Isotope fractionation between dissolved and suspended particulate Fe in the oxic and anoxic water column of the Baltic Sea
Fe isotope ratios and concentrations of dissolved Fe (Fedis, < 0.45 μm) and of suspended particulate Fe (FeSPM) were analyzed from a depth profile through the anoxic Eastern Gotland Basin water column, Baltic Sea. Results show a sharp gradient in δ56Fedis across the ferruginous layer with δ56Fedi...
Saved in:
Published in | Biogeosciences Vol. 10; no. 1; pp. 233 - 245 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Katlenburg-Lindau
Copernicus GmbH
15.01.2013
Copernicus Publications |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Fe isotope ratios and concentrations of dissolved Fe (Fedis, < 0.45 μm) and of suspended particulate Fe (FeSPM) were analyzed from a depth profile through the anoxic Eastern Gotland Basin water column, Baltic Sea. Results show a sharp gradient in δ56Fedis across the ferruginous layer with δ56Fedis = −0.4‰ in the euxinic deep basin and δ56Fedis = +0.3‰ in the oxic upper water column. The isotopic gradient overlaps with a strong concentration gradient of Fedis, a concentration maximum in FeSPM and lower δ56FeSPM values than δ56Fedis. These features indicate preferential loss of light Fe isotopes from solution to suspended iron-oxyhydroxides (FeIOH) during typical oxidative precipitation across the redox interface. The sign of the overall fractionation, Δ56FeIOH-Fe(II)(aq) < 0‰, is in contrast to similar, mostly non-marine redox environments, where Δ56FeIOH-Fe(II)(aq) > 0‰. The difference appears to be the result of isotope exchange dominated by reaction kinetics in the marine water column, rather than equilibrium fractionation generally inferred for oxidative Fe precipitation elsewhere. High residual δ56Fedis immediately above the oxic–ferruginous interface and throughout the oxic water column suggests that any potential dissolved Fe export from marine reducing waters into the oxic open water column is enriched in the heavy isotopes. In the deep, mildly euxinic water column above the level of Fe sulfide saturation, a decreasing δ56FeSPM trend with depth and a generally low δ56Fedis are comparable to trends generally observed in marine anoxic sediment profiles where microbial reductive Fe dissolution occurs. The isotope composition of the redox-cycled Fe inventory in anoxic marine basins mainly reflects the balance between external fluxes, driving the composition towards crustal δ56Fe values, and intensity of internal recycling, driving δ56Fe towards negative values. |
---|---|
AbstractList | Fe isotope ratios and concentrations of dissolved Fe (Fedis, < 0.45 μm) and of suspended particulate Fe (FeSPM) were analyzed from a depth profile through the anoxic Eastern Gotland Basin water column, Baltic Sea. Results show a sharp gradient in δ56Fedis across the ferruginous layer with δ56Fedis = −0.4‰ in the euxinic deep basin and δ56Fedis = +0.3‰ in the oxic upper water column. The isotopic gradient overlaps with a strong concentration gradient of Fedis, a concentration maximum in FeSPM and lower δ56FeSPM values than δ56Fedis. These features indicate preferential loss of light Fe isotopes from solution to suspended iron-oxyhydroxides (FeIOH) during typical oxidative precipitation across the redox interface. The sign of the overall fractionation, Δ56FeIOH-Fe(II)(aq) < 0‰, is in contrast to similar, mostly non-marine redox environments, where Δ56FeIOH-Fe(II)(aq) > 0‰. The difference appears to be the result of isotope exchange dominated by reaction kinetics in the marine water column, rather than equilibrium fractionation generally inferred for oxidative Fe precipitation elsewhere. High residual δ56Fedis immediately above the oxic–ferruginous interface and throughout the oxic water column suggests that any potential dissolved Fe export from marine reducing waters into the oxic open water column is enriched in the heavy isotopes. In the deep, mildly euxinic water column above the level of Fe sulfide saturation, a decreasing δ56FeSPM trend with depth and a generally low δ56Fedis are comparable to trends generally observed in marine anoxic sediment profiles where microbial reductive Fe dissolution occurs. The isotope composition of the redox-cycled Fe inventory in anoxic marine basins mainly reflects the balance between external fluxes, driving the composition towards crustal δ56Fe values, and intensity of internal recycling, driving δ56Fe towards negative values. Fe isotope ratios and concentrations of dissolved Fe (Fe dis , < 0.45 μm) and of suspended particulate Fe (Fe SPM ) were analyzed from a depth profile through the anoxic Eastern Gotland Basin water column, Baltic Sea. Results show a sharp gradient in δ 56 Fe dis across the ferruginous layer with δ 56 Fe dis = −0.4‰ in the euxinic deep basin and δ 56 Fe dis = +0.3‰ in the oxic upper water column. The isotopic gradient overlaps with a strong concentration gradient of Fe dis , a concentration maximum in Fe SPM and lower δ 56 Fe SPM values than δ 56 Fe dis . These features indicate preferential loss of light Fe isotopes from solution to suspended iron-oxyhydroxides (Fe IOH ) during typical oxidative precipitation across the redox interface. The sign of the overall fractionation, Δ 56 Fe IOH -Fe(II)(aq) < 0‰, is in contrast to similar, mostly non-marine redox environments, where Δ 56 Fe IOH -Fe(II)(aq) > 0‰. The difference appears to be the result of isotope exchange dominated by reaction kinetics in the marine water column, rather than equilibrium fractionation generally inferred for oxidative Fe precipitation elsewhere. High residual δ 56 Fe dis immediately above the oxic–ferruginous interface and throughout the oxic water column suggests that any potential dissolved Fe export from marine reducing waters into the oxic open water column is enriched in the heavy isotopes. In the deep, mildly euxinic water column above the level of Fe sulfide saturation, a decreasing δ 56 Fe SPM trend with depth and a generally low δ 56 Fe dis are comparable to trends generally observed in marine anoxic sediment profiles where microbial reductive Fe dissolution occurs. The isotope composition of the redox-cycled Fe inventory in anoxic marine basins mainly reflects the balance between external fluxes, driving the composition towards crustal δ 56 Fe values, and intensity of internal recycling, driving δ 56 Fe towards negative values. Fe isotope ratios and concentrations of dissolved Fe (Fedis , < 0.45 μm) and of suspended particulate Fe (FeSPM ) were analyzed from a depth profile through the anoxic Eastern Gotland Basin water column, Baltic Sea. Results show a sharp gradient in δ56 Fedis across the ferruginous layer with δ56 Fedis = -0.4[per thousand] in the euxinic deep basin and δ56 Fedis = +0.3[per thousand] in the oxic upper water column. The isotopic gradient overlaps with a strong concentration gradient of Fedis , a concentration maximum in FeSPM and lower δ56 FeSPM values than δ56 Fedis . These features indicate preferential loss of light Fe isotopes from solution to suspended iron-oxyhydroxides (FeIOH ) during typical oxidative precipitation across the redox interface. The sign of the overall fractionation, δ56 FeIOH -Fe(II)(aq) < 0[per thousand], is in contrast to similar, mostly non-marine redox environments, where δ56 FeIOH -Fe(II)(aq) > 0[per thousand]. The difference appears to be the result of isotope exchange dominated by reaction kinetics in the marine water column, rather than equilibrium fractionation generally inferred for oxidative Fe precipitation elsewhere. High residual δ56 Fedis immediately above the oxic-ferruginous interface and throughout the oxic water column suggests that any potential dissolved Fe export from marine reducing waters into the oxic open water column is enriched in the heavy isotopes. In the deep, mildly euxinic water column above the level of Fe sulfide saturation, a decreasing δ56 FeSPM trend with depth and a generally low δ56 Fedis are comparable to trends generally observed in marine anoxic sediment profiles where microbial reductive Fe dissolution occurs. The isotope composition of the redox-cycled Fe inventory in anoxic marine basins mainly reflects the balance between external fluxes, driving the composition towards crustal δ56 Fe values, and intensity of internal recycling, driving δ56 Fe towards negative values. Fe isotope ratios and concentrations of dissolved Fe (Fe.sub.dis, < 0.45 μm) and of suspended particulate Fe (Fe.sub.SPM) were analyzed from a depth profile through the anoxic Eastern Gotland Basin water column, Baltic Sea. Results show a sharp gradient in δ.sup.56 Fe.sub.dis across the ferruginous layer with δ.sup.56 Fe.sub.dis = −0.4‰ in the euxinic deep basin and δ.sup.56 Fe.sub.dis = +0.3‰ in the oxic upper water column. The isotopic gradient overlaps with a strong concentration gradient of Fe.sub.dis, a concentration maximum in Fe.sub.SPM and lower δ.sup.56 Fe.sub.SPM values than δ.sup.56 Fe.sub.dis . These features indicate preferential loss of light Fe isotopes from solution to suspended iron-oxyhydroxides (Fe.sub.IOH) during typical oxidative precipitation across the redox interface. The sign of the overall fractionation, Δ.sup.56 Fe.sub.IOH -Fe(II)(aq) 0‰. The difference appears to be the result of isotope exchange dominated by reaction kinetics in the marine water column, rather than equilibrium fractionation generally inferred for oxidative Fe precipitation elsewhere. High residual δ.sup.56 Fe.sub.dis immediately above the oxic-ferruginous interface and throughout the oxic water column suggests that any potential dissolved Fe export from marine reducing waters into the oxic open water column is enriched in the heavy isotopes. In the deep, mildly euxinic water column above the level of Fe sulfide saturation, a decreasing δ.sup.56 Fe.sub.SPM trend with depth and a generally low δ.sup.56 Fe.sub.dis are comparable to trends generally observed in marine anoxic sediment profiles where microbial reductive Fe dissolution occurs. The isotope composition of the redox-cycled Fe inventory in anoxic marine basins mainly reflects the balance between external fluxes, driving the composition towards crustal δ.sup.56 Fe values, and intensity of internal recycling, driving δ.sup.56 Fe towards negative values. Fe isotope ratios and concentrations of dissolved Fe (Fe sub(dis), < 0.45 mu m) and of suspended particulate Fe (Fe sub(SPM)) were analyzed from a depth profile through the anoxic Eastern Gotland Basin water column, Baltic Sea. Results show a sharp gradient in delta super(56)Fe sub(dis) across the ferruginous layer with delta super(56)Fe sub(dis) = -0.4ppt in the euxinic deep basin and delta super(56)Fe sub(dis) = 0.3ppt in the oxic upper water column. The isotopic gradient overlaps with a strong concentration gradient of Fe sub(dis), a concentration maximum in Fe sub(SPM) and lower delta super(56)Fe sub(SPM) values than delta super(56)Fe sub(dis). These features indicate preferential loss of light Fe isotopes from solution to suspended iron-oxyhydroxides (Fe sub(IOH)) during typical oxidative precipitation across the redox interface. The sign of the overall fractionation, Delta super(56)Fe sub(IOH)-Fe (II)(aq) < 0ppt, is in contrast to similar, mostly non-marine redox environments, where Delta super(56)Fe sub(IOH)-Fe (II)(aq) > 0ppt. The difference appears to be the result of isotope exchange dominated by reaction kinetics in the marine water column, rather than equilibrium fractionation generally inferred for oxidative Fe precipitation elsewhere. High residual delta super(56)Fe sub(dis) immediately above the oxic-ferruginous interface and throughout the oxic water column suggests that any potential dissolved Fe export from marine reducing waters into the oxic open water column is enriched in the heavy isotopes. In the deep, mildly euxinic water column above the level of Fe sulfide saturation, a decreasing delta super(56)Fe sub(SPM) trend with depth and a generally low delta super(56)Fe sub(dis) are comparable to trends generally observed in marine anoxic sediment profiles where microbial reductive Fe dissolution occurs. The isotope composition of the redox-cycled Fe inventory in anoxic marine basins mainly reflects the balance between external fluxes, driving the composition towards crustal delta super(56)Fe values, and intensity of internal recycling, driving delta super(56)Fe towards negative values. |
Audience | Academic |
Author | von Blanckenburg, F Krüger, S Pohl, C Staubwasser, M Schoenberg, R |
Author_xml | – sequence: 1 fullname: Staubwasser, M – sequence: 2 fullname: Schoenberg, R – sequence: 3 fullname: von Blanckenburg, F – sequence: 4 fullname: Krüger, S – sequence: 5 fullname: Pohl, C |
BookMark | eNptktFv1SAUxhszE7fpq88kvuhDJxTawuNcnN5kiYnTZ3JKD5WbXqiFbtO_XtoZdWY5CRwOv_MR4DspjnzwWBQvGT2rmRJvu6FktKw4LyvK-JPimLVVUwom1dE_-bPiJMY9pVxSWR8XP3cxpDAhsTOY5IKHdSAdpltET3oXYxhvsCfgexKXOKHv82qCOTmzjJCQXCJxnqRvSMKdMxsIfktv8_ZMTBiXgyfBbsw7GHMnuUZ4Xjy1MEZ88Xs-Lb5evv9y8bG8-vRhd3F-VULNaSolWoBacCN5L5SqbI0gWWu7upGdMT22UDEmbcdUJYBTVTeGdqoRYLlQiPy02N3r9gH2eprdAeYfOoDTWyHMg95uM6IW1vaK19A0tBICrVJYUWHAdAg5bNZ6fa81zeH7gjHpg4sGxxE8hiVqxlndsIa1IqOv_kP3YZl9vqlmlayZpIq2f6kB8vnO25DyR6yi-lxIJiompMrU2SNUjh4PzmQbWJfrDxrePGjITMK7NMASo95df35U3MwhxhntnzdiVK_O0t2wptlZenUW_wVSm8Gt |
CitedBy_id | crossref_primary_10_1016_j_chemgeo_2014_09_009 crossref_primary_10_1016_j_gca_2021_07_036 crossref_primary_10_1007_s10933_024_00316_0 crossref_primary_10_1016_j_gca_2019_04_007 crossref_primary_10_1016_j_gca_2017_09_050 crossref_primary_10_1016_j_gca_2015_05_024 crossref_primary_10_1016_j_gca_2015_05_023 crossref_primary_10_1073_pnas_2016078118 crossref_primary_10_1016_j_gca_2013_11_041 crossref_primary_10_1016_j_gca_2015_04_031 crossref_primary_10_1016_j_gca_2018_06_042 crossref_primary_10_1007_s10533_017_0309_x crossref_primary_10_1016_j_chemgeo_2017_10_028 crossref_primary_10_1016_j_chemgeo_2021_120381 crossref_primary_10_1002_2015GB005357 crossref_primary_10_1111_gbi_12311 crossref_primary_10_1038_s41598_023_37254_2 crossref_primary_10_1016_j_marchem_2017_07_003 crossref_primary_10_1016_j_chemgeo_2016_11_032 crossref_primary_10_1002_2014GB004928 crossref_primary_10_1016_j_gca_2013_09_011 crossref_primary_10_1146_annurev_marine_032822_103431 crossref_primary_10_5194_bg_16_1305_2019 crossref_primary_10_1016_j_gca_2015_05_034 crossref_primary_10_1021_es405688v crossref_primary_10_1016_j_dsr2_2014_12_004 crossref_primary_10_1016_j_epsl_2018_02_006 crossref_primary_10_1016_j_gca_2014_03_004 crossref_primary_10_1016_j_marchem_2022_104181 crossref_primary_10_1016_j_marchem_2016_04_007 crossref_primary_10_1016_j_chemgeo_2015_12_003 crossref_primary_10_1016_j_chemosphere_2015_04_067 crossref_primary_10_1029_2018GB005942 crossref_primary_10_1029_2020GB006814 |
Cites_doi | 10.1016/j.gca.2006.01.007 10.1016/j.chemgeo.2008.01.009 10.2475/ajs.304.3.203 10.1130/G24670A.1 10.1130/0091-7613(2001)029<0699:DOSAII>2.0.CO;2 10.1016/j.marchem.2010.01.001 10.1016/j.gca.2012.06.003 10.1111/j.1472-4669.2009.00214.x 10.1016/S0016-7037(03)00266-7 10.1016/j.gca.2008.05.032 10.1016/S0198-0149(10)80009-3 10.1016/j.gca.2008.05.001 10.1016/S1385-1101(96)00003-2 10.1130/G22647.1 10.1016/j.gca.2010.09.017 10.1016/S0025-3227(00)00122-5 10.1021/es980206o 10.1016/j.marchem.2006.10.006 10.1016/S0016-7037(02)00902-X 10.2138/gsrmg.55.1.319 10.1016/j.epsl.2005.05.022 10.1016/j.chemgeo.2004.09.003 10.1029/2010GB003820 10.1016/j.chemgeo.2007.12.001 10.1016/j.jmarsys.2006.02.003 10.1021/es0109242 10.1016/j.gca.2009.04.026 10.1016/0304-4203(90)90070-S 10.1016/j.gca.2009.01.014 10.1029/2008GL035841 10.1002/9780470283134.ch10 10.1016/j.epsl.2004.06.001 10.5194/bg-7-2489-2010 10.1016/0304-4203(88)90102-8 10.1016/j.gca.2009.06.027 10.1016/j.epsl.2009.05.044 10.1016/j.gca.2010.04.022 10.1002/9780470988459.ch8 10.1029/2006PA001355 10.1126/science.1105692 10.1016/j.marchem.2003.07.002 10.1016/j.marchem.2005.03.010 10.5194/bg-6-2397-2009 10.1016/j.chemgeo.2010.08.014 10.1016/j.gca.2003.09.011 10.1016/j.jmarsys.2004.10.001 10.1016/j.chemosphere.2007.07.051 10.1016/S0304-4203(03)00048-3 10.1016/j.epsl.2008.02.022 10.1016/j.epsl.2011.03.015 10.1146/annurev.earth.36.031207.124139 10.1146/annurev.earth.34.031405.125029 10.1002/9780470283134.ch14 10.1016/j.ijms.2004.11.025 10.1111/j.1472-4669.2007.00103.x 10.1002/9780470283134.ch12 10.1016/S0012-821X(03)00572-7 10.1007/1-4020-4297-3_05 |
ContentType | Journal Article |
Copyright | COPYRIGHT 2013 Copernicus GmbH Copyright Copernicus GmbH 2013 |
Copyright_xml | – notice: COPYRIGHT 2013 Copernicus GmbH – notice: Copyright Copernicus GmbH 2013 |
DBID | AAYXX CITATION ISR 7QO 7SN 7TG 7TN 7UA 8FD 8FE 8FG 8FH ABJCF ABUWG AFKRA ATCPS AZQEC BBNVY BENPR BFMQW BGLVJ BHPHI BKSAR C1K CCPQU DWQXO F1W FR3 GNUQQ H95 H96 HCIFZ KL. L.G L6V LK8 M7N M7P M7S P64 PATMY PCBAR PIMPY PQEST PQQKQ PQUKI PTHSS PYCSY DOA |
DOI | 10.5194/bg-10-233-2013 |
DatabaseName | CrossRef Gale In Context: Science Biotechnology Research Abstracts Ecology Abstracts Meteorological & Geoastrophysical Abstracts Oceanic Abstracts Water Resources Abstracts Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Collection Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central Agricultural & Environmental Science Collection ProQuest Central Essentials Biological Science Collection ProQuest Central Continental Europe Database Technology Collection Natural Science Collection Earth, Atmospheric & Aquatic Science Collection Environmental Sciences and Pollution Management ProQuest One Community College ProQuest Central ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database ProQuest Central Student Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources SciTech Premium Collection Meteorological & Geoastrophysical Abstracts - Academic Aquatic Science & Fisheries Abstracts (ASFA) Professional ProQuest Engineering Collection ProQuest Biological Science Collection Algology Mycology and Protozoology Abstracts (Microbiology C) Biological Science Database Engineering Database Biotechnology and BioEngineering Abstracts Environmental Science Database Earth, Atmospheric & Aquatic Science Database Publicly Available Content Database ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition Engineering Collection Environmental Science Collection DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef Publicly Available Content Database Aquatic Science & Fisheries Abstracts (ASFA) Professional ProQuest Central Student Technology Collection Technology Research Database ProQuest Central Essentials ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Natural Science Collection Water Resources Abstracts Environmental Sciences and Pollution Management Earth, Atmospheric & Aquatic Science Collection ProQuest Central ProQuest Engineering Collection Meteorological & Geoastrophysical Abstracts Biotechnology Research Abstracts Oceanic Abstracts Natural Science Collection ProQuest Central Korea Algology Mycology and Protozoology Abstracts (Microbiology C) Agricultural & Environmental Science Collection Biological Science Collection Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources Engineering Collection Engineering Database ProQuest Biological Science Collection ProQuest One Academic Eastern Edition Earth, Atmospheric & Aquatic Science Database ProQuest Technology Collection Continental Europe Database Biological Science Database ProQuest SciTech Collection Ecology Abstracts Biotechnology and BioEngineering Abstracts Environmental Science Collection Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources ProQuest One Academic UKI Edition ASFA: Aquatic Sciences and Fisheries Abstracts Materials Science & Engineering Collection Environmental Science Database Engineering Research Database ProQuest One Academic Meteorological & Geoastrophysical Abstracts - Academic |
DatabaseTitleList | CrossRef Publicly Available Content Database Aquatic Science & Fisheries Abstracts (ASFA) Professional |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 1726-4189 |
EndPage | 245 |
ExternalDocumentID | oai_doaj_org_article_4ffd935a660244ef99e204cacbeaeaef 2886696671 A481421489 10_5194_bg_10_233_2013 |
GeographicLocations | ANE, Baltic Sea, Gotland Basin |
GeographicLocations_xml | – name: ANE, Baltic Sea, Gotland Basin |
GroupedDBID | 23N 2WC 2XV 3V. 4P2 5GY 5VS 7XC 8FE 8FG 8FH 8R4 8R5 AAFWJ AAYXX ABJCF ABUWG ADBBV AENEX AFKRA AFPKN AHGZY ALMA_UNASSIGNED_HOLDINGS ATCPS BBNVY BBORY BCNDV BENPR BFMQW BGLVJ BHPHI BKSAR BPHCQ CCPQU CITATION E3Z EBD EBS EDH EJD GROUPED_DOAJ H13 HCIFZ HH5 IAO IEA IPNFZ ISR ITC KQ8 L6V L8X LK5 LK8 M7P M7R M7S MM- M~E OK1 P2P PATMY PCBAR PIMPY PQQKQ PROAC PTHSS PYCSY Q2X RIG RKB RNS TR2 XSB ~02 7QO 7SN 7TG 7TN 7UA 8FD AZQEC C1K DWQXO F1W FR3 GNUQQ H95 H96 KL. L.G M7N P64 PQEST PQUKI |
ID | FETCH-LOGICAL-a530t-8efaa543c83d4992f5ea817fb568bccde7a2118fb1924a30956c0b964af349ee3 |
IEDL.DBID | 8FG |
ISSN | 1726-4189 1726-4170 |
IngestDate | Tue Oct 22 15:15:44 EDT 2024 Fri Oct 25 23:22:12 EDT 2024 Thu Oct 10 19:18:58 EDT 2024 Thu Feb 22 23:43:03 EST 2024 Tue Nov 12 22:49:47 EST 2024 Thu Aug 01 20:11:37 EDT 2024 Fri Aug 23 03:00:30 EDT 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a530t-8efaa543c83d4992f5ea817fb568bccde7a2118fb1924a30956c0b964af349ee3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
OpenAccessLink | https://www.proquest.com/docview/1285180907?pq-origsite=%requestingapplication% |
PQID | 1285180907 |
PQPubID | 105740 |
PageCount | 13 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_4ffd935a660244ef99e204cacbeaeaef proquest_miscellaneous_1315616174 proquest_journals_1285180907 gale_infotracmisc_A481421489 gale_infotracacademiconefile_A481421489 gale_incontextgauss_ISR_A481421489 crossref_primary_10_5194_bg_10_233_2013 |
PublicationCentury | 2000 |
PublicationDate | 20130115 |
PublicationDateYYYYMMDD | 2013-01-15 |
PublicationDate_xml | – month: 01 year: 2013 text: 20130115 day: 15 |
PublicationDecade | 2010 |
PublicationPlace | Katlenburg-Lindau |
PublicationPlace_xml | – name: Katlenburg-Lindau |
PublicationTitle | Biogeosciences |
PublicationYear | 2013 |
Publisher | Copernicus GmbH Copernicus Publications |
Publisher_xml | – name: Copernicus GmbH – name: Copernicus Publications |
References | ref13 ref57 ref12 ref56 ref15 ref59 ref14 ref58 ref53 ref52 ref11 ref55 ref10 ref54 ref17 ref16 ref19 ref18 ref51 ref50 ref46 ref45 ref48 ref47 ref42 ref41 ref44 ref43 ref49 ref8 ref7 ref9 ref4 ref3 ref6 ref5 ref40 ref35 ref34 ref37 ref36 ref31 ref30 ref33 ref32 ref2 ref1 ref39 ref38 ref24 ref23 ref26 ref25 ref20 ref64 ref63 ref22 ref66 ref21 ref65 ref28 ref27 ref29 ref60 ref62 ref61 |
References_xml | – ident: ref37 – ident: ref20 – ident: ref55 doi: 10.1016/j.gca.2006.01.007 – ident: ref43 – ident: ref53 doi: 10.1016/j.chemgeo.2008.01.009 – ident: ref3 doi: 10.2475/ajs.304.3.203 – ident: ref56 doi: 10.1130/G24670A.1 – ident: ref7 doi: 10.1130/0091-7613(2001)029<0699:DOSAII>2.0.CO;2 – ident: ref23 doi: 10.1016/j.marchem.2010.01.001 – ident: ref24 doi: 10.1016/j.gca.2012.06.003 – ident: ref10 doi: 10.1111/j.1472-4669.2009.00214.x – ident: ref64 doi: 10.1016/S0016-7037(03)00266-7 – ident: ref34 – ident: ref41 doi: 10.1016/j.gca.2008.05.032 – ident: ref32 doi: 10.1016/S0198-0149(10)80009-3 – ident: ref50 doi: 10.1016/j.gca.2008.05.001 – ident: ref11 doi: 10.1016/S1385-1101(96)00003-2 – ident: ref59 doi: 10.1130/G22647.1 – ident: ref14 doi: 10.1016/j.gca.2010.09.017 – ident: ref65 doi: 10.1016/S0025-3227(00)00122-5 – ident: ref27 doi: 10.1021/es980206o – ident: ref66 doi: 10.1016/j.marchem.2006.10.006 – ident: ref58 doi: 10.1016/S0016-7037(02)00902-X – ident: ref5 doi: 10.2138/gsrmg.55.1.319 – ident: ref9 doi: 10.1016/j.epsl.2005.05.022 – ident: ref26 – ident: ref46 doi: 10.1016/j.chemgeo.2004.09.003 – ident: ref62 doi: 10.1029/2010GB003820 – ident: ref63 doi: 10.1016/j.chemgeo.2007.12.001 – ident: ref45 doi: 10.1016/j.jmarsys.2006.02.003 – ident: ref48 doi: 10.1021/es0109242 – ident: ref17 doi: 10.1016/j.gca.2009.04.026 – ident: ref16 doi: 10.1016/0304-4203(90)90070-S – ident: ref35 doi: 10.1016/j.gca.2009.01.014 – ident: ref29 doi: 10.1029/2008GL035841 – ident: ref33 doi: 10.1002/9780470283134.ch10 – ident: ref54 doi: 10.1016/j.epsl.2004.06.001 – ident: ref19 doi: 10.5194/bg-7-2489-2010 – ident: ref30 doi: 10.1016/0304-4203(88)90102-8 – ident: ref4 doi: 10.1016/j.gca.2009.06.027 – ident: ref61 doi: 10.1016/j.epsl.2009.05.044 – ident: ref57 doi: 10.1016/j.gca.2010.04.022 – ident: ref36 doi: 10.1002/9780470988459.ch8 – ident: ref22 doi: 10.1029/2006PA001355 – ident: ref49 doi: 10.1126/science.1105692 – ident: ref44 doi: 10.1016/j.marchem.2003.07.002 – ident: ref51 doi: 10.1016/j.marchem.2005.03.010 – ident: ref6 doi: 10.5194/bg-6-2397-2009 – ident: ref18 doi: 10.1016/j.chemgeo.2010.08.014 – ident: ref12 doi: 10.1016/j.gca.2003.09.011 – ident: ref42 doi: 10.1016/j.jmarsys.2004.10.001 – ident: ref60 doi: 10.1016/j.chemosphere.2007.07.051 – ident: ref28 – ident: ref40 doi: 10.1016/S0304-4203(03)00048-3 – ident: ref21 – ident: ref15 doi: 10.1016/j.epsl.2008.02.022 – ident: ref47 doi: 10.1016/j.epsl.2011.03.015 – ident: ref25 doi: 10.1146/annurev.earth.36.031207.124139 – ident: ref8 – ident: ref2 doi: 10.1146/annurev.earth.34.031405.125029 – ident: ref31 doi: 10.1002/9780470283134.ch14 – ident: ref52 doi: 10.1016/j.ijms.2004.11.025 – ident: ref13 doi: 10.1111/j.1472-4669.2007.00103.x – ident: ref39 doi: 10.1002/9780470283134.ch12 – ident: ref1 doi: 10.1016/S0012-821X(03)00572-7 – ident: ref38 doi: 10.1007/1-4020-4297-3_05 |
SSID | ssj0038085 |
Score | 2.2586188 |
Snippet | Fe isotope ratios and concentrations of dissolved Fe (Fedis, < 0.45 μm) and of suspended particulate Fe (FeSPM) were analyzed from a depth profile through the... Fe isotope ratios and concentrations of dissolved Fe (Fe.sub.dis, < 0.45 μm) and of suspended particulate Fe (Fe.sub.SPM) were analyzed from a depth profile... Fe isotope ratios and concentrations of dissolved Fe (Fedis , < 0.45 μm) and of suspended particulate Fe (FeSPM ) were analyzed from a depth profile through... Fe isotope ratios and concentrations of dissolved Fe (Fe sub(dis), < 0.45 mu m) and of suspended particulate Fe (Fe sub(SPM)) were analyzed from a depth... Fe isotope ratios and concentrations of dissolved Fe (Fe dis , < 0.45 μm) and of suspended particulate Fe (Fe SPM ) were analyzed from a depth profile through... |
SourceID | doaj proquest gale crossref |
SourceType | Open Website Aggregation Database |
StartPage | 233 |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3Ni9UwEA-yIHgRP_HpKlEET2XbJmnT46742PXgwXVhb2GSTB4L0j5e3_Prr3cm7Vt8B_EivYRmWpKZZiY_OvmNEG91GQ1AbYtQ2VBoa0IBMVVFA76DpLz1mLN8PzXnV_rjtbn-o9QX54RN9MCT4k50SrFTBpqGoonG1HVYlzpA8Ah0pex9y24PpiYfrGyZi3FSdG4KXbXlRNdIuxV94lfsemouYVZW6iAcZdb-v_nmHHCWD8T9eacoT6cRPhR3sH8k7k61I38-Fr8uxmE7rFGmzXQ2IatYznlXkv-zD1-_YZTQRznuxlzrNsp1njHX7EK5RHnTS9oByuHHTciC0Ofmd-reyMCeq5dDyjJnwEQd8hLhibhafvjy_ryYCykUYFS5LSwmAKNVsCoSwqmTQbBVm7xprA8hYguEA23yjMZAMTdhKH3XaLKW7hDVU3HUDz0-E1LV0Vj0HbZ10G0ktGfofXXZeOUJGsFCvNvr060nvgxHOIM17_yKm6R5x5pfiDNW960U81znG2R9N1vf_cv6C_GGjeWYyaLnVJkV7MbRXVx-dqfaVromtNfRmGahNGzJJjCfPKAZMfnVgeTxgSQttXDYvf8m3LzUR0cB3jAJWtkuxOvbbn6S09d6HHYkowgmM5LUz__HrF-Ie3WuylEVlTkWR9vNDl_S3mjrX-Vl8Bt7-w0Z priority: 102 providerName: Directory of Open Access Journals |
Title | Isotope fractionation between dissolved and suspended particulate Fe in the oxic and anoxic water column of the Baltic Sea |
URI | https://www.proquest.com/docview/1285180907 https://search.proquest.com/docview/1315616174 https://doaj.org/article/4ffd935a660244ef99e204cacbeaeaef |
Volume | 10 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Nb9QwELWgFRIXxKdYKCuDkDhFTWI7cU6oi7q0HCrUUqk3a_y1qoSSZbPbAr-eGSdbtAfQXqL1JErG9nieM3mPsfcy9wqg1JkrtMukVi4DH4usAttAFFbbkKp8z6qTS_nlSl2NG279WFa5jYkpUPvO0R75IcZRRVxTef1x-SMj1Sh6uzpKaNxn-0VZ1wS-9PzzNhILnSdJTlyjq0wWdT6QNmLOIg_tggJQSUJmeSF2FqXE3f-vCJ2Wnflj9mjMF_nR0MFP2L3QPmUPBgXJX8_Y79O-W3fLwONq-EIhOZqP1Vec3rZ332-C59B63m_6pHjr-TINGFLuCnwe-HXLMQ_k3c9rlwyhTYe32LzijuJXy7uYbGZAdB38IsBzdjk__vbpJBvlFDJQIl9nOkQAJYXTwiPOKaMKoIs6WlVp65wPNSAa1NESJgNBDIUut00lsc9kE4J4wfbarg0vGRelVzrYJtSlk7VHzKfwemVeWWERIMGEfdj60ywH1gyDaIM8b-yCDtHzhjw_YTNy950VsV2nP7rVwoyTx8gYfSMUVBVmFDLEpgllLh04GwB_ccLeUWcZ4rNoqWBmAZu-N6cX5-ZI6kKWiPkavKfRKHZr7BMYvz_AJyIKrB3Lgx1LnHBut3k7Jsw44Xvzd3hO2Nu7ZjqTitja0G3QRiBYJjwpX_3_Eq_ZwzKpbhRZoQ7Y3nq1CW8w91nbaRrgU7Y_Oz77ej5NOwhTWo3UH1lNBhE |
link.rule.ids | 315,783,787,867,2109,12777,21400,27936,27937,33385,33386,33756,33757,43612,43817,74363,74630 |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lj9MwELZgVwguiKe2sIBBSJyiTWI7cU5oi7ZqYanQPqS9WX5WK6GkNCmvX8-M6y7qAZRLFE-iZGyP50sm30fIW547oXUpM1tIm3EpbKZdKLJKm0YHZqTxscp3Xk0v-ccrcZVeuPWprHIbE2Ogdp3Fd-RHEEcFck3l9fvltwxVo_DrapLQuE32kaoKwNf--GT-5Wwbi5nMoygnrNJVxos639A2QtbCj8wCQ1CJUmZ5wXaWpcje_68YHReeyQNyP2WM9HjTxQ_JLd8-Inc2GpK_HpPfs74buqWnYbX5RyG6mqb6K4rf27uv372junW0X_dR89bRZRwyqN3l6cTT65ZCJki7n9c2Guo27v6A5hW1GMFa2oVoM9ZI2EHPvX5CLicnFx-mWRJUyLRg-ZBJH7QWnFnJHCCdMgivwWvBiEoaa52vNeBBGQyiMs2Qo9Dmpqk49BpvvGdPyV7btf6AUFY6Ib1pfF1aXjtAfQKuV-aVYQYgkh6Rd1t_quWGN0MB3kDPK7PAXfC8Qs-PyBjdfWOFfNfxQLdaqDR9FA_BNUzoqoKcgvvQNL7MudXWeA1bGJE32FkKGS1aLJlZ6HXfq9n5mTrmsuAloL4G7ikZhW6APtHpDwR4IiTB2rE83LGEKWd3m7djQqUp36u_A3REXt8045lYxtb6bg02DOAyIkr-7P-XeEXuTi8-n6rT2fzTc3KvjBocRVaIQ7I3rNb-BWRCg3mZhvsfqTwG7Q |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lj9MwELagKxAXxFMUFjAIiVPUJLYT54S2sNUWULXaZaW9WX5WK6GkNCmvX8-M6y7qAdRLVE-iZjwez9dMvo-QNzx3QutSZraQNuNS2Ey7UGSVNo0OzEjjY5fvojq54B8vxWXqf-pTW-UuJ8ZE7TqL_5FPII8K5JrK60lIbRGnH2bvVt8yVJDCJ61JTuMmOah5xfIROZgeL07PdnmZyTwKdMKOXWW8qPMthSNUMHxilpiOSpQ1ywu2t0VFJv9_5eu4Cc3ukbupeqRH2-m-T2749gG5tdWT_PWQ_J733dCtPA3r7fsK0e009WJRfPbeff3uHdWto_2mj_q3jq5i-KCOl6czT69aClUh7X5e2Wio23j4A4bX1GI2a2kXos1UI3kHPff6EbmYHX95f5IlcYVMC5YPmfRBa8GZlcwB6imD8FoWdTCiksZa52sN2FAGgwhNM-QrtLlpKg4zyBvv2WMyarvWPyGUlU5Ibxpfl5bXDhCggOuVeWWYAbikx-Ttzp9qteXQUIA90PPKLPEQPK_Q82MyRXdfWyH3dfyiWy9VWkqKh-AaJnRVQX3BfWgaX-bcamu8hk8Yk9c4WQrZLVqMk6Xe9L2an5-pIy4LXgICbOA3JaPQDTAnOr2NAHeEhFh7lod7lrD87P7wLiZUWv69-husY_LqehjPxJa21ncbsGEAnRFd8qf_v8RLchsiXX2eLz49I3fKKMdRZIU4JKNhvfHPoSgazIsU7X8A-nwLGw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Isotope+fractionation+between+dissolved+and+suspended+particulate+Fe+in+the+oxic+and+anoxic+water+column+of+the+Baltic+Sea&rft.jtitle=Biogeosciences&rft.au=Staubwasser%2C+M&rft.au=Schoenberg%2C+R&rft.au=von+Blanckenburg%2C+F&rft.au=Kr%C3%BCger%2C+S&rft.date=2013-01-15&rft.pub=Copernicus+GmbH&rft.issn=1726-4170&rft.eissn=1726-4189&rft.volume=10&rft.issue=1&rft.spage=233&rft_id=info:doi/10.5194%2Fbg-10-233-2013&rft.externalDBID=HAS_PDF_LINK&rft.externalDocID=2886696671 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1726-4189&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1726-4189&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1726-4189&client=summon |