Isotope fractionation between dissolved and suspended particulate Fe in the oxic and anoxic water column of the Baltic Sea

Fe isotope ratios and concentrations of dissolved Fe (Fedis, < 0.45 μm) and of suspended particulate Fe (FeSPM) were analyzed from a depth profile through the anoxic Eastern Gotland Basin water column, Baltic Sea. Results show a sharp gradient in δ56Fedis across the ferruginous layer with δ56Fedi...

Full description

Saved in:
Bibliographic Details
Published inBiogeosciences Vol. 10; no. 1; pp. 233 - 245
Main Authors Staubwasser, M, Schoenberg, R, von Blanckenburg, F, Krüger, S, Pohl, C
Format Journal Article
LanguageEnglish
Published Katlenburg-Lindau Copernicus GmbH 15.01.2013
Copernicus Publications
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Fe isotope ratios and concentrations of dissolved Fe (Fedis, < 0.45 μm) and of suspended particulate Fe (FeSPM) were analyzed from a depth profile through the anoxic Eastern Gotland Basin water column, Baltic Sea. Results show a sharp gradient in δ56Fedis across the ferruginous layer with δ56Fedis = −0.4‰ in the euxinic deep basin and δ56Fedis = +0.3‰ in the oxic upper water column. The isotopic gradient overlaps with a strong concentration gradient of Fedis, a concentration maximum in FeSPM and lower δ56FeSPM values than δ56Fedis. These features indicate preferential loss of light Fe isotopes from solution to suspended iron-oxyhydroxides (FeIOH) during typical oxidative precipitation across the redox interface. The sign of the overall fractionation, Δ56FeIOH-Fe(II)(aq) < 0‰, is in contrast to similar, mostly non-marine redox environments, where Δ56FeIOH-Fe(II)(aq) > 0‰. The difference appears to be the result of isotope exchange dominated by reaction kinetics in the marine water column, rather than equilibrium fractionation generally inferred for oxidative Fe precipitation elsewhere. High residual δ56Fedis immediately above the oxic–ferruginous interface and throughout the oxic water column suggests that any potential dissolved Fe export from marine reducing waters into the oxic open water column is enriched in the heavy isotopes. In the deep, mildly euxinic water column above the level of Fe sulfide saturation, a decreasing δ56FeSPM trend with depth and a generally low δ56Fedis are comparable to trends generally observed in marine anoxic sediment profiles where microbial reductive Fe dissolution occurs. The isotope composition of the redox-cycled Fe inventory in anoxic marine basins mainly reflects the balance between external fluxes, driving the composition towards crustal δ56Fe values, and intensity of internal recycling, driving δ56Fe towards negative values.
AbstractList Fe isotope ratios and concentrations of dissolved Fe (Fedis, < 0.45 μm) and of suspended particulate Fe (FeSPM) were analyzed from a depth profile through the anoxic Eastern Gotland Basin water column, Baltic Sea. Results show a sharp gradient in δ56Fedis across the ferruginous layer with δ56Fedis = −0.4‰ in the euxinic deep basin and δ56Fedis = +0.3‰ in the oxic upper water column. The isotopic gradient overlaps with a strong concentration gradient of Fedis, a concentration maximum in FeSPM and lower δ56FeSPM values than δ56Fedis. These features indicate preferential loss of light Fe isotopes from solution to suspended iron-oxyhydroxides (FeIOH) during typical oxidative precipitation across the redox interface. The sign of the overall fractionation, Δ56FeIOH-Fe(II)(aq) < 0‰, is in contrast to similar, mostly non-marine redox environments, where Δ56FeIOH-Fe(II)(aq) > 0‰. The difference appears to be the result of isotope exchange dominated by reaction kinetics in the marine water column, rather than equilibrium fractionation generally inferred for oxidative Fe precipitation elsewhere. High residual δ56Fedis immediately above the oxic–ferruginous interface and throughout the oxic water column suggests that any potential dissolved Fe export from marine reducing waters into the oxic open water column is enriched in the heavy isotopes. In the deep, mildly euxinic water column above the level of Fe sulfide saturation, a decreasing δ56FeSPM trend with depth and a generally low δ56Fedis are comparable to trends generally observed in marine anoxic sediment profiles where microbial reductive Fe dissolution occurs. The isotope composition of the redox-cycled Fe inventory in anoxic marine basins mainly reflects the balance between external fluxes, driving the composition towards crustal δ56Fe values, and intensity of internal recycling, driving δ56Fe towards negative values.
Fe isotope ratios and concentrations of dissolved Fe (Fe dis , < 0.45 μm) and of suspended particulate Fe (Fe SPM ) were analyzed from a depth profile through the anoxic Eastern Gotland Basin water column, Baltic Sea. Results show a sharp gradient in &delta; 56 Fe dis across the ferruginous layer with &delta; 56 Fe dis = &minus;0.4&permil; in the euxinic deep basin and &delta; 56 Fe dis = &plus;0.3&permil; in the oxic upper water column. The isotopic gradient overlaps with a strong concentration gradient of Fe dis , a concentration maximum in Fe SPM and lower &delta; 56 Fe SPM values than &delta; 56 Fe dis . These features indicate preferential loss of light Fe isotopes from solution to suspended iron-oxyhydroxides (Fe IOH ) during typical oxidative precipitation across the redox interface. The sign of the overall fractionation, &Delta; 56 Fe IOH -Fe(II)(aq) < 0&permil;, is in contrast to similar, mostly non-marine redox environments, where &Delta; 56 Fe IOH -Fe(II)(aq) > 0&permil;. The difference appears to be the result of isotope exchange dominated by reaction kinetics in the marine water column, rather than equilibrium fractionation generally inferred for oxidative Fe precipitation elsewhere. High residual &delta; 56 Fe dis immediately above the oxic–ferruginous interface and throughout the oxic water column suggests that any potential dissolved Fe export from marine reducing waters into the oxic open water column is enriched in the heavy isotopes. In the deep, mildly euxinic water column above the level of Fe sulfide saturation, a decreasing &delta; 56 Fe SPM trend with depth and a generally low &delta; 56 Fe dis are comparable to trends generally observed in marine anoxic sediment profiles where microbial reductive Fe dissolution occurs. The isotope composition of the redox-cycled Fe inventory in anoxic marine basins mainly reflects the balance between external fluxes, driving the composition towards crustal &delta; 56 Fe values, and intensity of internal recycling, driving &delta; 56 Fe towards negative values.
Fe isotope ratios and concentrations of dissolved Fe (Fedis , < 0.45 μm) and of suspended particulate Fe (FeSPM ) were analyzed from a depth profile through the anoxic Eastern Gotland Basin water column, Baltic Sea. Results show a sharp gradient in δ56 Fedis across the ferruginous layer with δ56 Fedis = -0.4[per thousand] in the euxinic deep basin and δ56 Fedis = +0.3[per thousand] in the oxic upper water column. The isotopic gradient overlaps with a strong concentration gradient of Fedis , a concentration maximum in FeSPM and lower δ56 FeSPM values than δ56 Fedis . These features indicate preferential loss of light Fe isotopes from solution to suspended iron-oxyhydroxides (FeIOH ) during typical oxidative precipitation across the redox interface. The sign of the overall fractionation, δ56 FeIOH -Fe(II)(aq) < 0[per thousand], is in contrast to similar, mostly non-marine redox environments, where δ56 FeIOH -Fe(II)(aq) > 0[per thousand]. The difference appears to be the result of isotope exchange dominated by reaction kinetics in the marine water column, rather than equilibrium fractionation generally inferred for oxidative Fe precipitation elsewhere. High residual δ56 Fedis immediately above the oxic-ferruginous interface and throughout the oxic water column suggests that any potential dissolved Fe export from marine reducing waters into the oxic open water column is enriched in the heavy isotopes. In the deep, mildly euxinic water column above the level of Fe sulfide saturation, a decreasing δ56 FeSPM trend with depth and a generally low δ56 Fedis are comparable to trends generally observed in marine anoxic sediment profiles where microbial reductive Fe dissolution occurs. The isotope composition of the redox-cycled Fe inventory in anoxic marine basins mainly reflects the balance between external fluxes, driving the composition towards crustal δ56 Fe values, and intensity of internal recycling, driving δ56 Fe towards negative values.
Fe isotope ratios and concentrations of dissolved Fe (Fe.sub.dis, < 0.45 μm) and of suspended particulate Fe (Fe.sub.SPM) were analyzed from a depth profile through the anoxic Eastern Gotland Basin water column, Baltic Sea. Results show a sharp gradient in δ.sup.56 Fe.sub.dis across the ferruginous layer with δ.sup.56 Fe.sub.dis = −0.4‰ in the euxinic deep basin and δ.sup.56 Fe.sub.dis = +0.3‰ in the oxic upper water column. The isotopic gradient overlaps with a strong concentration gradient of Fe.sub.dis, a concentration maximum in Fe.sub.SPM and lower δ.sup.56 Fe.sub.SPM values than δ.sup.56 Fe.sub.dis . These features indicate preferential loss of light Fe isotopes from solution to suspended iron-oxyhydroxides (Fe.sub.IOH) during typical oxidative precipitation across the redox interface. The sign of the overall fractionation, Δ.sup.56 Fe.sub.IOH -Fe(II)(aq) 0‰. The difference appears to be the result of isotope exchange dominated by reaction kinetics in the marine water column, rather than equilibrium fractionation generally inferred for oxidative Fe precipitation elsewhere. High residual δ.sup.56 Fe.sub.dis immediately above the oxic-ferruginous interface and throughout the oxic water column suggests that any potential dissolved Fe export from marine reducing waters into the oxic open water column is enriched in the heavy isotopes. In the deep, mildly euxinic water column above the level of Fe sulfide saturation, a decreasing δ.sup.56 Fe.sub.SPM trend with depth and a generally low δ.sup.56 Fe.sub.dis are comparable to trends generally observed in marine anoxic sediment profiles where microbial reductive Fe dissolution occurs. The isotope composition of the redox-cycled Fe inventory in anoxic marine basins mainly reflects the balance between external fluxes, driving the composition towards crustal δ.sup.56 Fe values, and intensity of internal recycling, driving δ.sup.56 Fe towards negative values.
Fe isotope ratios and concentrations of dissolved Fe (Fe sub(dis), < 0.45 mu m) and of suspended particulate Fe (Fe sub(SPM)) were analyzed from a depth profile through the anoxic Eastern Gotland Basin water column, Baltic Sea. Results show a sharp gradient in delta super(56)Fe sub(dis) across the ferruginous layer with delta super(56)Fe sub(dis) = -0.4ppt in the euxinic deep basin and delta super(56)Fe sub(dis) = 0.3ppt in the oxic upper water column. The isotopic gradient overlaps with a strong concentration gradient of Fe sub(dis), a concentration maximum in Fe sub(SPM) and lower delta super(56)Fe sub(SPM) values than delta super(56)Fe sub(dis). These features indicate preferential loss of light Fe isotopes from solution to suspended iron-oxyhydroxides (Fe sub(IOH)) during typical oxidative precipitation across the redox interface. The sign of the overall fractionation, Delta super(56)Fe sub(IOH)-Fe (II)(aq) < 0ppt, is in contrast to similar, mostly non-marine redox environments, where Delta super(56)Fe sub(IOH)-Fe (II)(aq) > 0ppt. The difference appears to be the result of isotope exchange dominated by reaction kinetics in the marine water column, rather than equilibrium fractionation generally inferred for oxidative Fe precipitation elsewhere. High residual delta super(56)Fe sub(dis) immediately above the oxic-ferruginous interface and throughout the oxic water column suggests that any potential dissolved Fe export from marine reducing waters into the oxic open water column is enriched in the heavy isotopes. In the deep, mildly euxinic water column above the level of Fe sulfide saturation, a decreasing delta super(56)Fe sub(SPM) trend with depth and a generally low delta super(56)Fe sub(dis) are comparable to trends generally observed in marine anoxic sediment profiles where microbial reductive Fe dissolution occurs. The isotope composition of the redox-cycled Fe inventory in anoxic marine basins mainly reflects the balance between external fluxes, driving the composition towards crustal delta super(56)Fe values, and intensity of internal recycling, driving delta super(56)Fe towards negative values.
Audience Academic
Author von Blanckenburg, F
Krüger, S
Pohl, C
Staubwasser, M
Schoenberg, R
Author_xml – sequence: 1
  fullname: Staubwasser, M
– sequence: 2
  fullname: Schoenberg, R
– sequence: 3
  fullname: von Blanckenburg, F
– sequence: 4
  fullname: Krüger, S
– sequence: 5
  fullname: Pohl, C
BookMark eNptktFv1SAUxhszE7fpq88kvuhDJxTawuNcnN5kiYnTZ3JKD5WbXqiFbtO_XtoZdWY5CRwOv_MR4DspjnzwWBQvGT2rmRJvu6FktKw4LyvK-JPimLVVUwom1dE_-bPiJMY9pVxSWR8XP3cxpDAhsTOY5IKHdSAdpltET3oXYxhvsCfgexKXOKHv82qCOTmzjJCQXCJxnqRvSMKdMxsIfktv8_ZMTBiXgyfBbsw7GHMnuUZ4Xjy1MEZ88Xs-Lb5evv9y8bG8-vRhd3F-VULNaSolWoBacCN5L5SqbI0gWWu7upGdMT22UDEmbcdUJYBTVTeGdqoRYLlQiPy02N3r9gH2eprdAeYfOoDTWyHMg95uM6IW1vaK19A0tBICrVJYUWHAdAg5bNZ6fa81zeH7gjHpg4sGxxE8hiVqxlndsIa1IqOv_kP3YZl9vqlmlayZpIq2f6kB8vnO25DyR6yi-lxIJiompMrU2SNUjh4PzmQbWJfrDxrePGjITMK7NMASo95df35U3MwhxhntnzdiVK_O0t2wptlZenUW_wVSm8Gt
CitedBy_id crossref_primary_10_1016_j_chemgeo_2014_09_009
crossref_primary_10_1016_j_gca_2021_07_036
crossref_primary_10_1007_s10933_024_00316_0
crossref_primary_10_1016_j_gca_2019_04_007
crossref_primary_10_1016_j_gca_2017_09_050
crossref_primary_10_1016_j_gca_2015_05_024
crossref_primary_10_1016_j_gca_2015_05_023
crossref_primary_10_1073_pnas_2016078118
crossref_primary_10_1016_j_gca_2013_11_041
crossref_primary_10_1016_j_gca_2015_04_031
crossref_primary_10_1016_j_gca_2018_06_042
crossref_primary_10_1007_s10533_017_0309_x
crossref_primary_10_1016_j_chemgeo_2017_10_028
crossref_primary_10_1016_j_chemgeo_2021_120381
crossref_primary_10_1002_2015GB005357
crossref_primary_10_1111_gbi_12311
crossref_primary_10_1038_s41598_023_37254_2
crossref_primary_10_1016_j_marchem_2017_07_003
crossref_primary_10_1016_j_chemgeo_2016_11_032
crossref_primary_10_1002_2014GB004928
crossref_primary_10_1016_j_gca_2013_09_011
crossref_primary_10_1146_annurev_marine_032822_103431
crossref_primary_10_5194_bg_16_1305_2019
crossref_primary_10_1016_j_gca_2015_05_034
crossref_primary_10_1021_es405688v
crossref_primary_10_1016_j_dsr2_2014_12_004
crossref_primary_10_1016_j_epsl_2018_02_006
crossref_primary_10_1016_j_gca_2014_03_004
crossref_primary_10_1016_j_marchem_2022_104181
crossref_primary_10_1016_j_marchem_2016_04_007
crossref_primary_10_1016_j_chemgeo_2015_12_003
crossref_primary_10_1016_j_chemosphere_2015_04_067
crossref_primary_10_1029_2018GB005942
crossref_primary_10_1029_2020GB006814
Cites_doi 10.1016/j.gca.2006.01.007
10.1016/j.chemgeo.2008.01.009
10.2475/ajs.304.3.203
10.1130/G24670A.1
10.1130/0091-7613(2001)029<0699:DOSAII>2.0.CO;2
10.1016/j.marchem.2010.01.001
10.1016/j.gca.2012.06.003
10.1111/j.1472-4669.2009.00214.x
10.1016/S0016-7037(03)00266-7
10.1016/j.gca.2008.05.032
10.1016/S0198-0149(10)80009-3
10.1016/j.gca.2008.05.001
10.1016/S1385-1101(96)00003-2
10.1130/G22647.1
10.1016/j.gca.2010.09.017
10.1016/S0025-3227(00)00122-5
10.1021/es980206o
10.1016/j.marchem.2006.10.006
10.1016/S0016-7037(02)00902-X
10.2138/gsrmg.55.1.319
10.1016/j.epsl.2005.05.022
10.1016/j.chemgeo.2004.09.003
10.1029/2010GB003820
10.1016/j.chemgeo.2007.12.001
10.1016/j.jmarsys.2006.02.003
10.1021/es0109242
10.1016/j.gca.2009.04.026
10.1016/0304-4203(90)90070-S
10.1016/j.gca.2009.01.014
10.1029/2008GL035841
10.1002/9780470283134.ch10
10.1016/j.epsl.2004.06.001
10.5194/bg-7-2489-2010
10.1016/0304-4203(88)90102-8
10.1016/j.gca.2009.06.027
10.1016/j.epsl.2009.05.044
10.1016/j.gca.2010.04.022
10.1002/9780470988459.ch8
10.1029/2006PA001355
10.1126/science.1105692
10.1016/j.marchem.2003.07.002
10.1016/j.marchem.2005.03.010
10.5194/bg-6-2397-2009
10.1016/j.chemgeo.2010.08.014
10.1016/j.gca.2003.09.011
10.1016/j.jmarsys.2004.10.001
10.1016/j.chemosphere.2007.07.051
10.1016/S0304-4203(03)00048-3
10.1016/j.epsl.2008.02.022
10.1016/j.epsl.2011.03.015
10.1146/annurev.earth.36.031207.124139
10.1146/annurev.earth.34.031405.125029
10.1002/9780470283134.ch14
10.1016/j.ijms.2004.11.025
10.1111/j.1472-4669.2007.00103.x
10.1002/9780470283134.ch12
10.1016/S0012-821X(03)00572-7
10.1007/1-4020-4297-3_05
ContentType Journal Article
Copyright COPYRIGHT 2013 Copernicus GmbH
Copyright Copernicus GmbH 2013
Copyright_xml – notice: COPYRIGHT 2013 Copernicus GmbH
– notice: Copyright Copernicus GmbH 2013
DBID AAYXX
CITATION
ISR
7QO
7SN
7TG
7TN
7UA
8FD
8FE
8FG
8FH
ABJCF
ABUWG
AFKRA
ATCPS
AZQEC
BBNVY
BENPR
BFMQW
BGLVJ
BHPHI
BKSAR
C1K
CCPQU
DWQXO
F1W
FR3
GNUQQ
H95
H96
HCIFZ
KL.
L.G
L6V
LK8
M7N
M7P
M7S
P64
PATMY
PCBAR
PIMPY
PQEST
PQQKQ
PQUKI
PTHSS
PYCSY
DOA
DOI 10.5194/bg-10-233-2013
DatabaseName CrossRef
Gale In Context: Science
Biotechnology Research Abstracts
Ecology Abstracts
Meteorological & Geoastrophysical Abstracts
Oceanic Abstracts
Water Resources Abstracts
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Collection
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central
Agricultural & Environmental Science Collection
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Continental Europe Database
Technology Collection
Natural Science Collection
Earth, Atmospheric & Aquatic Science Collection
Environmental Sciences and Pollution Management
ProQuest One Community College
ProQuest Central
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
ProQuest Central Student
Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
SciTech Premium Collection
Meteorological & Geoastrophysical Abstracts - Academic
Aquatic Science & Fisheries Abstracts (ASFA) Professional
ProQuest Engineering Collection
ProQuest Biological Science Collection
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biological Science Database
Engineering Database
Biotechnology and BioEngineering Abstracts
Environmental Science Database
Earth, Atmospheric & Aquatic Science Database
Publicly Available Content Database
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
Engineering Collection
Environmental Science Collection
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
Aquatic Science & Fisheries Abstracts (ASFA) Professional
ProQuest Central Student
Technology Collection
Technology Research Database
ProQuest Central Essentials
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Natural Science Collection
Water Resources Abstracts
Environmental Sciences and Pollution Management
Earth, Atmospheric & Aquatic Science Collection
ProQuest Central
ProQuest Engineering Collection
Meteorological & Geoastrophysical Abstracts
Biotechnology Research Abstracts
Oceanic Abstracts
Natural Science Collection
ProQuest Central Korea
Algology Mycology and Protozoology Abstracts (Microbiology C)
Agricultural & Environmental Science Collection
Biological Science Collection
Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources
Engineering Collection
Engineering Database
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
Earth, Atmospheric & Aquatic Science Database
ProQuest Technology Collection
Continental Europe Database
Biological Science Database
ProQuest SciTech Collection
Ecology Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Science Collection
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
ProQuest One Academic UKI Edition
ASFA: Aquatic Sciences and Fisheries Abstracts
Materials Science & Engineering Collection
Environmental Science Database
Engineering Research Database
ProQuest One Academic
Meteorological & Geoastrophysical Abstracts - Academic
DatabaseTitleList CrossRef

Publicly Available Content Database

Aquatic Science & Fisheries Abstracts (ASFA) Professional
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1726-4189
EndPage 245
ExternalDocumentID oai_doaj_org_article_4ffd935a660244ef99e204cacbeaeaef
2886696671
A481421489
10_5194_bg_10_233_2013
GeographicLocations ANE, Baltic Sea, Gotland Basin
GeographicLocations_xml – name: ANE, Baltic Sea, Gotland Basin
GroupedDBID 23N
2WC
2XV
3V.
4P2
5GY
5VS
7XC
8FE
8FG
8FH
8R4
8R5
AAFWJ
AAYXX
ABJCF
ABUWG
ADBBV
AENEX
AFKRA
AFPKN
AHGZY
ALMA_UNASSIGNED_HOLDINGS
ATCPS
BBNVY
BBORY
BCNDV
BENPR
BFMQW
BGLVJ
BHPHI
BKSAR
BPHCQ
CCPQU
CITATION
E3Z
EBD
EBS
EDH
EJD
GROUPED_DOAJ
H13
HCIFZ
HH5
IAO
IEA
IPNFZ
ISR
ITC
KQ8
L6V
L8X
LK5
LK8
M7P
M7R
M7S
MM-
M~E
OK1
P2P
PATMY
PCBAR
PIMPY
PQQKQ
PROAC
PTHSS
PYCSY
Q2X
RIG
RKB
RNS
TR2
XSB
~02
7QO
7SN
7TG
7TN
7UA
8FD
AZQEC
C1K
DWQXO
F1W
FR3
GNUQQ
H95
H96
KL.
L.G
M7N
P64
PQEST
PQUKI
ID FETCH-LOGICAL-a530t-8efaa543c83d4992f5ea817fb568bccde7a2118fb1924a30956c0b964af349ee3
IEDL.DBID 8FG
ISSN 1726-4189
1726-4170
IngestDate Tue Oct 22 15:15:44 EDT 2024
Fri Oct 25 23:22:12 EDT 2024
Thu Oct 10 19:18:58 EDT 2024
Thu Feb 22 23:43:03 EST 2024
Tue Nov 12 22:49:47 EST 2024
Thu Aug 01 20:11:37 EDT 2024
Fri Aug 23 03:00:30 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a530t-8efaa543c83d4992f5ea817fb568bccde7a2118fb1924a30956c0b964af349ee3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://www.proquest.com/docview/1285180907?pq-origsite=%requestingapplication%
PQID 1285180907
PQPubID 105740
PageCount 13
ParticipantIDs doaj_primary_oai_doaj_org_article_4ffd935a660244ef99e204cacbeaeaef
proquest_miscellaneous_1315616174
proquest_journals_1285180907
gale_infotracmisc_A481421489
gale_infotracacademiconefile_A481421489
gale_incontextgauss_ISR_A481421489
crossref_primary_10_5194_bg_10_233_2013
PublicationCentury 2000
PublicationDate 20130115
PublicationDateYYYYMMDD 2013-01-15
PublicationDate_xml – month: 01
  year: 2013
  text: 20130115
  day: 15
PublicationDecade 2010
PublicationPlace Katlenburg-Lindau
PublicationPlace_xml – name: Katlenburg-Lindau
PublicationTitle Biogeosciences
PublicationYear 2013
Publisher Copernicus GmbH
Copernicus Publications
Publisher_xml – name: Copernicus GmbH
– name: Copernicus Publications
References ref13
ref57
ref12
ref56
ref15
ref59
ref14
ref58
ref53
ref52
ref11
ref55
ref10
ref54
ref17
ref16
ref19
ref18
ref51
ref50
ref46
ref45
ref48
ref47
ref42
ref41
ref44
ref43
ref49
ref8
ref7
ref9
ref4
ref3
ref6
ref5
ref40
ref35
ref34
ref37
ref36
ref31
ref30
ref33
ref32
ref2
ref1
ref39
ref38
ref24
ref23
ref26
ref25
ref20
ref64
ref63
ref22
ref66
ref21
ref65
ref28
ref27
ref29
ref60
ref62
ref61
References_xml – ident: ref37
– ident: ref20
– ident: ref55
  doi: 10.1016/j.gca.2006.01.007
– ident: ref43
– ident: ref53
  doi: 10.1016/j.chemgeo.2008.01.009
– ident: ref3
  doi: 10.2475/ajs.304.3.203
– ident: ref56
  doi: 10.1130/G24670A.1
– ident: ref7
  doi: 10.1130/0091-7613(2001)029<0699:DOSAII>2.0.CO;2
– ident: ref23
  doi: 10.1016/j.marchem.2010.01.001
– ident: ref24
  doi: 10.1016/j.gca.2012.06.003
– ident: ref10
  doi: 10.1111/j.1472-4669.2009.00214.x
– ident: ref64
  doi: 10.1016/S0016-7037(03)00266-7
– ident: ref34
– ident: ref41
  doi: 10.1016/j.gca.2008.05.032
– ident: ref32
  doi: 10.1016/S0198-0149(10)80009-3
– ident: ref50
  doi: 10.1016/j.gca.2008.05.001
– ident: ref11
  doi: 10.1016/S1385-1101(96)00003-2
– ident: ref59
  doi: 10.1130/G22647.1
– ident: ref14
  doi: 10.1016/j.gca.2010.09.017
– ident: ref65
  doi: 10.1016/S0025-3227(00)00122-5
– ident: ref27
  doi: 10.1021/es980206o
– ident: ref66
  doi: 10.1016/j.marchem.2006.10.006
– ident: ref58
  doi: 10.1016/S0016-7037(02)00902-X
– ident: ref5
  doi: 10.2138/gsrmg.55.1.319
– ident: ref9
  doi: 10.1016/j.epsl.2005.05.022
– ident: ref26
– ident: ref46
  doi: 10.1016/j.chemgeo.2004.09.003
– ident: ref62
  doi: 10.1029/2010GB003820
– ident: ref63
  doi: 10.1016/j.chemgeo.2007.12.001
– ident: ref45
  doi: 10.1016/j.jmarsys.2006.02.003
– ident: ref48
  doi: 10.1021/es0109242
– ident: ref17
  doi: 10.1016/j.gca.2009.04.026
– ident: ref16
  doi: 10.1016/0304-4203(90)90070-S
– ident: ref35
  doi: 10.1016/j.gca.2009.01.014
– ident: ref29
  doi: 10.1029/2008GL035841
– ident: ref33
  doi: 10.1002/9780470283134.ch10
– ident: ref54
  doi: 10.1016/j.epsl.2004.06.001
– ident: ref19
  doi: 10.5194/bg-7-2489-2010
– ident: ref30
  doi: 10.1016/0304-4203(88)90102-8
– ident: ref4
  doi: 10.1016/j.gca.2009.06.027
– ident: ref61
  doi: 10.1016/j.epsl.2009.05.044
– ident: ref57
  doi: 10.1016/j.gca.2010.04.022
– ident: ref36
  doi: 10.1002/9780470988459.ch8
– ident: ref22
  doi: 10.1029/2006PA001355
– ident: ref49
  doi: 10.1126/science.1105692
– ident: ref44
  doi: 10.1016/j.marchem.2003.07.002
– ident: ref51
  doi: 10.1016/j.marchem.2005.03.010
– ident: ref6
  doi: 10.5194/bg-6-2397-2009
– ident: ref18
  doi: 10.1016/j.chemgeo.2010.08.014
– ident: ref12
  doi: 10.1016/j.gca.2003.09.011
– ident: ref42
  doi: 10.1016/j.jmarsys.2004.10.001
– ident: ref60
  doi: 10.1016/j.chemosphere.2007.07.051
– ident: ref28
– ident: ref40
  doi: 10.1016/S0304-4203(03)00048-3
– ident: ref21
– ident: ref15
  doi: 10.1016/j.epsl.2008.02.022
– ident: ref47
  doi: 10.1016/j.epsl.2011.03.015
– ident: ref25
  doi: 10.1146/annurev.earth.36.031207.124139
– ident: ref8
– ident: ref2
  doi: 10.1146/annurev.earth.34.031405.125029
– ident: ref31
  doi: 10.1002/9780470283134.ch14
– ident: ref52
  doi: 10.1016/j.ijms.2004.11.025
– ident: ref13
  doi: 10.1111/j.1472-4669.2007.00103.x
– ident: ref39
  doi: 10.1002/9780470283134.ch12
– ident: ref1
  doi: 10.1016/S0012-821X(03)00572-7
– ident: ref38
  doi: 10.1007/1-4020-4297-3_05
SSID ssj0038085
Score 2.2586188
Snippet Fe isotope ratios and concentrations of dissolved Fe (Fedis, < 0.45 μm) and of suspended particulate Fe (FeSPM) were analyzed from a depth profile through the...
Fe isotope ratios and concentrations of dissolved Fe (Fe.sub.dis, < 0.45 μm) and of suspended particulate Fe (Fe.sub.SPM) were analyzed from a depth profile...
Fe isotope ratios and concentrations of dissolved Fe (Fedis , < 0.45 μm) and of suspended particulate Fe (FeSPM ) were analyzed from a depth profile through...
Fe isotope ratios and concentrations of dissolved Fe (Fe sub(dis), < 0.45 mu m) and of suspended particulate Fe (Fe sub(SPM)) were analyzed from a depth...
Fe isotope ratios and concentrations of dissolved Fe (Fe dis , < 0.45 μm) and of suspended particulate Fe (Fe SPM ) were analyzed from a depth profile through...
SourceID doaj
proquest
gale
crossref
SourceType Open Website
Aggregation Database
StartPage 233
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3Ni9UwEA-yIHgRP_HpKlEET2XbJmnT46742PXgwXVhb2GSTB4L0j5e3_Prr3cm7Vt8B_EivYRmWpKZZiY_OvmNEG91GQ1AbYtQ2VBoa0IBMVVFA76DpLz1mLN8PzXnV_rjtbn-o9QX54RN9MCT4k50SrFTBpqGoonG1HVYlzpA8Ah0pex9y24PpiYfrGyZi3FSdG4KXbXlRNdIuxV94lfsemouYVZW6iAcZdb-v_nmHHCWD8T9eacoT6cRPhR3sH8k7k61I38-Fr8uxmE7rFGmzXQ2IatYznlXkv-zD1-_YZTQRznuxlzrNsp1njHX7EK5RHnTS9oByuHHTciC0Ofmd-reyMCeq5dDyjJnwEQd8hLhibhafvjy_ryYCykUYFS5LSwmAKNVsCoSwqmTQbBVm7xprA8hYguEA23yjMZAMTdhKH3XaLKW7hDVU3HUDz0-E1LV0Vj0HbZ10G0ktGfofXXZeOUJGsFCvNvr060nvgxHOIM17_yKm6R5x5pfiDNW960U81znG2R9N1vf_cv6C_GGjeWYyaLnVJkV7MbRXVx-dqfaVromtNfRmGahNGzJJjCfPKAZMfnVgeTxgSQttXDYvf8m3LzUR0cB3jAJWtkuxOvbbn6S09d6HHYkowgmM5LUz__HrF-Ie3WuylEVlTkWR9vNDl_S3mjrX-Vl8Bt7-w0Z
  priority: 102
  providerName: Directory of Open Access Journals
Title Isotope fractionation between dissolved and suspended particulate Fe in the oxic and anoxic water column of the Baltic Sea
URI https://www.proquest.com/docview/1285180907
https://search.proquest.com/docview/1315616174
https://doaj.org/article/4ffd935a660244ef99e204cacbeaeaef
Volume 10
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Nb9QwELWgFRIXxKdYKCuDkDhFTWI7cU6oi7q0HCrUUqk3a_y1qoSSZbPbAr-eGSdbtAfQXqL1JErG9nieM3mPsfcy9wqg1JkrtMukVi4DH4usAttAFFbbkKp8z6qTS_nlSl2NG279WFa5jYkpUPvO0R75IcZRRVxTef1x-SMj1Sh6uzpKaNxn-0VZ1wS-9PzzNhILnSdJTlyjq0wWdT6QNmLOIg_tggJQSUJmeSF2FqXE3f-vCJ2Wnflj9mjMF_nR0MFP2L3QPmUPBgXJX8_Y79O-W3fLwONq-EIhOZqP1Vec3rZ332-C59B63m_6pHjr-TINGFLuCnwe-HXLMQ_k3c9rlwyhTYe32LzijuJXy7uYbGZAdB38IsBzdjk__vbpJBvlFDJQIl9nOkQAJYXTwiPOKaMKoIs6WlVp65wPNSAa1NESJgNBDIUut00lsc9kE4J4wfbarg0vGRelVzrYJtSlk7VHzKfwemVeWWERIMGEfdj60ywH1gyDaIM8b-yCDtHzhjw_YTNy950VsV2nP7rVwoyTx8gYfSMUVBVmFDLEpgllLh04GwB_ccLeUWcZ4rNoqWBmAZu-N6cX5-ZI6kKWiPkavKfRKHZr7BMYvz_AJyIKrB3Lgx1LnHBut3k7Jsw44Xvzd3hO2Nu7ZjqTitja0G3QRiBYJjwpX_3_Eq_ZwzKpbhRZoQ7Y3nq1CW8w91nbaRrgU7Y_Oz77ej5NOwhTWo3UH1lNBhE
link.rule.ids 315,783,787,867,2109,12777,21400,27936,27937,33385,33386,33756,33757,43612,43817,74363,74630
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lj9MwELZgVwguiKe2sIBBSJyiTWI7cU5oi7ZqYanQPqS9WX5WK6GkNCmvX8-M6y7qAZRLFE-iZGyP50sm30fIW547oXUpM1tIm3EpbKZdKLJKm0YHZqTxscp3Xk0v-ccrcZVeuPWprHIbE2Ogdp3Fd-RHEEcFck3l9fvltwxVo_DrapLQuE32kaoKwNf--GT-5Wwbi5nMoygnrNJVxos639A2QtbCj8wCQ1CJUmZ5wXaWpcje_68YHReeyQNyP2WM9HjTxQ_JLd8-Inc2GpK_HpPfs74buqWnYbX5RyG6mqb6K4rf27uv372junW0X_dR89bRZRwyqN3l6cTT65ZCJki7n9c2Guo27v6A5hW1GMFa2oVoM9ZI2EHPvX5CLicnFx-mWRJUyLRg-ZBJH7QWnFnJHCCdMgivwWvBiEoaa52vNeBBGQyiMs2Qo9Dmpqk49BpvvGdPyV7btf6AUFY6Ib1pfF1aXjtAfQKuV-aVYQYgkh6Rd1t_quWGN0MB3kDPK7PAXfC8Qs-PyBjdfWOFfNfxQLdaqDR9FA_BNUzoqoKcgvvQNL7MudXWeA1bGJE32FkKGS1aLJlZ6HXfq9n5mTrmsuAloL4G7ikZhW6APtHpDwR4IiTB2rE83LGEKWd3m7djQqUp36u_A3REXt8045lYxtb6bg02DOAyIkr-7P-XeEXuTi8-n6rT2fzTc3KvjBocRVaIQ7I3rNb-BWRCg3mZhvsfqTwG7Q
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lj9MwELagKxAXxFMUFjAIiVPUJLYT54S2sNUWULXaZaW9WX5WK6GkNCmvX8-M6y7qAdRLVE-iZjwez9dMvo-QNzx3QutSZraQNuNS2Ey7UGSVNo0OzEjjY5fvojq54B8vxWXqf-pTW-UuJ8ZE7TqL_5FPII8K5JrK60lIbRGnH2bvVt8yVJDCJ61JTuMmOah5xfIROZgeL07PdnmZyTwKdMKOXWW8qPMthSNUMHxilpiOSpQ1ywu2t0VFJv9_5eu4Cc3ukbupeqRH2-m-T2749gG5tdWT_PWQ_J733dCtPA3r7fsK0e009WJRfPbeff3uHdWto_2mj_q3jq5i-KCOl6czT69aClUh7X5e2Wio23j4A4bX1GI2a2kXos1UI3kHPff6EbmYHX95f5IlcYVMC5YPmfRBa8GZlcwB6imD8FoWdTCiksZa52sN2FAGgwhNM-QrtLlpKg4zyBvv2WMyarvWPyGUlU5Ibxpfl5bXDhCggOuVeWWYAbikx-Ttzp9qteXQUIA90PPKLPEQPK_Q82MyRXdfWyH3dfyiWy9VWkqKh-AaJnRVQX3BfWgaX-bcamu8hk8Yk9c4WQrZLVqMk6Xe9L2an5-pIy4LXgICbOA3JaPQDTAnOr2NAHeEhFh7lod7lrD87P7wLiZUWv69-husY_LqehjPxJa21ncbsGEAnRFd8qf_v8RLchsiXX2eLz49I3fKKMdRZIU4JKNhvfHPoSgazIsU7X8A-nwLGw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Isotope+fractionation+between+dissolved+and+suspended+particulate+Fe+in+the+oxic+and+anoxic+water+column+of+the+Baltic+Sea&rft.jtitle=Biogeosciences&rft.au=Staubwasser%2C+M&rft.au=Schoenberg%2C+R&rft.au=von+Blanckenburg%2C+F&rft.au=Kr%C3%BCger%2C+S&rft.date=2013-01-15&rft.pub=Copernicus+GmbH&rft.issn=1726-4170&rft.eissn=1726-4189&rft.volume=10&rft.issue=1&rft.spage=233&rft_id=info:doi/10.5194%2Fbg-10-233-2013&rft.externalDBID=HAS_PDF_LINK&rft.externalDocID=2886696671
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1726-4189&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1726-4189&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1726-4189&client=summon