Multilayer Heterojunction Anodes for Saline Wastewater Treatment: Design Strategies and Reactive Species Generation Mechanisms
Multilayer heterojunction SbSn/CoTi/Ir anodes, which consist of Ir0.7Ta0.3O2 bottom layers coated onto a titanium base, Co-TiO2 interlayers, and overcoated discrete Sb-SnO2 islands, were prepared by spray pyrolysis. The Ir0.7Ta0.3O2 bottom layer serves as an Ohmic contact to facilitate electron tran...
Saved in:
Published in | Environmental science & technology Vol. 50; no. 16; pp. 8780 - 8787 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
United States
American Chemical Society
16.08.2016
|
Subjects | |
Online Access | Get full text |
ISSN | 0013-936X 1520-5851 1520-5851 |
DOI | 10.1021/acs.est.6b00688 |
Cover
Loading…
Abstract | Multilayer heterojunction SbSn/CoTi/Ir anodes, which consist of Ir0.7Ta0.3O2 bottom layers coated onto a titanium base, Co-TiO2 interlayers, and overcoated discrete Sb-SnO2 islands, were prepared by spray pyrolysis. The Ir0.7Ta0.3O2 bottom layer serves as an Ohmic contact to facilitate electron transfer from semiconductor layers to the Ti base. The Co-TiO2 interlayer and overcoated Sb-SnO2 islands enhance the evolution of reactive chlorine. The surficial Sb-SnO2 islands also serve as the reactive sites for free radical generation. Experiments coupled with computational kinetic simulations show that while ·OH and Cl· are initially produced on the SbSn/CoTi/Ir anode surface, the dominant radical formed in solution is the dichlorine radical anion, Cl2·–. The steady-state concentration of reactive radicals is 10 orders of magnitude lower than that of reactive chlorine. The SbSn/CoTi/Ir anode was applied to electrochemically treat human wastewater. These test results show that COD and NH4 + can be removed after 2 h of electrolysis with minimal energy consumption (370 kWh/kg COD and 383 kWh/kg NH4 +). Although free radical species contribute to COD removal, anodes designed to enhance reactive chlorine production are more effective than those designed to enhance free radical production. |
---|---|
AbstractList | Multilayer heterojunction SbSn/CoTi/Ir anodes, which consist of Ir^sub 0.7^Ta^sub 0.3^O^sub 2^ bottom layers coated onto a titanium base, Co-TiO^sub 2^ interlayers, and overcoated discrete Sb-SnO^sub 2^ islands, were prepared by spray pyrolysis. The Ir^sub 0.7^Ta^sub 0.3^O^sub 2^ bottom layer serves as an Ohmic contact to facilitate electron transfer from semiconductor layers to the Ti base. The Co-TiO^sub 2^ interlayer and overcoated Sb-SnO^sub 2^ islands enhance the evolution of reactive chlorine. The surficial Sb-SnO^sub 2^ islands also serve as the reactive sites for free radical generation. Experiments coupled with computational kinetic simulations show that while ...OH and Cl... are initially produced on the SbSn/CoTi/Ir anode surface, the dominant radical formed in solution is the dichlorine radical anion, Cl^sub 2...-^. The steady-state concentration of reactive radicals is 10 orders of magnitude lower than that of reactive chlorine. The SbSn/CoTi/Ir anode was applied to electrochemically treat human wastewater. These test results show that COD and NH^sub 4^+ can be removed after 2 h of electrolysis with minimal energy consumption (370 kWh/kg COD and 383 kWh/kg NH^sub 4^+). Although free radical species contribute to COD removal, anodes designed to enhance reactive chlorine production are more effective than those designed to enhance free radical production. (ProQuest: ... denotes formulae/symbols omitted.) Multilayer heterojunction SbSn/CoTi/Ir anodes, which consist of Ir0.7Ta0.3O2 bottom layers coated onto a titanium base, Co-TiO2 interlayers, and overcoated discrete Sb-SnO2 islands, were prepared by spray pyrolysis. The Ir0.7Ta0.3O2 bottom layer serves as an Ohmic contact to facilitate electron transfer from semiconductor layers to the Ti base. The Co-TiO2 interlayer and overcoated Sb-SnO2 islands enhance the evolution of reactive chlorine. The surficial Sb-SnO2 islands also serve as the reactive sites for free radical generation. Experiments coupled with computational kinetic simulations show that while ·OH and Cl· are initially produced on the SbSn/CoTi/Ir anode surface, the dominant radical formed in solution is the dichlorine radical anion, Cl2·(-). The steady-state concentration of reactive radicals is 10 orders of magnitude lower than that of reactive chlorine. The SbSn/CoTi/Ir anode was applied to electrochemically treat human wastewater. These test results show that COD and NH4(+) can be removed after 2 h of electrolysis with minimal energy consumption (370 kWh/kg COD and 383 kWh/kg NH4(+)). Although free radical species contribute to COD removal, anodes designed to enhance reactive chlorine production are more effective than those designed to enhance free radical production.Multilayer heterojunction SbSn/CoTi/Ir anodes, which consist of Ir0.7Ta0.3O2 bottom layers coated onto a titanium base, Co-TiO2 interlayers, and overcoated discrete Sb-SnO2 islands, were prepared by spray pyrolysis. The Ir0.7Ta0.3O2 bottom layer serves as an Ohmic contact to facilitate electron transfer from semiconductor layers to the Ti base. The Co-TiO2 interlayer and overcoated Sb-SnO2 islands enhance the evolution of reactive chlorine. The surficial Sb-SnO2 islands also serve as the reactive sites for free radical generation. Experiments coupled with computational kinetic simulations show that while ·OH and Cl· are initially produced on the SbSn/CoTi/Ir anode surface, the dominant radical formed in solution is the dichlorine radical anion, Cl2·(-). The steady-state concentration of reactive radicals is 10 orders of magnitude lower than that of reactive chlorine. The SbSn/CoTi/Ir anode was applied to electrochemically treat human wastewater. These test results show that COD and NH4(+) can be removed after 2 h of electrolysis with minimal energy consumption (370 kWh/kg COD and 383 kWh/kg NH4(+)). Although free radical species contribute to COD removal, anodes designed to enhance reactive chlorine production are more effective than those designed to enhance free radical production. Multilayer heterojunction SbSn/CoTi/Ir anodes, which consist of Ir₀.₇Ta₀.₃O₂ bottom layers coated onto a titanium base, Co-TiO₂ interlayers, and overcoated discrete Sb-SnO₂ islands, were prepared by spray pyrolysis. The Ir₀.₇Ta₀.₃O₂ bottom layer serves as an Ohmic contact to facilitate electron transfer from semiconductor layers to the Ti base. The Co-TiO₂ interlayer and overcoated Sb-SnO₂ islands enhance the evolution of reactive chlorine. The surficial Sb-SnO₂ islands also serve as the reactive sites for free radical generation. Experiments coupled with computational kinetic simulations show that while ·OH and Cl· are initially produced on the SbSn/CoTi/Ir anode surface, the dominant radical formed in solution is the dichlorine radical anion, Cl₂·–. The steady-state concentration of reactive radicals is 10 orders of magnitude lower than that of reactive chlorine. The SbSn/CoTi/Ir anode was applied to electrochemically treat human wastewater. These test results show that COD and NH₄⁺ can be removed after 2 h of electrolysis with minimal energy consumption (370 kWh/kg COD and 383 kWh/kg NH₄⁺). Although free radical species contribute to COD removal, anodes designed to enhance reactive chlorine production are more effective than those designed to enhance free radical production. Multilayer heterojunction SbSn/CoTi/Ir anodes, which consist of Ir0.7Ta0.3O2 bottom layers coated onto a titanium base, Co-TiO2 interlayers, and overcoated discrete Sb-SnO2 islands, were prepared by spray pyrolysis. The Ir0.7Ta0.3O2 bottom layer serves as an Ohmic contact to facilitate electron transfer from semiconductor layers to the Ti base. The Co-TiO2 interlayer and overcoated Sb-SnO2 islands enhance the evolution of reactive chlorine. The surficial Sb-SnO2 islands also serve as the reactive sites for free radical generation. Experiments coupled with computational kinetic simulations show that while ·OH and Cl· are initially produced on the SbSn/CoTi/Ir anode surface, the dominant radical formed in solution is the dichlorine radical anion, Cl2·–. The steady-state concentration of reactive radicals is 10 orders of magnitude lower than that of reactive chlorine. The SbSn/CoTi/Ir anode was applied to electrochemically treat human wastewater. These test results show that COD and NH4 + can be removed after 2 h of electrolysis with minimal energy consumption (370 kWh/kg COD and 383 kWh/kg NH4 +). Although free radical species contribute to COD removal, anodes designed to enhance reactive chlorine production are more effective than those designed to enhance free radical production. |
Author | Shin, Jieun Jasper, Justin T Yang, Yang Hoffmann, Michael R |
AuthorAffiliation | California Institute of Technology Linde + Robinson Laboratories |
AuthorAffiliation_xml | – name: Linde + Robinson Laboratories – name: California Institute of Technology |
Author_xml | – sequence: 1 givenname: Yang surname: Yang fullname: Yang, Yang – sequence: 2 givenname: Jieun surname: Shin fullname: Shin, Jieun – sequence: 3 givenname: Justin T surname: Jasper fullname: Jasper, Justin T – sequence: 4 givenname: Michael R surname: Hoffmann fullname: Hoffmann, Michael R email: mrh@caltech.edu |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/27402194$$D View this record in MEDLINE/PubMed |
BookMark | eNqNks1rFEEQxRuJmE307E0avAgym_6eHm8haiIkCG5Eb0NtT03sZaZn7Z5RcvFvt8ddFQJ-nBqqfu_RVfWOyEEYAhLymLMlZ4KfgEtLTOPSrBkz1t4jC64FK7TV_IAsGOOyqKT5eEiOUtowxoRk9gE5FKXK6kotyLerqRt9B7cY6QWOGIfNFNzoh0BPw9Bgou0Q6Qo6H5B-gDTiV8gUvY4IY49hfEFfYvI3ga7GmDs3PksgNPQdQrb5gnS1RTcXzzFgJmbnK3SfIPjUp4fkfgtdwkf795i8f_3q-uyiuHx7_ubs9LIALdlYYNlWaNdto5RruTOlUFxaaUpZSgNaATRgKgFO6TUIQM6VbVBXrizROGXlMXm2893G4fOUN1b3PjnsOgg4TKkWeTe8Msr8G-WWV1xJJvT_oEIIWerZ9ekddDNMMeSZZ0rayuRBM_VkT03rHpt6G30P8bb-ea8MnOwAF4eUIra_EM7qORF1TkQ92-8TkRX6jsL58ccZ8r189xfd851ubvz-6x_o75AuywM |
CODEN | ESTHAG |
CitedBy_id | crossref_primary_10_1016_j_fuel_2020_119712 crossref_primary_10_1039_D1NR08098A crossref_primary_10_1016_j_cej_2020_126982 crossref_primary_10_1039_D4EW00490F crossref_primary_10_1149_1945_7111_ac3abb crossref_primary_10_1016_j_watres_2024_122068 crossref_primary_10_1016_j_jhazmat_2022_128379 crossref_primary_10_1016_j_psep_2023_12_067 crossref_primary_10_1016_j_watres_2023_120847 crossref_primary_10_1021_acs_est_3c06326 crossref_primary_10_1021_acs_est_6b02912 crossref_primary_10_1016_j_jenvman_2024_120726 crossref_primary_10_2166_wst_2018_414 crossref_primary_10_1039_C7RA08150B crossref_primary_10_1016_j_apcatb_2022_121215 crossref_primary_10_1016_j_jece_2025_115853 crossref_primary_10_1016_j_desal_2025_118576 crossref_primary_10_1039_D2EW00322H crossref_primary_10_1016_j_ceramint_2023_03_186 crossref_primary_10_1016_j_electacta_2024_144166 crossref_primary_10_1007_s11664_022_09980_2 crossref_primary_10_1016_j_jece_2024_113252 crossref_primary_10_1021_acsestengg_1c00122 crossref_primary_10_1016_j_apcatb_2018_11_061 crossref_primary_10_1016_j_cej_2022_137497 crossref_primary_10_1016_j_cattod_2019_01_066 crossref_primary_10_1016_j_memsci_2023_121692 crossref_primary_10_1016_j_jallcom_2020_155622 crossref_primary_10_1016_j_watres_2018_03_030 crossref_primary_10_1016_j_electacta_2020_135864 crossref_primary_10_1016_j_apcatb_2023_122430 crossref_primary_10_1039_D1CY02194J crossref_primary_10_1016_j_chemosphere_2021_131717 crossref_primary_10_1021_acs_estlett_9b00653 crossref_primary_10_1021_acs_est_6b03540 crossref_primary_10_1016_j_chemosphere_2022_136848 crossref_primary_10_1016_j_jece_2023_111501 crossref_primary_10_1021_acs_est_9b07704 crossref_primary_10_1021_acscatal_3c06174 crossref_primary_10_1016_j_apcatb_2018_11_048 crossref_primary_10_1016_j_jhazmat_2023_133315 crossref_primary_10_1016_j_inoche_2021_109092 crossref_primary_10_1021_acsestengg_2c00228 crossref_primary_10_1016_j_jhazmat_2018_09_041 crossref_primary_10_1016_j_jhazmat_2023_132469 crossref_primary_10_1016_j_jhazmat_2021_127662 crossref_primary_10_1016_j_scitotenv_2020_136501 crossref_primary_10_1021_acssuschemeng_7b03155 crossref_primary_10_1021_acs_jpclett_9b00547 crossref_primary_10_1016_j_cej_2019_123034 crossref_primary_10_1016_j_watres_2022_119143 crossref_primary_10_1016_j_watres_2018_11_004 crossref_primary_10_1016_j_scitotenv_2021_146035 crossref_primary_10_1021_acsestengg_3c00164 crossref_primary_10_1016_j_dwt_2024_100655 crossref_primary_10_1016_j_jece_2023_110263 crossref_primary_10_1016_j_watres_2022_118732 crossref_primary_10_1021_acs_est_7b01002 crossref_primary_10_1016_j_watres_2018_08_025 crossref_primary_10_1021_acsestengg_2c00052 crossref_primary_10_1016_j_jcis_2023_12_028 crossref_primary_10_3390_su16229764 crossref_primary_10_1016_j_apcatb_2023_122776 crossref_primary_10_1016_j_envpol_2023_122876 crossref_primary_10_1021_acs_est_4c02061 crossref_primary_10_1016_j_chemosphere_2021_130465 crossref_primary_10_1021_acs_accounts_1c00269 crossref_primary_10_1039_C8EE02351D crossref_primary_10_1016_j_apcatb_2018_07_036 crossref_primary_10_1016_j_apcatb_2021_120436 crossref_primary_10_1016_j_jhazmat_2023_131667 crossref_primary_10_1016_j_jece_2023_109718 crossref_primary_10_1021_acsestwater_2c00598 crossref_primary_10_1021_acs_est_0c06254 crossref_primary_10_1016_j_jhazmat_2021_126313 crossref_primary_10_2166_wrd_2021_018 crossref_primary_10_1021_acsami_3c05016 crossref_primary_10_1021_acs_est_4c09855 crossref_primary_10_1016_j_ijhydene_2025_01_221 crossref_primary_10_1016_j_gee_2021_05_002 crossref_primary_10_1016_j_watres_2022_118722 crossref_primary_10_1016_j_chemosphere_2024_141219 crossref_primary_10_1016_j_dwt_2024_100845 crossref_primary_10_1021_acs_est_1c02825 crossref_primary_10_1021_acs_est_8b02743 crossref_primary_10_1016_j_watres_2023_120240 crossref_primary_10_1016_j_chemosphere_2020_126973 crossref_primary_10_1016_j_seppur_2021_118395 crossref_primary_10_1007_s11164_019_04001_0 crossref_primary_10_1021_acs_est_2c05735 crossref_primary_10_1016_j_seppur_2022_122197 crossref_primary_10_1021_acs_est_2c00729 crossref_primary_10_33961_jecst_2022_01032 crossref_primary_10_1016_j_psep_2022_11_075 crossref_primary_10_1016_j_watres_2023_119702 crossref_primary_10_1021_acsestengg_0c00186 crossref_primary_10_1039_D0EE02173C crossref_primary_10_1016_j_cej_2019_05_165 crossref_primary_10_1021_acscatal_7b04340 crossref_primary_10_1016_j_chemosphere_2024_143542 crossref_primary_10_1016_j_jclepro_2020_124412 crossref_primary_10_1016_j_apcatb_2018_06_023 crossref_primary_10_1016_j_watres_2019_05_104 crossref_primary_10_1021_acsestengg_1c00011 crossref_primary_10_1021_acs_jpcc_1c05671 crossref_primary_10_1016_j_chemosphere_2019_03_135 crossref_primary_10_1016_j_cej_2021_131194 crossref_primary_10_2139_ssrn_4165656 crossref_primary_10_1016_j_cej_2022_135167 crossref_primary_10_1016_j_jelechem_2018_11_047 crossref_primary_10_1016_j_jhazmat_2024_136948 crossref_primary_10_1088_1361_6463_ac1374 crossref_primary_10_1039_C8EW00698A crossref_primary_10_1016_j_cej_2024_151719 crossref_primary_10_1016_j_jclepro_2023_137289 crossref_primary_10_1039_C9EW01106D crossref_primary_10_1016_j_seppur_2021_119229 crossref_primary_10_1021_acs_jpcc_3c01841 crossref_primary_10_1021_acs_est_9b00959 crossref_primary_10_1016_j_jece_2024_112549 crossref_primary_10_1016_j_scitotenv_2024_174063 crossref_primary_10_1016_j_apsusc_2025_162891 crossref_primary_10_1016_j_ceramint_2023_05_201 crossref_primary_10_1016_j_jece_2020_104489 crossref_primary_10_1016_j_seppur_2024_127229 crossref_primary_10_1007_s11783_020_1264_7 crossref_primary_10_1039_C8EW00209F crossref_primary_10_1016_j_seppur_2023_123369 crossref_primary_10_1021_acsestengg_3c00128 |
Cites_doi | 10.1039/C3RA46699J 10.1016/j.watres.2012.08.038 10.1021/ic00084a014 10.1021/acs.est.5b02414 10.1016/0013-4686(87)85001-6 10.1021/acs.est.5b01675 10.1016/j.watres.2012.10.001 10.1021/ie303021v 10.1039/f19736901597 10.1063/1.555805 10.1021/jp004630z 10.1021/es5025405 10.1021/ja407115p 10.1016/j.electacta.2008.09.040 10.1021/j100497a003 10.1016/S0013-4686(02)00318-3 10.1016/j.watres.2007.02.054 10.1021/es202534w 10.1021/ja01198a074 10.1021/es505232f 10.1016/j.jenvman.2007.10.010 10.1021/cm4041715 10.1002/anie.201406112 10.1016/j.watres.2010.06.029 10.1088/0031-8949/16/5-6/027 10.1021/es800298p 10.1021/jp810331w 10.1021/cs3003098 10.1021/es1010225 10.1021/es404688z 10.1002/ange.201507626 10.1021/es040504n 10.1021/jp012195i 10.1021/es4036094 10.1039/C5RA01013F 10.1021/jp0668403 10.1021/acs.est.5b02705 10.1021/acscatal.5b01281 10.1021/acs.chemmater.5b00376 10.1149/1.2114230 10.1016/0047-2670(80)85102-1 10.2166/wst.2010.130 10.1002/bbpc.19850890309 10.1016/0022-0728(87)80119-5 10.1149/1.2129274 10.1023/A:1018414005000 10.1021/j100647a006 10.1021/es4034414 10.1149/1.1393238 10.1021/jp710291c 10.1021/es404137u 10.1021/acs.chemrev.5b00361 10.5194/acp-6-2423-2006 10.1016/0013-4686(84)85004-5 10.1021/acs.est.5b01254 10.1039/B917459A 10.1016/j.watres.2016.01.040 |
ContentType | Journal Article |
Copyright | Copyright © 2016 American Chemical Society Copyright American Chemical Society Aug 16, 2016 |
Copyright_xml | – notice: Copyright © 2016 American Chemical Society – notice: Copyright American Chemical Society Aug 16, 2016 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QO 7ST 7T7 7U7 8FD C1K FR3 P64 SOI 7X8 7S9 L.6 |
DOI | 10.1021/acs.est.6b00688 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Biotechnology Research Abstracts Environment Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) Toxicology Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database Biotechnology and BioEngineering Abstracts Environment Abstracts MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Biotechnology Research Abstracts Technology Research Database Toxicology Abstracts Engineering Research Database Industrial and Applied Microbiology Abstracts (Microbiology A) Environment Abstracts Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | Biotechnology Research Abstracts MEDLINE - Academic AGRICOLA Environment Abstracts MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Environmental Sciences |
EISSN | 1520-5851 |
EndPage | 8787 |
ExternalDocumentID | 4158220191 27402194 10_1021_acs_est_6b00688 c619224826 |
Genre | Research Support, Non-U.S. Gov't Journal Article Feature |
GroupedDBID | - .K2 1AW 3R3 4R4 53G 55A 5GY 5VS 63O 7~N 85S AABXI ABFLS ABMVS ABOGM ABPPZ ABPTK ABUCX ABUFD ACGFS ACGOD ACIWK ACJ ACPRK ACS AEESW AENEX AFEFF AFRAH ALMA_UNASSIGNED_HOLDINGS AQSVZ BAANH BKOMP CS3 DZ EBS ED ED~ EJD F5P GNL IH9 JG JG~ K2 LG6 MS PQEST PQQKQ ROL RXW TN5 TWZ U5U UHB UI2 UKR UPT VF5 VG9 VQA W1F WH7 X XFK XZL YZZ --- -DZ -~X ..I .DC 4.4 6TJ AAHBH AAYXX ABBLG ABJNI ABLBI ABQRX ADHLV ADUKH AGXLV AHGAQ CITATION CUPRZ GGK MS~ MW2 XSW ZCA CGR CUY CVF ECM EIF NPM 7QO 7ST 7T7 7U7 8FD C1K FR3 P64 SOI 7X8 7S9 L.6 |
ID | FETCH-LOGICAL-a530t-e7f9e8bfd44cf1c67241383673736a54aada692ac45ba2ae1148de59c77e6c483 |
IEDL.DBID | ACS |
ISSN | 0013-936X 1520-5851 |
IngestDate | Fri Jul 11 08:50:52 EDT 2025 Thu Jul 10 22:46:28 EDT 2025 Fri Jul 11 01:17:29 EDT 2025 Mon Jun 30 06:59:35 EDT 2025 Thu Apr 03 07:01:28 EDT 2025 Thu Apr 24 23:07:40 EDT 2025 Tue Jul 01 04:29:09 EDT 2025 Thu Aug 27 13:42:18 EDT 2020 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 16 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a530t-e7f9e8bfd44cf1c67241383673736a54aada692ac45ba2ae1148de59c77e6c483 |
Notes | SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 ObjectType-Article-1 ObjectType-Feature-2 content type line 23 |
PMID | 27402194 |
PQID | 1813896530 |
PQPubID | 45412 |
PageCount | 8 |
ParticipantIDs | proquest_miscellaneous_2000196468 proquest_miscellaneous_1819143025 proquest_miscellaneous_1812223758 proquest_journals_1813896530 pubmed_primary_27402194 crossref_primary_10_1021_acs_est_6b00688 crossref_citationtrail_10_1021_acs_est_6b00688 acs_journals_10_1021_acs_est_6b00688 |
ProviderPackageCode | JG~ 55A AABXI GNL VF5 7~N ACJ VG9 W1F ACS AEESW AFEFF .K2 ABMVS ABUCX IH9 BAANH AQSVZ ED~ UI2 CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2016-08-16 |
PublicationDateYYYYMMDD | 2016-08-16 |
PublicationDate_xml | – month: 08 year: 2016 text: 2016-08-16 day: 16 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Easton |
PublicationTitle | Environmental science & technology |
PublicationTitleAlternate | Environ. Sci. Technol |
PublicationYear | 2016 |
Publisher | American Chemical Society |
Publisher_xml | – name: American Chemical Society |
References | ref9/cit9 ref45/cit45 ref3/cit3 ref27/cit27 ref56/cit56 ref16/cit16 ref52/cit52 Bard A. J. (ref54/cit54) 2001 ref23/cit23 ref8/cit8 ref31/cit31 ref59/cit59 ref2/cit2 ref34/cit34 ref37/cit37 ref20/cit20 ref48/cit48 ref60/cit60 ref17/cit17 ref10/cit10 ref35/cit35 ref53/cit53 ref19/cit19 ref21/cit21 ref42/cit42 ref46/cit46 ref49/cit49 ref13/cit13 ref24/cit24 ref38/cit38 ref50/cit50 ref6/cit6 ref36/cit36 ref18/cit18 ref11/cit11 ref25/cit25 ref29/cit29 ref32/cit32 ref39/cit39 ref14/cit14 ref57/cit57 ref5/cit5 ref51/cit51 ref43/cit43 ref28/cit28 ref40/cit40 ref26/cit26 ref55/cit55 ref12/cit12 ref15/cit15 ref41/cit41 ref58/cit58 ref22/cit22 ref33/cit33 ref4/cit4 ref30/cit30 ref47/cit47 ref1/cit1 ref44/cit44 ref7/cit7 28353337 - Environ Sci Technol. 2017 Apr 18;51(8):4733 |
References_xml | – ident: ref6/cit6 doi: 10.1039/C3RA46699J – ident: ref11/cit11 doi: 10.1016/j.watres.2012.08.038 – ident: ref26/cit26 doi: 10.1021/ic00084a014 – ident: ref4/cit4 doi: 10.1021/acs.est.5b02414 – ident: ref46/cit46 doi: 10.1016/0013-4686(87)85001-6 – ident: ref13/cit13 doi: 10.1021/acs.est.5b01675 – ident: ref8/cit8 doi: 10.1016/j.watres.2012.10.001 – ident: ref12/cit12 doi: 10.1021/ie303021v – ident: ref29/cit29 doi: 10.1039/f19736901597 – ident: ref28/cit28 doi: 10.1063/1.555805 – ident: ref35/cit35 doi: 10.1021/jp004630z – ident: ref20/cit20 doi: 10.1021/es5025405 – ident: ref23/cit23 – ident: ref22/cit22 doi: 10.1021/ja407115p – ident: ref51/cit51 doi: 10.1016/j.electacta.2008.09.040 – ident: ref36/cit36 doi: 10.1021/j100497a003 – ident: ref56/cit56 doi: 10.1016/S0013-4686(02)00318-3 – ident: ref17/cit17 doi: 10.1016/j.watres.2007.02.054 – ident: ref50/cit50 doi: 10.1021/es202534w – ident: ref33/cit33 doi: 10.1021/ja01198a074 – ident: ref42/cit42 doi: 10.1021/es505232f – ident: ref3/cit3 doi: 10.1016/j.jenvman.2007.10.010 – ident: ref44/cit44 doi: 10.1021/cm4041715 – ident: ref48/cit48 doi: 10.1002/anie.201406112 – volume-title: Electrochemical Methods: Fundamentals and Applications year: 2001 ident: ref54/cit54 – ident: ref53/cit53 doi: 10.1016/j.watres.2010.06.029 – ident: ref41/cit41 doi: 10.1088/0031-8949/16/5-6/027 – ident: ref15/cit15 doi: 10.1021/es800298p – ident: ref19/cit19 doi: 10.1021/jp810331w – ident: ref43/cit43 doi: 10.1021/cs3003098 – ident: ref31/cit31 doi: 10.1021/es1010225 – ident: ref10/cit10 doi: 10.1021/es404688z – ident: ref38/cit38 doi: 10.1002/ange.201507626 – ident: ref1/cit1 doi: 10.1021/es040504n – ident: ref24/cit24 – ident: ref58/cit58 doi: 10.1021/jp012195i – ident: ref55/cit55 doi: 10.1021/es4036094 – ident: ref57/cit57 doi: 10.1039/C5RA01013F – ident: ref40/cit40 doi: 10.1021/jp0668403 – ident: ref16/cit16 doi: 10.1021/acs.est.5b02705 – ident: ref39/cit39 doi: 10.1021/acscatal.5b01281 – ident: ref21/cit21 doi: 10.1021/acs.chemmater.5b00376 – ident: ref52/cit52 doi: 10.1149/1.2114230 – ident: ref32/cit32 doi: 10.1016/0047-2670(80)85102-1 – ident: ref60/cit60 doi: 10.2166/wst.2010.130 – ident: ref30/cit30 doi: 10.1002/bbpc.19850890309 – ident: ref45/cit45 doi: 10.1016/0022-0728(87)80119-5 – ident: ref49/cit49 doi: 10.1149/1.2129274 – ident: ref37/cit37 doi: 10.1023/A:1018414005000 – ident: ref34/cit34 doi: 10.1021/j100647a006 – ident: ref9/cit9 doi: 10.1021/es4034414 – ident: ref18/cit18 doi: 10.1149/1.1393238 – ident: ref27/cit27 doi: 10.1021/jp710291c – ident: ref7/cit7 doi: 10.1021/es404137u – ident: ref2/cit2 doi: 10.1021/acs.chemrev.5b00361 – ident: ref25/cit25 doi: 10.5194/acp-6-2423-2006 – ident: ref14/cit14 doi: 10.1016/0013-4686(84)85004-5 – ident: ref5/cit5 doi: 10.1021/acs.est.5b01254 – ident: ref47/cit47 doi: 10.1039/B917459A – ident: ref59/cit59 doi: 10.1016/j.watres.2016.01.040 – reference: 28353337 - Environ Sci Technol. 2017 Apr 18;51(8):4733 |
SSID | ssj0002308 |
Score | 2.544646 |
Snippet | Multilayer heterojunction SbSn/CoTi/Ir anodes, which consist of Ir0.7Ta0.3O2 bottom layers coated onto a titanium base, Co-TiO2 interlayers, and overcoated... Multilayer heterojunction SbSn/CoTi/Ir anodes, which consist of Ir^sub 0.7^Ta^sub 0.3^O^sub 2^ bottom layers coated onto a titanium base, Co-TiO^sub 2^... Multilayer heterojunction SbSn/CoTi/Ir anodes, which consist of Ir sub( 0.7)Ta sub( 0.3)O sub( 2) bottom layers coated onto a titanium base, Co-TiO sub( 2)... Multilayer heterojunction SbSn/CoTi/Ir anodes, which consist of Ir₀.₇Ta₀.₃O₂ bottom layers coated onto a titanium base, Co-TiO₂ interlayers, and overcoated... |
SourceID | proquest pubmed crossref acs |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 8780 |
SubjectTerms | active sites ammonium compounds anodes chemical oxygen demand Chlorine electrochemistry Electrodes Electrolysis Electron transfer energy Energy consumption Experiments Free radicals humans islands Oxidation-Reduction pyrolysis reaction kinetics reaction mechanisms Saline water semiconductors simulation models titanium Titanium - chemistry Waste Water - chemistry wastewater wastewater treatment Water treatment |
Title | Multilayer Heterojunction Anodes for Saline Wastewater Treatment: Design Strategies and Reactive Species Generation Mechanisms |
URI | http://dx.doi.org/10.1021/acs.est.6b00688 https://www.ncbi.nlm.nih.gov/pubmed/27402194 https://www.proquest.com/docview/1813896530 https://www.proquest.com/docview/1812223758 https://www.proquest.com/docview/1819143025 https://www.proquest.com/docview/2000196468 |
Volume | 50 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwELagXOBAoVDYtiAj9cAlYeM4jtPbqrRaIZUDbcXeovEjElCyCO9eOPDbmXEeLVQLXJ2xZc2M7c-Z8TeMHU6bzCojXAJq2iTS6SKBwpSJVb4pDCgtY_m2s_dqfinfLYrFNVn0nxF8kb0BG1LcIFNFDqL1XXZPKF0STf7s-HzcdBFJ66FYQZWrxcjic2sAOoZs-P0Y2oAt4xlzut1lZ4VITUipJV_S9cqk9sdt4sZ_T_8Re9gjTT7rXOMxu-PbHfbgBv_gDts9uX7mhqL9Og9P2M_4LvcKEI_zOSXMLD_j-Uc25LN26XzgiHX5ORBG5R8h0B84lOIXQ9r6EX8bU0P4wH6LXaB1_IOHuMHyWPceGzva6zjymadXyJ_C1_CUXZ6eXBzPk75SAxo2n64SXzaV16ZxUloyfknROp1TDZxcQSEBHKhKgJVofwGeLmHOF5UtS6-s1Pku22qXrX_OeGbzXBaNnxojZI4yzhU4qnGNUYBXgQk7RJXW_UoLdQyii6ymRtRz3et5wtLBvrXt2c6p6MbV5g6vxw7fOqKPzaIHg8PcmIemkK9CdUzYq_EzrlUKwEDrl-soQ3AMr2h_lakQwyIU3SwjOlojqXCcZ53DjnMWpcQpV3Lv__S0z-4jBFT0lzxTB2xr9X3tXyDMWpmXcYH9AqghJWk |
linkProvider | American Chemical Society |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LbxMxEB6VcgAOFAqFtAWM1AOXTffh9Xq5RaVVgKYSJBW5rfxaCSibik0uHPrbmfE-WkBBcHXGo8l4bH_esb8BOAjLyAgd20CJsAy4lWmgUp0FRrgy1UpI7su3Tc7E-Jy_m6fzDQi7tzBoRI2aap_Ev2YXiA6pDdfJoaA4kfIW3EYoEhNb_uho2q-9CKhlV7MgT8S8J_P5QwHtRqb-dTdaAzH9VnOyBR96I_0Nk6_D1VIPzY_f-Bv_5188gPst7mSjJlAewoartuHeDTbCbdg5vn70hqLtrK8fwZV_pXuhEJ2zMV2fWXzB3ZBGlI2qhXU1Q-TLpooQK_ukavoeh1Js1l1if83e-IsirOPCxS6qsuyjU365ZdNLZ6ixIcH2mieO3iR_rr_Vj-H85Hh2NA7aug04zEm4DFxW5k7q0nJuKBQyyt3JhCriJEKlXCmrRB4rwzEaYuXoSGZdmpssc8JwmezAZrWo3FNgkUkSnpYu1DrmCcpYm6JWbUstFB4MBnCALi3aeVcXPqUeRwU1op-L1s8DGHbDXJiW-5xKcFys7_Cq73DZ0H6sF93v4uaGHZISwALdMYCX_c84cykdoyq3WHkZAmd4YPurTI6IFoHpepm4ITniAvU8aeK2tznOOJqc891_89MLuDOeTU6L07dn7_fgLoJDQd_PI7EPm8vvK_cMAdhSP_dz7iedbi3K |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LbxMxEB5BkRAceBQKgQJG6oHLptldr9fLLWobhUcrRBqR28qvlYCyiXBy4cBvZ8b7oICC4OqMR5PxjP15xzMDcDCqYiN0YiMlRlXErcwilek8MsJVmVZC8tC-7fRMTOf89SJbtElhlAuDQnjk5EMQn7x6Zau2wkB8SOO4Vw4F2YqUV-EaBe2oYv74aNbvvwiqZde3oEjFoi_o8wcDOpGM__VE2gIzw3EzuQ3zXtDwyuTzcLPWQ_PttxqO__tP7sCtFn-ycWMwd-GKq3fh5qWqhLuwd_Iz-Q1JW-_39-B7yNa9UIjS2ZSe0Sw_4alIK8vG9dI6zxABs5ki5Mo-KE_f5ZCKnXeP2V-y4_BghHU1cXGKqi1771TYdtls5QwNNsWwA-dTR7nJH_0Xfx_mk5Pzo2nU9m_A5U5H68jlVeGkriznhkwipxieTKkzTipUxpWyShSJMhytIlGOrmbWZYXJcycMl-ke7NTL2j0EFps05VnlRlonPEUaazPkqm2lhcILwgAOUKVl63--DKH1JC5pEPVctnoewLBb6tK0NdCpFcfF9gkv-gmrpvzHdtL9znYuySEpECxQHQN43v-MHkxhGVW75SbQEEjDi9tfaQpEtghQt9MkTbEjLpDPg8Z2e5mTnKPIBX_0b3p6BtffHU_Kt6_O3jyGG4gRBX1Gj8U-7Ky_btwTxGFr_TS43Q8wyDBN |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multilayer+Heterojunction+Anodes+for+Saline+Wastewater+Treatment%3A+Design+Strategies+and+Reactive+Species+Generation+Mechanisms&rft.jtitle=Environmental+science+%26+technology&rft.au=Yang%2C+Yang&rft.au=Shin%2C+Jieun&rft.au=Jasper%2C+Justin+T&rft.au=Hoffmann%2C+Michael+R&rft.date=2016-08-16&rft.pub=American+Chemical+Society&rft.issn=0013-936X&rft.volume=50&rft.issue=16&rft.spage=8780&rft_id=info:doi/10.1021%2Facs.est.6b00688&rft.externalDBID=NO_FULL_TEXT&rft.externalDocID=4158220191 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0013-936X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0013-936X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0013-936X&client=summon |