Multilayer Heterojunction Anodes for Saline Wastewater Treatment: Design Strategies and Reactive Species Generation Mechanisms

Multilayer heterojunction SbSn/CoTi/Ir anodes, which consist of Ir0.7Ta0.3O2 bottom layers coated onto a titanium base, Co-TiO2 interlayers, and overcoated discrete Sb-SnO2 islands, were prepared by spray pyrolysis. The Ir0.7Ta0.3O2 bottom layer serves as an Ohmic contact to facilitate electron tran...

Full description

Saved in:
Bibliographic Details
Published inEnvironmental science & technology Vol. 50; no. 16; pp. 8780 - 8787
Main Authors Yang, Yang, Shin, Jieun, Jasper, Justin T, Hoffmann, Michael R
Format Journal Article
LanguageEnglish
Published United States American Chemical Society 16.08.2016
Subjects
Online AccessGet full text
ISSN0013-936X
1520-5851
1520-5851
DOI10.1021/acs.est.6b00688

Cover

Loading…
Abstract Multilayer heterojunction SbSn/CoTi/Ir anodes, which consist of Ir0.7Ta0.3O2 bottom layers coated onto a titanium base, Co-TiO2 interlayers, and overcoated discrete Sb-SnO2 islands, were prepared by spray pyrolysis. The Ir0.7Ta0.3O2 bottom layer serves as an Ohmic contact to facilitate electron transfer from semiconductor layers to the Ti base. The Co-TiO2 interlayer and overcoated Sb-SnO2 islands enhance the evolution of reactive chlorine. The surficial Sb-SnO2 islands also serve as the reactive sites for free radical generation. Experiments coupled with computational kinetic simulations show that while ·OH and Cl· are initially produced on the SbSn/CoTi/Ir anode surface, the dominant radical formed in solution is the dichlorine radical anion, Cl2·–. The steady-state concentration of reactive radicals is 10 orders of magnitude lower than that of reactive chlorine. The SbSn/CoTi/Ir anode was applied to electrochemically treat human wastewater. These test results show that COD and NH4 + can be removed after 2 h of electrolysis with minimal energy consumption (370 kWh/kg COD and 383 kWh/kg NH4 +). Although free radical species contribute to COD removal, anodes designed to enhance reactive chlorine production are more effective than those designed to enhance free radical production.
AbstractList Multilayer heterojunction SbSn/CoTi/Ir anodes, which consist of Ir^sub 0.7^Ta^sub 0.3^O^sub 2^ bottom layers coated onto a titanium base, Co-TiO^sub 2^ interlayers, and overcoated discrete Sb-SnO^sub 2^ islands, were prepared by spray pyrolysis. The Ir^sub 0.7^Ta^sub 0.3^O^sub 2^ bottom layer serves as an Ohmic contact to facilitate electron transfer from semiconductor layers to the Ti base. The Co-TiO^sub 2^ interlayer and overcoated Sb-SnO^sub 2^ islands enhance the evolution of reactive chlorine. The surficial Sb-SnO^sub 2^ islands also serve as the reactive sites for free radical generation. Experiments coupled with computational kinetic simulations show that while ...OH and Cl... are initially produced on the SbSn/CoTi/Ir anode surface, the dominant radical formed in solution is the dichlorine radical anion, Cl^sub 2...-^. The steady-state concentration of reactive radicals is 10 orders of magnitude lower than that of reactive chlorine. The SbSn/CoTi/Ir anode was applied to electrochemically treat human wastewater. These test results show that COD and NH^sub 4^+ can be removed after 2 h of electrolysis with minimal energy consumption (370 kWh/kg COD and 383 kWh/kg NH^sub 4^+). Although free radical species contribute to COD removal, anodes designed to enhance reactive chlorine production are more effective than those designed to enhance free radical production. (ProQuest: ... denotes formulae/symbols omitted.)
Multilayer heterojunction SbSn/CoTi/Ir anodes, which consist of Ir0.7Ta0.3O2 bottom layers coated onto a titanium base, Co-TiO2 interlayers, and overcoated discrete Sb-SnO2 islands, were prepared by spray pyrolysis. The Ir0.7Ta0.3O2 bottom layer serves as an Ohmic contact to facilitate electron transfer from semiconductor layers to the Ti base. The Co-TiO2 interlayer and overcoated Sb-SnO2 islands enhance the evolution of reactive chlorine. The surficial Sb-SnO2 islands also serve as the reactive sites for free radical generation. Experiments coupled with computational kinetic simulations show that while ·OH and Cl· are initially produced on the SbSn/CoTi/Ir anode surface, the dominant radical formed in solution is the dichlorine radical anion, Cl2·(-). The steady-state concentration of reactive radicals is 10 orders of magnitude lower than that of reactive chlorine. The SbSn/CoTi/Ir anode was applied to electrochemically treat human wastewater. These test results show that COD and NH4(+) can be removed after 2 h of electrolysis with minimal energy consumption (370 kWh/kg COD and 383 kWh/kg NH4(+)). Although free radical species contribute to COD removal, anodes designed to enhance reactive chlorine production are more effective than those designed to enhance free radical production.Multilayer heterojunction SbSn/CoTi/Ir anodes, which consist of Ir0.7Ta0.3O2 bottom layers coated onto a titanium base, Co-TiO2 interlayers, and overcoated discrete Sb-SnO2 islands, were prepared by spray pyrolysis. The Ir0.7Ta0.3O2 bottom layer serves as an Ohmic contact to facilitate electron transfer from semiconductor layers to the Ti base. The Co-TiO2 interlayer and overcoated Sb-SnO2 islands enhance the evolution of reactive chlorine. The surficial Sb-SnO2 islands also serve as the reactive sites for free radical generation. Experiments coupled with computational kinetic simulations show that while ·OH and Cl· are initially produced on the SbSn/CoTi/Ir anode surface, the dominant radical formed in solution is the dichlorine radical anion, Cl2·(-). The steady-state concentration of reactive radicals is 10 orders of magnitude lower than that of reactive chlorine. The SbSn/CoTi/Ir anode was applied to electrochemically treat human wastewater. These test results show that COD and NH4(+) can be removed after 2 h of electrolysis with minimal energy consumption (370 kWh/kg COD and 383 kWh/kg NH4(+)). Although free radical species contribute to COD removal, anodes designed to enhance reactive chlorine production are more effective than those designed to enhance free radical production.
Multilayer heterojunction SbSn/CoTi/Ir anodes, which consist of Ir₀.₇Ta₀.₃O₂ bottom layers coated onto a titanium base, Co-TiO₂ interlayers, and overcoated discrete Sb-SnO₂ islands, were prepared by spray pyrolysis. The Ir₀.₇Ta₀.₃O₂ bottom layer serves as an Ohmic contact to facilitate electron transfer from semiconductor layers to the Ti base. The Co-TiO₂ interlayer and overcoated Sb-SnO₂ islands enhance the evolution of reactive chlorine. The surficial Sb-SnO₂ islands also serve as the reactive sites for free radical generation. Experiments coupled with computational kinetic simulations show that while ·OH and Cl· are initially produced on the SbSn/CoTi/Ir anode surface, the dominant radical formed in solution is the dichlorine radical anion, Cl₂·–. The steady-state concentration of reactive radicals is 10 orders of magnitude lower than that of reactive chlorine. The SbSn/CoTi/Ir anode was applied to electrochemically treat human wastewater. These test results show that COD and NH₄⁺ can be removed after 2 h of electrolysis with minimal energy consumption (370 kWh/kg COD and 383 kWh/kg NH₄⁺). Although free radical species contribute to COD removal, anodes designed to enhance reactive chlorine production are more effective than those designed to enhance free radical production.
Multilayer heterojunction SbSn/CoTi/Ir anodes, which consist of Ir0.7Ta0.3O2 bottom layers coated onto a titanium base, Co-TiO2 interlayers, and overcoated discrete Sb-SnO2 islands, were prepared by spray pyrolysis. The Ir0.7Ta0.3O2 bottom layer serves as an Ohmic contact to facilitate electron transfer from semiconductor layers to the Ti base. The Co-TiO2 interlayer and overcoated Sb-SnO2 islands enhance the evolution of reactive chlorine. The surficial Sb-SnO2 islands also serve as the reactive sites for free radical generation. Experiments coupled with computational kinetic simulations show that while ·OH and Cl· are initially produced on the SbSn/CoTi/Ir anode surface, the dominant radical formed in solution is the dichlorine radical anion, Cl2·–. The steady-state concentration of reactive radicals is 10 orders of magnitude lower than that of reactive chlorine. The SbSn/CoTi/Ir anode was applied to electrochemically treat human wastewater. These test results show that COD and NH4 + can be removed after 2 h of electrolysis with minimal energy consumption (370 kWh/kg COD and 383 kWh/kg NH4 +). Although free radical species contribute to COD removal, anodes designed to enhance reactive chlorine production are more effective than those designed to enhance free radical production.
Author Shin, Jieun
Jasper, Justin T
Yang, Yang
Hoffmann, Michael R
AuthorAffiliation California Institute of Technology
Linde + Robinson Laboratories
AuthorAffiliation_xml – name: Linde + Robinson Laboratories
– name: California Institute of Technology
Author_xml – sequence: 1
  givenname: Yang
  surname: Yang
  fullname: Yang, Yang
– sequence: 2
  givenname: Jieun
  surname: Shin
  fullname: Shin, Jieun
– sequence: 3
  givenname: Justin T
  surname: Jasper
  fullname: Jasper, Justin T
– sequence: 4
  givenname: Michael R
  surname: Hoffmann
  fullname: Hoffmann, Michael R
  email: mrh@caltech.edu
BackLink https://www.ncbi.nlm.nih.gov/pubmed/27402194$$D View this record in MEDLINE/PubMed
BookMark eNqNks1rFEEQxRuJmE307E0avAgym_6eHm8haiIkCG5Eb0NtT03sZaZn7Z5RcvFvt8ddFQJ-nBqqfu_RVfWOyEEYAhLymLMlZ4KfgEtLTOPSrBkz1t4jC64FK7TV_IAsGOOyqKT5eEiOUtowxoRk9gE5FKXK6kotyLerqRt9B7cY6QWOGIfNFNzoh0BPw9Bgou0Q6Qo6H5B-gDTiV8gUvY4IY49hfEFfYvI3ga7GmDs3PksgNPQdQrb5gnS1RTcXzzFgJmbnK3SfIPjUp4fkfgtdwkf795i8f_3q-uyiuHx7_ubs9LIALdlYYNlWaNdto5RruTOlUFxaaUpZSgNaATRgKgFO6TUIQM6VbVBXrizROGXlMXm2893G4fOUN1b3PjnsOgg4TKkWeTe8Msr8G-WWV1xJJvT_oEIIWerZ9ekddDNMMeSZZ0rayuRBM_VkT03rHpt6G30P8bb-ea8MnOwAF4eUIra_EM7qORF1TkQ92-8TkRX6jsL58ccZ8r189xfd851ubvz-6x_o75AuywM
CODEN ESTHAG
CitedBy_id crossref_primary_10_1016_j_fuel_2020_119712
crossref_primary_10_1039_D1NR08098A
crossref_primary_10_1016_j_cej_2020_126982
crossref_primary_10_1039_D4EW00490F
crossref_primary_10_1149_1945_7111_ac3abb
crossref_primary_10_1016_j_watres_2024_122068
crossref_primary_10_1016_j_jhazmat_2022_128379
crossref_primary_10_1016_j_psep_2023_12_067
crossref_primary_10_1016_j_watres_2023_120847
crossref_primary_10_1021_acs_est_3c06326
crossref_primary_10_1021_acs_est_6b02912
crossref_primary_10_1016_j_jenvman_2024_120726
crossref_primary_10_2166_wst_2018_414
crossref_primary_10_1039_C7RA08150B
crossref_primary_10_1016_j_apcatb_2022_121215
crossref_primary_10_1016_j_jece_2025_115853
crossref_primary_10_1016_j_desal_2025_118576
crossref_primary_10_1039_D2EW00322H
crossref_primary_10_1016_j_ceramint_2023_03_186
crossref_primary_10_1016_j_electacta_2024_144166
crossref_primary_10_1007_s11664_022_09980_2
crossref_primary_10_1016_j_jece_2024_113252
crossref_primary_10_1021_acsestengg_1c00122
crossref_primary_10_1016_j_apcatb_2018_11_061
crossref_primary_10_1016_j_cej_2022_137497
crossref_primary_10_1016_j_cattod_2019_01_066
crossref_primary_10_1016_j_memsci_2023_121692
crossref_primary_10_1016_j_jallcom_2020_155622
crossref_primary_10_1016_j_watres_2018_03_030
crossref_primary_10_1016_j_electacta_2020_135864
crossref_primary_10_1016_j_apcatb_2023_122430
crossref_primary_10_1039_D1CY02194J
crossref_primary_10_1016_j_chemosphere_2021_131717
crossref_primary_10_1021_acs_estlett_9b00653
crossref_primary_10_1021_acs_est_6b03540
crossref_primary_10_1016_j_chemosphere_2022_136848
crossref_primary_10_1016_j_jece_2023_111501
crossref_primary_10_1021_acs_est_9b07704
crossref_primary_10_1021_acscatal_3c06174
crossref_primary_10_1016_j_apcatb_2018_11_048
crossref_primary_10_1016_j_jhazmat_2023_133315
crossref_primary_10_1016_j_inoche_2021_109092
crossref_primary_10_1021_acsestengg_2c00228
crossref_primary_10_1016_j_jhazmat_2018_09_041
crossref_primary_10_1016_j_jhazmat_2023_132469
crossref_primary_10_1016_j_jhazmat_2021_127662
crossref_primary_10_1016_j_scitotenv_2020_136501
crossref_primary_10_1021_acssuschemeng_7b03155
crossref_primary_10_1021_acs_jpclett_9b00547
crossref_primary_10_1016_j_cej_2019_123034
crossref_primary_10_1016_j_watres_2022_119143
crossref_primary_10_1016_j_watres_2018_11_004
crossref_primary_10_1016_j_scitotenv_2021_146035
crossref_primary_10_1021_acsestengg_3c00164
crossref_primary_10_1016_j_dwt_2024_100655
crossref_primary_10_1016_j_jece_2023_110263
crossref_primary_10_1016_j_watres_2022_118732
crossref_primary_10_1021_acs_est_7b01002
crossref_primary_10_1016_j_watres_2018_08_025
crossref_primary_10_1021_acsestengg_2c00052
crossref_primary_10_1016_j_jcis_2023_12_028
crossref_primary_10_3390_su16229764
crossref_primary_10_1016_j_apcatb_2023_122776
crossref_primary_10_1016_j_envpol_2023_122876
crossref_primary_10_1021_acs_est_4c02061
crossref_primary_10_1016_j_chemosphere_2021_130465
crossref_primary_10_1021_acs_accounts_1c00269
crossref_primary_10_1039_C8EE02351D
crossref_primary_10_1016_j_apcatb_2018_07_036
crossref_primary_10_1016_j_apcatb_2021_120436
crossref_primary_10_1016_j_jhazmat_2023_131667
crossref_primary_10_1016_j_jece_2023_109718
crossref_primary_10_1021_acsestwater_2c00598
crossref_primary_10_1021_acs_est_0c06254
crossref_primary_10_1016_j_jhazmat_2021_126313
crossref_primary_10_2166_wrd_2021_018
crossref_primary_10_1021_acsami_3c05016
crossref_primary_10_1021_acs_est_4c09855
crossref_primary_10_1016_j_ijhydene_2025_01_221
crossref_primary_10_1016_j_gee_2021_05_002
crossref_primary_10_1016_j_watres_2022_118722
crossref_primary_10_1016_j_chemosphere_2024_141219
crossref_primary_10_1016_j_dwt_2024_100845
crossref_primary_10_1021_acs_est_1c02825
crossref_primary_10_1021_acs_est_8b02743
crossref_primary_10_1016_j_watres_2023_120240
crossref_primary_10_1016_j_chemosphere_2020_126973
crossref_primary_10_1016_j_seppur_2021_118395
crossref_primary_10_1007_s11164_019_04001_0
crossref_primary_10_1021_acs_est_2c05735
crossref_primary_10_1016_j_seppur_2022_122197
crossref_primary_10_1021_acs_est_2c00729
crossref_primary_10_33961_jecst_2022_01032
crossref_primary_10_1016_j_psep_2022_11_075
crossref_primary_10_1016_j_watres_2023_119702
crossref_primary_10_1021_acsestengg_0c00186
crossref_primary_10_1039_D0EE02173C
crossref_primary_10_1016_j_cej_2019_05_165
crossref_primary_10_1021_acscatal_7b04340
crossref_primary_10_1016_j_chemosphere_2024_143542
crossref_primary_10_1016_j_jclepro_2020_124412
crossref_primary_10_1016_j_apcatb_2018_06_023
crossref_primary_10_1016_j_watres_2019_05_104
crossref_primary_10_1021_acsestengg_1c00011
crossref_primary_10_1021_acs_jpcc_1c05671
crossref_primary_10_1016_j_chemosphere_2019_03_135
crossref_primary_10_1016_j_cej_2021_131194
crossref_primary_10_2139_ssrn_4165656
crossref_primary_10_1016_j_cej_2022_135167
crossref_primary_10_1016_j_jelechem_2018_11_047
crossref_primary_10_1016_j_jhazmat_2024_136948
crossref_primary_10_1088_1361_6463_ac1374
crossref_primary_10_1039_C8EW00698A
crossref_primary_10_1016_j_cej_2024_151719
crossref_primary_10_1016_j_jclepro_2023_137289
crossref_primary_10_1039_C9EW01106D
crossref_primary_10_1016_j_seppur_2021_119229
crossref_primary_10_1021_acs_jpcc_3c01841
crossref_primary_10_1021_acs_est_9b00959
crossref_primary_10_1016_j_jece_2024_112549
crossref_primary_10_1016_j_scitotenv_2024_174063
crossref_primary_10_1016_j_apsusc_2025_162891
crossref_primary_10_1016_j_ceramint_2023_05_201
crossref_primary_10_1016_j_jece_2020_104489
crossref_primary_10_1016_j_seppur_2024_127229
crossref_primary_10_1007_s11783_020_1264_7
crossref_primary_10_1039_C8EW00209F
crossref_primary_10_1016_j_seppur_2023_123369
crossref_primary_10_1021_acsestengg_3c00128
Cites_doi 10.1039/C3RA46699J
10.1016/j.watres.2012.08.038
10.1021/ic00084a014
10.1021/acs.est.5b02414
10.1016/0013-4686(87)85001-6
10.1021/acs.est.5b01675
10.1016/j.watres.2012.10.001
10.1021/ie303021v
10.1039/f19736901597
10.1063/1.555805
10.1021/jp004630z
10.1021/es5025405
10.1021/ja407115p
10.1016/j.electacta.2008.09.040
10.1021/j100497a003
10.1016/S0013-4686(02)00318-3
10.1016/j.watres.2007.02.054
10.1021/es202534w
10.1021/ja01198a074
10.1021/es505232f
10.1016/j.jenvman.2007.10.010
10.1021/cm4041715
10.1002/anie.201406112
10.1016/j.watres.2010.06.029
10.1088/0031-8949/16/5-6/027
10.1021/es800298p
10.1021/jp810331w
10.1021/cs3003098
10.1021/es1010225
10.1021/es404688z
10.1002/ange.201507626
10.1021/es040504n
10.1021/jp012195i
10.1021/es4036094
10.1039/C5RA01013F
10.1021/jp0668403
10.1021/acs.est.5b02705
10.1021/acscatal.5b01281
10.1021/acs.chemmater.5b00376
10.1149/1.2114230
10.1016/0047-2670(80)85102-1
10.2166/wst.2010.130
10.1002/bbpc.19850890309
10.1016/0022-0728(87)80119-5
10.1149/1.2129274
10.1023/A:1018414005000
10.1021/j100647a006
10.1021/es4034414
10.1149/1.1393238
10.1021/jp710291c
10.1021/es404137u
10.1021/acs.chemrev.5b00361
10.5194/acp-6-2423-2006
10.1016/0013-4686(84)85004-5
10.1021/acs.est.5b01254
10.1039/B917459A
10.1016/j.watres.2016.01.040
ContentType Journal Article
Copyright Copyright © 2016 American Chemical Society
Copyright American Chemical Society Aug 16, 2016
Copyright_xml – notice: Copyright © 2016 American Chemical Society
– notice: Copyright American Chemical Society Aug 16, 2016
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QO
7ST
7T7
7U7
8FD
C1K
FR3
P64
SOI
7X8
7S9
L.6
DOI 10.1021/acs.est.6b00688
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Biotechnology Research Abstracts
Environment Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
Toxicology Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
Biotechnology and BioEngineering Abstracts
Environment Abstracts
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Biotechnology Research Abstracts
Technology Research Database
Toxicology Abstracts
Engineering Research Database
Industrial and Applied Microbiology Abstracts (Microbiology A)
Environment Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList Biotechnology Research Abstracts
MEDLINE - Academic
AGRICOLA
Environment Abstracts

MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Environmental Sciences
EISSN 1520-5851
EndPage 8787
ExternalDocumentID 4158220191
27402194
10_1021_acs_est_6b00688
c619224826
Genre Research Support, Non-U.S. Gov't
Journal Article
Feature
GroupedDBID -
.K2
1AW
3R3
4R4
53G
55A
5GY
5VS
63O
7~N
85S
AABXI
ABFLS
ABMVS
ABOGM
ABPPZ
ABPTK
ABUCX
ABUFD
ACGFS
ACGOD
ACIWK
ACJ
ACPRK
ACS
AEESW
AENEX
AFEFF
AFRAH
ALMA_UNASSIGNED_HOLDINGS
AQSVZ
BAANH
BKOMP
CS3
DZ
EBS
ED
ED~
EJD
F5P
GNL
IH9
JG
JG~
K2
LG6
MS
PQEST
PQQKQ
ROL
RXW
TN5
TWZ
U5U
UHB
UI2
UKR
UPT
VF5
VG9
VQA
W1F
WH7
X
XFK
XZL
YZZ
---
-DZ
-~X
..I
.DC
4.4
6TJ
AAHBH
AAYXX
ABBLG
ABJNI
ABLBI
ABQRX
ADHLV
ADUKH
AGXLV
AHGAQ
CITATION
CUPRZ
GGK
MS~
MW2
XSW
ZCA
CGR
CUY
CVF
ECM
EIF
NPM
7QO
7ST
7T7
7U7
8FD
C1K
FR3
P64
SOI
7X8
7S9
L.6
ID FETCH-LOGICAL-a530t-e7f9e8bfd44cf1c67241383673736a54aada692ac45ba2ae1148de59c77e6c483
IEDL.DBID ACS
ISSN 0013-936X
1520-5851
IngestDate Fri Jul 11 08:50:52 EDT 2025
Thu Jul 10 22:46:28 EDT 2025
Fri Jul 11 01:17:29 EDT 2025
Mon Jun 30 06:59:35 EDT 2025
Thu Apr 03 07:01:28 EDT 2025
Thu Apr 24 23:07:40 EDT 2025
Tue Jul 01 04:29:09 EDT 2025
Thu Aug 27 13:42:18 EDT 2020
IsPeerReviewed true
IsScholarly true
Issue 16
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a530t-e7f9e8bfd44cf1c67241383673736a54aada692ac45ba2ae1148de59c77e6c483
Notes SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-1
ObjectType-Feature-2
content type line 23
PMID 27402194
PQID 1813896530
PQPubID 45412
PageCount 8
ParticipantIDs proquest_miscellaneous_2000196468
proquest_miscellaneous_1819143025
proquest_miscellaneous_1812223758
proquest_journals_1813896530
pubmed_primary_27402194
crossref_primary_10_1021_acs_est_6b00688
crossref_citationtrail_10_1021_acs_est_6b00688
acs_journals_10_1021_acs_est_6b00688
ProviderPackageCode JG~
55A
AABXI
GNL
VF5
7~N
ACJ
VG9
W1F
ACS
AEESW
AFEFF
.K2
ABMVS
ABUCX
IH9
BAANH
AQSVZ
ED~
UI2
CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2016-08-16
PublicationDateYYYYMMDD 2016-08-16
PublicationDate_xml – month: 08
  year: 2016
  text: 2016-08-16
  day: 16
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Easton
PublicationTitle Environmental science & technology
PublicationTitleAlternate Environ. Sci. Technol
PublicationYear 2016
Publisher American Chemical Society
Publisher_xml – name: American Chemical Society
References ref9/cit9
ref45/cit45
ref3/cit3
ref27/cit27
ref56/cit56
ref16/cit16
ref52/cit52
Bard A. J. (ref54/cit54) 2001
ref23/cit23
ref8/cit8
ref31/cit31
ref59/cit59
ref2/cit2
ref34/cit34
ref37/cit37
ref20/cit20
ref48/cit48
ref60/cit60
ref17/cit17
ref10/cit10
ref35/cit35
ref53/cit53
ref19/cit19
ref21/cit21
ref42/cit42
ref46/cit46
ref49/cit49
ref13/cit13
ref24/cit24
ref38/cit38
ref50/cit50
ref6/cit6
ref36/cit36
ref18/cit18
ref11/cit11
ref25/cit25
ref29/cit29
ref32/cit32
ref39/cit39
ref14/cit14
ref57/cit57
ref5/cit5
ref51/cit51
ref43/cit43
ref28/cit28
ref40/cit40
ref26/cit26
ref55/cit55
ref12/cit12
ref15/cit15
ref41/cit41
ref58/cit58
ref22/cit22
ref33/cit33
ref4/cit4
ref30/cit30
ref47/cit47
ref1/cit1
ref44/cit44
ref7/cit7
28353337 - Environ Sci Technol. 2017 Apr 18;51(8):4733
References_xml – ident: ref6/cit6
  doi: 10.1039/C3RA46699J
– ident: ref11/cit11
  doi: 10.1016/j.watres.2012.08.038
– ident: ref26/cit26
  doi: 10.1021/ic00084a014
– ident: ref4/cit4
  doi: 10.1021/acs.est.5b02414
– ident: ref46/cit46
  doi: 10.1016/0013-4686(87)85001-6
– ident: ref13/cit13
  doi: 10.1021/acs.est.5b01675
– ident: ref8/cit8
  doi: 10.1016/j.watres.2012.10.001
– ident: ref12/cit12
  doi: 10.1021/ie303021v
– ident: ref29/cit29
  doi: 10.1039/f19736901597
– ident: ref28/cit28
  doi: 10.1063/1.555805
– ident: ref35/cit35
  doi: 10.1021/jp004630z
– ident: ref20/cit20
  doi: 10.1021/es5025405
– ident: ref23/cit23
– ident: ref22/cit22
  doi: 10.1021/ja407115p
– ident: ref51/cit51
  doi: 10.1016/j.electacta.2008.09.040
– ident: ref36/cit36
  doi: 10.1021/j100497a003
– ident: ref56/cit56
  doi: 10.1016/S0013-4686(02)00318-3
– ident: ref17/cit17
  doi: 10.1016/j.watres.2007.02.054
– ident: ref50/cit50
  doi: 10.1021/es202534w
– ident: ref33/cit33
  doi: 10.1021/ja01198a074
– ident: ref42/cit42
  doi: 10.1021/es505232f
– ident: ref3/cit3
  doi: 10.1016/j.jenvman.2007.10.010
– ident: ref44/cit44
  doi: 10.1021/cm4041715
– ident: ref48/cit48
  doi: 10.1002/anie.201406112
– volume-title: Electrochemical Methods: Fundamentals and Applications
  year: 2001
  ident: ref54/cit54
– ident: ref53/cit53
  doi: 10.1016/j.watres.2010.06.029
– ident: ref41/cit41
  doi: 10.1088/0031-8949/16/5-6/027
– ident: ref15/cit15
  doi: 10.1021/es800298p
– ident: ref19/cit19
  doi: 10.1021/jp810331w
– ident: ref43/cit43
  doi: 10.1021/cs3003098
– ident: ref31/cit31
  doi: 10.1021/es1010225
– ident: ref10/cit10
  doi: 10.1021/es404688z
– ident: ref38/cit38
  doi: 10.1002/ange.201507626
– ident: ref1/cit1
  doi: 10.1021/es040504n
– ident: ref24/cit24
– ident: ref58/cit58
  doi: 10.1021/jp012195i
– ident: ref55/cit55
  doi: 10.1021/es4036094
– ident: ref57/cit57
  doi: 10.1039/C5RA01013F
– ident: ref40/cit40
  doi: 10.1021/jp0668403
– ident: ref16/cit16
  doi: 10.1021/acs.est.5b02705
– ident: ref39/cit39
  doi: 10.1021/acscatal.5b01281
– ident: ref21/cit21
  doi: 10.1021/acs.chemmater.5b00376
– ident: ref52/cit52
  doi: 10.1149/1.2114230
– ident: ref32/cit32
  doi: 10.1016/0047-2670(80)85102-1
– ident: ref60/cit60
  doi: 10.2166/wst.2010.130
– ident: ref30/cit30
  doi: 10.1002/bbpc.19850890309
– ident: ref45/cit45
  doi: 10.1016/0022-0728(87)80119-5
– ident: ref49/cit49
  doi: 10.1149/1.2129274
– ident: ref37/cit37
  doi: 10.1023/A:1018414005000
– ident: ref34/cit34
  doi: 10.1021/j100647a006
– ident: ref9/cit9
  doi: 10.1021/es4034414
– ident: ref18/cit18
  doi: 10.1149/1.1393238
– ident: ref27/cit27
  doi: 10.1021/jp710291c
– ident: ref7/cit7
  doi: 10.1021/es404137u
– ident: ref2/cit2
  doi: 10.1021/acs.chemrev.5b00361
– ident: ref25/cit25
  doi: 10.5194/acp-6-2423-2006
– ident: ref14/cit14
  doi: 10.1016/0013-4686(84)85004-5
– ident: ref5/cit5
  doi: 10.1021/acs.est.5b01254
– ident: ref47/cit47
  doi: 10.1039/B917459A
– ident: ref59/cit59
  doi: 10.1016/j.watres.2016.01.040
– reference: 28353337 - Environ Sci Technol. 2017 Apr 18;51(8):4733
SSID ssj0002308
Score 2.544646
Snippet Multilayer heterojunction SbSn/CoTi/Ir anodes, which consist of Ir0.7Ta0.3O2 bottom layers coated onto a titanium base, Co-TiO2 interlayers, and overcoated...
Multilayer heterojunction SbSn/CoTi/Ir anodes, which consist of Ir^sub 0.7^Ta^sub 0.3^O^sub 2^ bottom layers coated onto a titanium base, Co-TiO^sub 2^...
Multilayer heterojunction SbSn/CoTi/Ir anodes, which consist of Ir sub( 0.7)Ta sub( 0.3)O sub( 2) bottom layers coated onto a titanium base, Co-TiO sub( 2)...
Multilayer heterojunction SbSn/CoTi/Ir anodes, which consist of Ir₀.₇Ta₀.₃O₂ bottom layers coated onto a titanium base, Co-TiO₂ interlayers, and overcoated...
SourceID proquest
pubmed
crossref
acs
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 8780
SubjectTerms active sites
ammonium compounds
anodes
chemical oxygen demand
Chlorine
electrochemistry
Electrodes
Electrolysis
Electron transfer
energy
Energy consumption
Experiments
Free radicals
humans
islands
Oxidation-Reduction
pyrolysis
reaction kinetics
reaction mechanisms
Saline water
semiconductors
simulation models
titanium
Titanium - chemistry
Waste Water - chemistry
wastewater
wastewater treatment
Water treatment
Title Multilayer Heterojunction Anodes for Saline Wastewater Treatment: Design Strategies and Reactive Species Generation Mechanisms
URI http://dx.doi.org/10.1021/acs.est.6b00688
https://www.ncbi.nlm.nih.gov/pubmed/27402194
https://www.proquest.com/docview/1813896530
https://www.proquest.com/docview/1812223758
https://www.proquest.com/docview/1819143025
https://www.proquest.com/docview/2000196468
Volume 50
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwELagXOBAoVDYtiAj9cAlYeM4jtPbqrRaIZUDbcXeovEjElCyCO9eOPDbmXEeLVQLXJ2xZc2M7c-Z8TeMHU6bzCojXAJq2iTS6SKBwpSJVb4pDCgtY_m2s_dqfinfLYrFNVn0nxF8kb0BG1LcIFNFDqL1XXZPKF0STf7s-HzcdBFJ66FYQZWrxcjic2sAOoZs-P0Y2oAt4xlzut1lZ4VITUipJV_S9cqk9sdt4sZ_T_8Re9gjTT7rXOMxu-PbHfbgBv_gDts9uX7mhqL9Og9P2M_4LvcKEI_zOSXMLD_j-Uc25LN26XzgiHX5ORBG5R8h0B84lOIXQ9r6EX8bU0P4wH6LXaB1_IOHuMHyWPceGzva6zjymadXyJ_C1_CUXZ6eXBzPk75SAxo2n64SXzaV16ZxUloyfknROp1TDZxcQSEBHKhKgJVofwGeLmHOF5UtS6-s1Pku22qXrX_OeGbzXBaNnxojZI4yzhU4qnGNUYBXgQk7RJXW_UoLdQyii6ymRtRz3et5wtLBvrXt2c6p6MbV5g6vxw7fOqKPzaIHg8PcmIemkK9CdUzYq_EzrlUKwEDrl-soQ3AMr2h_lakQwyIU3SwjOlojqXCcZ53DjnMWpcQpV3Lv__S0z-4jBFT0lzxTB2xr9X3tXyDMWpmXcYH9AqghJWk
linkProvider American Chemical Society
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LbxMxEB6VcgAOFAqFtAWM1AOXTffh9Xq5RaVVgKYSJBW5rfxaCSibik0uHPrbmfE-WkBBcHXGo8l4bH_esb8BOAjLyAgd20CJsAy4lWmgUp0FRrgy1UpI7su3Tc7E-Jy_m6fzDQi7tzBoRI2aap_Ev2YXiA6pDdfJoaA4kfIW3EYoEhNb_uho2q-9CKhlV7MgT8S8J_P5QwHtRqb-dTdaAzH9VnOyBR96I_0Nk6_D1VIPzY_f-Bv_5188gPst7mSjJlAewoartuHeDTbCbdg5vn70hqLtrK8fwZV_pXuhEJ2zMV2fWXzB3ZBGlI2qhXU1Q-TLpooQK_ukavoeh1Js1l1if83e-IsirOPCxS6qsuyjU365ZdNLZ6ixIcH2mieO3iR_rr_Vj-H85Hh2NA7aug04zEm4DFxW5k7q0nJuKBQyyt3JhCriJEKlXCmrRB4rwzEaYuXoSGZdmpssc8JwmezAZrWo3FNgkUkSnpYu1DrmCcpYm6JWbUstFB4MBnCALi3aeVcXPqUeRwU1op-L1s8DGHbDXJiW-5xKcFys7_Cq73DZ0H6sF93v4uaGHZISwALdMYCX_c84cykdoyq3WHkZAmd4YPurTI6IFoHpepm4ITniAvU8aeK2tznOOJqc891_89MLuDOeTU6L07dn7_fgLoJDQd_PI7EPm8vvK_cMAdhSP_dz7iedbi3K
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LbxMxEB5BkRAceBQKgQJG6oHLptldr9fLLWobhUcrRBqR28qvlYCyiXBy4cBvZ8b7oICC4OqMR5PxjP15xzMDcDCqYiN0YiMlRlXErcwilek8MsJVmVZC8tC-7fRMTOf89SJbtElhlAuDQnjk5EMQn7x6Zau2wkB8SOO4Vw4F2YqUV-EaBe2oYv74aNbvvwiqZde3oEjFoi_o8wcDOpGM__VE2gIzw3EzuQ3zXtDwyuTzcLPWQ_PttxqO__tP7sCtFn-ycWMwd-GKq3fh5qWqhLuwd_Iz-Q1JW-_39-B7yNa9UIjS2ZSe0Sw_4alIK8vG9dI6zxABs5ki5Mo-KE_f5ZCKnXeP2V-y4_BghHU1cXGKqi1771TYdtls5QwNNsWwA-dTR7nJH_0Xfx_mk5Pzo2nU9m_A5U5H68jlVeGkriznhkwipxieTKkzTipUxpWyShSJMhytIlGOrmbWZYXJcycMl-ke7NTL2j0EFps05VnlRlonPEUaazPkqm2lhcILwgAOUKVl63--DKH1JC5pEPVctnoewLBb6tK0NdCpFcfF9gkv-gmrpvzHdtL9znYuySEpECxQHQN43v-MHkxhGVW75SbQEEjDi9tfaQpEtghQt9MkTbEjLpDPg8Z2e5mTnKPIBX_0b3p6BtffHU_Kt6_O3jyGG4gRBX1Gj8U-7Ky_btwTxGFr_TS43Q8wyDBN
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multilayer+Heterojunction+Anodes+for+Saline+Wastewater+Treatment%3A+Design+Strategies+and+Reactive+Species+Generation+Mechanisms&rft.jtitle=Environmental+science+%26+technology&rft.au=Yang%2C+Yang&rft.au=Shin%2C+Jieun&rft.au=Jasper%2C+Justin+T&rft.au=Hoffmann%2C+Michael+R&rft.date=2016-08-16&rft.pub=American+Chemical+Society&rft.issn=0013-936X&rft.volume=50&rft.issue=16&rft.spage=8780&rft_id=info:doi/10.1021%2Facs.est.6b00688&rft.externalDBID=NO_FULL_TEXT&rft.externalDocID=4158220191
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0013-936X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0013-936X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0013-936X&client=summon