsLkHNJsRokzzaAVMvnZD76Oj-ZBB2vQmBA42TgQhsKw2waC2GjNLZcGq68EyyxwhlwGVMp0tAbb01mFecqUZY5E6ee88hEL8heDr15SWjCbeJimyaJG3JrmBpmSvIsFd5h3IANyId-aPV6e3qGbqPeTOnbIhiQj-24714y5S_MOBOxXkzH-nQsRrBU_NQXA3LUC0Z3ylbp3dQYELp7ClqCoQ-Tu6KptEQYHPMIvhT9F6fOka-p0njEdrdppjdNqfMVXkAfKo3ubwgNf2rlfu9P6MXsZAbmPpav7u3lO3IwmZ-f6bNv09MjcrjdpMaktddkry4b9wZQTp2-befyP88h-hY
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3fb9MwELZgk2AviJ-ibIAfgCeipokT208TGqSDQYW6oU68WI5jqxMlKU2ibvz13KVO2V72lEiJHMfn833nu_NHyJuRC4UWwgVCx-CgRDYKcudQIJrxKBGplFic_G2SHv9gX86Tc3-kUO3TKvs1sVuoi8rgHvlQgmEH4x3HQ-ezIr5_zA6XfwIkkMJAq2fTuEt2EWMjmYHIxtuAAuAE3gebEfT4HPgwkkOMB8-mWNCAC_M167SLA315A3rurUHLy67s6Saa7cxR9pA88DiSftgI_hG5Y8vH5H5fZlzDvac3n189IRenTWXmGo9kph31DTRNK0drvWioNqb97Um86EVJARFSgNMN_VuVlhatpU1FjV4iPdHqirpFe0mxKIWCn20Afs4pVoaUxRpQ6-opOcs-nR0dB55jIdCgfSKwoQm5jkyecG7iPDFMaCad5VFquNXgPuaC56HTzujCSMZkKk1kdZI7xmIdPyM7JfTmOaEpM6lNTJ6mdsSMjuSokIIVOXcWYwjRgLzth1YtNydpqC4CHkl1XQQD8q4b9-1LevULs894omaTsToZ8wyWjZ_qdED2e8Eor3i12k6TAaHbp6AxGAbRpa3aWgmExAmL4Uvxf3GqErmbaoXHbfsNNLVuV6pc4AV0o1boCofQ8PtO7rf-hJpNj6Zg-hPx4tZevib3YBqrr58nJ_tkb7NfjflrB2SnWbX2JQCeJn_VTeV_icz-Sw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Stochastic+modeling+of+salt+accumulation+in+the+root+zone+due+to+capillary+flux+from+brackish+groundwater&rft.jtitle=Water+resources+research&rft.au=Shah%2C+S.H.H&rft.au=Vervoort%2C+R.W&rft.au=Suweis%2C+S&rft.au=Guswa%2C+A.J&rft.date=2011-09-01&rft.issn=0043-1397&rft.eissn=1944-7973&rft.volume=47&rft.issue=9&rft_id=info:doi/10.1029%2F2010WR009790&rft.externalDBID=n%2Fa&rft.externalDocID=oai_library_wur_nl_wurpubs_409403
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0043-1397&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0043-1397&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0043-1397&client=summon