Microplastic identification and quantification from organic rich sediments: A validated laboratory protocol

Plastic pollution presents a global environmental concern with potentially widespread ecological, socio-economic and health implications. Methodological advances in microplastic extraction, quantification and identification from sediments have been made. However, integrating these fragmentary advanc...

Full description

Saved in:
Bibliographic Details
Published inEnvironmental pollution (1987) Vol. 262; p. 114298
Main Authors Vermeiren, P., Muñoz, C., Ikejima, K.
Format Journal Article
LanguageEnglish
Published England Elsevier Ltd 01.07.2020
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Plastic pollution presents a global environmental concern with potentially widespread ecological, socio-economic and health implications. Methodological advances in microplastic extraction, quantification and identification from sediments have been made. However, integrating these fragmentary advances into a holistic, cost-effective protocol and applying it to organic rich sediments with fine grain size remains a challenge. Nonetheless, many hot spots of microplastic contamination such as harbour and estuarine sediments are characterised by such sediments. We conducted a series of experiments to integrate methodological advances, and clarify their applicability to organic rich sediments with fine grain size. The resulting protocol consisted of three stages. First, pre-treatment with Fenton’s reagent was found to be efficient in reducing organic matter content, compatible with later Fourier Transform-Infrared Spectroscopy (FT-IR) for polymer identification, although it did affect the size of polyethylene (PE) and polyethylene terephthalate (PET). Secondly, a novel density separation column with a top overflow (the OC-T) obtained recovery rates above 90% for microplastics present in a ZnCL2 solution. Finally, automated epifluorescence microscopic image analysis of Nile Red stained filters with selected validation of polymer identities using FT-IR revealed 91.7% of stained particles to be plastics. A case study on estuarine sediments demonstrated a high extraction efficiency with quantification possible down to 125 μm and detection possible down to 62.5 μm. This makes this protocol suitable for large scale monitoring of microplastics in sediments of estuarine origin provided polymer specific recovery rates, background contamination and uncertainty in Nile Red identification is accounted for. Subject to further validation, the protocol could also offer a solution to similar organic rich sediments with fine grain size, such as some soils and sludge, to improve our ability to conduct cost-effective, large scale monitoring of microplastic contamination. [Display omitted] •Methodological advances were integrated into a holistic microplastic lab protocol.•The protocol targets cost-effective, large scale monitoring of microplastic pollution.•A new density separation column (OC-T column) obtained high extraction efficiency.•Validation of Nile Red fluorescent stained particles revealed 91.7% to be plastics.•Microplastic quantification down to 125 μm was possible in an estuarine case study. We developed a three-stage protocol, integrating current fragmentary methodological advances for microplastic extraction, identification and quantification. A combination of fluorescent quantification with selected polymer identification for particles down to 125 μm makes this protocol suitable for cost-effective, repeatable, large scale monitoring of microplastic contamination in organic rich sediments.
AbstractList Plastic pollution presents a global environmental concern with potentially widespread ecological, socio-economic and health implications. Methodological advances in microplastic extraction, quantification and identification from sediments have been made. However, integrating these fragmentary advances into a holistic, cost-effective protocol and applying it to organic rich sediments with fine grain size remains a challenge. Nonetheless, many hot spots of microplastic contamination such as harbour and estuarine sediments are characterised by such sediments. We conducted a series of experiments to integrate methodological advances, and clarify their applicability to organic rich sediments with fine grain size. The resulting protocol consisted of three stages. First, pre-treatment with Fenton’s reagent was found to be efficient in reducing organic matter content, compatible with later Fourier Transform-Infrared Spectroscopy (FT-IR) for polymer identification, although it did affect the size of polyethylene (PE) and polyethylene terephthalate (PET). Secondly, a novel density separation column with a top overflow (the OC-T) obtained recovery rates above 90% for microplastics present in a ZnCL₂ solution. Finally, automated epifluorescence microscopic image analysis of Nile Red stained filters with selected validation of polymer identities using FT-IR revealed 91.7% of stained particles to be plastics. A case study on estuarine sediments demonstrated a high extraction efficiency with quantification possible down to 125 μm and detection possible down to 62.5 μm. This makes this protocol suitable for large scale monitoring of microplastics in sediments of estuarine origin provided polymer specific recovery rates, background contamination and uncertainty in Nile Red identification is accounted for. Subject to further validation, the protocol could also offer a solution to similar organic rich sediments with fine grain size, such as some soils and sludge, to improve our ability to conduct cost-effective, large scale monitoring of microplastic contamination.
Plastic pollution presents a global environmental concern with potentially widespread ecological, socio-economic and health implications. Methodological advances in microplastic extraction, quantification and identification from sediments have been made. However, integrating these fragmentary advances into a holistic, cost-effective protocol and applying it to organic rich sediments with fine grain size remains a challenge. Nonetheless, many hot spots of microplastic contamination such as harbour and estuarine sediments are characterised by such sediments. We conducted a series of experiments to integrate methodological advances, and clarify their applicability to organic rich sediments with fine grain size. The resulting protocol consisted of three stages. First, pre-treatment with Fenton's reagent was found to be efficient in reducing organic matter content, compatible with later Fourier Transform-Infrared Spectroscopy (FT-IR) for polymer identification, although it did affect the size of polyethylene (PE) and polyethylene terephthalate (PET). Secondly, a novel density separation column with a top overflow (the OC-T) obtained recovery rates above 90% for microplastics present in a ZnCL2 solution. Finally, automated epifluorescence microscopic image analysis of Nile Red stained filters with selected validation of polymer identities using FT-IR revealed 91.7% of stained particles to be plastics. A case study on estuarine sediments demonstrated a high extraction efficiency with quantification possible down to 125 μm and detection possible down to 62.5 μm. This makes this protocol suitable for large scale monitoring of microplastics in sediments of estuarine origin provided polymer specific recovery rates, background contamination and uncertainty in Nile Red identification is accounted for. Subject to further validation, the protocol could also offer a solution to similar organic rich sediments with fine grain size, such as some soils and sludge, to improve our ability to conduct cost-effective, large scale monitoring of microplastic contamination.Plastic pollution presents a global environmental concern with potentially widespread ecological, socio-economic and health implications. Methodological advances in microplastic extraction, quantification and identification from sediments have been made. However, integrating these fragmentary advances into a holistic, cost-effective protocol and applying it to organic rich sediments with fine grain size remains a challenge. Nonetheless, many hot spots of microplastic contamination such as harbour and estuarine sediments are characterised by such sediments. We conducted a series of experiments to integrate methodological advances, and clarify their applicability to organic rich sediments with fine grain size. The resulting protocol consisted of three stages. First, pre-treatment with Fenton's reagent was found to be efficient in reducing organic matter content, compatible with later Fourier Transform-Infrared Spectroscopy (FT-IR) for polymer identification, although it did affect the size of polyethylene (PE) and polyethylene terephthalate (PET). Secondly, a novel density separation column with a top overflow (the OC-T) obtained recovery rates above 90% for microplastics present in a ZnCL2 solution. Finally, automated epifluorescence microscopic image analysis of Nile Red stained filters with selected validation of polymer identities using FT-IR revealed 91.7% of stained particles to be plastics. A case study on estuarine sediments demonstrated a high extraction efficiency with quantification possible down to 125 μm and detection possible down to 62.5 μm. This makes this protocol suitable for large scale monitoring of microplastics in sediments of estuarine origin provided polymer specific recovery rates, background contamination and uncertainty in Nile Red identification is accounted for. Subject to further validation, the protocol could also offer a solution to similar organic rich sediments with fine grain size, such as some soils and sludge, to improve our ability to conduct cost-effective, large scale monitoring of microplastic contamination.
Plastic pollution presents a global environmental concern with potentially widespread ecological, socio-economic and health implications. Methodological advances in microplastic extraction, quantification and identification from sediments have been made. However, integrating these fragmentary advances into a holistic, cost-effective protocol and applying it to organic rich sediments with fine grain size remains a challenge. Nonetheless, many hot spots of microplastic contamination such as harbour and estuarine sediments are characterised by such sediments. We conducted a series of experiments to integrate methodological advances, and clarify their applicability to organic rich sediments with fine grain size. The resulting protocol consisted of three stages. First, pre-treatment with Fenton's reagent was found to be efficient in reducing organic matter content, compatible with later Fourier Transform-Infrared Spectroscopy (FT-IR) for polymer identification, although it did affect the size of polyethylene (PE) and polyethylene terephthalate (PET). Secondly, a novel density separation column with a top overflow (the OC-T) obtained recovery rates above 90% for microplastics present in a ZnCL solution. Finally, automated epifluorescence microscopic image analysis of Nile Red stained filters with selected validation of polymer identities using FT-IR revealed 91.7% of stained particles to be plastics. A case study on estuarine sediments demonstrated a high extraction efficiency with quantification possible down to 125 μm and detection possible down to 62.5 μm. This makes this protocol suitable for large scale monitoring of microplastics in sediments of estuarine origin provided polymer specific recovery rates, background contamination and uncertainty in Nile Red identification is accounted for. Subject to further validation, the protocol could also offer a solution to similar organic rich sediments with fine grain size, such as some soils and sludge, to improve our ability to conduct cost-effective, large scale monitoring of microplastic contamination.
Plastic pollution presents a global environmental concern with potentially widespread ecological, socio-economic and health implications. Methodological advances in microplastic extraction, quantification and identification from sediments have been made. However, integrating these fragmentary advances into a holistic, cost-effective protocol and applying it to organic rich sediments with fine grain size remains a challenge. Nonetheless, many hot spots of microplastic contamination such as harbour and estuarine sediments are characterised by such sediments. We conducted a series of experiments to integrate methodological advances, and clarify their applicability to organic rich sediments with fine grain size. The resulting protocol consisted of three stages. First, pre-treatment with Fenton’s reagent was found to be efficient in reducing organic matter content, compatible with later Fourier Transform-Infrared Spectroscopy (FT-IR) for polymer identification, although it did affect the size of polyethylene (PE) and polyethylene terephthalate (PET). Secondly, a novel density separation column with a top overflow (the OC-T) obtained recovery rates above 90% for microplastics present in a ZnCL2 solution. Finally, automated epifluorescence microscopic image analysis of Nile Red stained filters with selected validation of polymer identities using FT-IR revealed 91.7% of stained particles to be plastics. A case study on estuarine sediments demonstrated a high extraction efficiency with quantification possible down to 125 μm and detection possible down to 62.5 μm. This makes this protocol suitable for large scale monitoring of microplastics in sediments of estuarine origin provided polymer specific recovery rates, background contamination and uncertainty in Nile Red identification is accounted for. Subject to further validation, the protocol could also offer a solution to similar organic rich sediments with fine grain size, such as some soils and sludge, to improve our ability to conduct cost-effective, large scale monitoring of microplastic contamination. [Display omitted] •Methodological advances were integrated into a holistic microplastic lab protocol.•The protocol targets cost-effective, large scale monitoring of microplastic pollution.•A new density separation column (OC-T column) obtained high extraction efficiency.•Validation of Nile Red fluorescent stained particles revealed 91.7% to be plastics.•Microplastic quantification down to 125 μm was possible in an estuarine case study. We developed a three-stage protocol, integrating current fragmentary methodological advances for microplastic extraction, identification and quantification. A combination of fluorescent quantification with selected polymer identification for particles down to 125 μm makes this protocol suitable for cost-effective, repeatable, large scale monitoring of microplastic contamination in organic rich sediments.
ArticleNumber 114298
Author Muñoz, C.
Ikejima, K.
Vermeiren, P.
Author_xml – sequence: 1
  givenname: P.
  surname: Vermeiren
  fullname: Vermeiren, P.
  email: pvermeiren@science.ru.nl
  organization: Laboratory for Coastal Ecology and Conservation, Faculty of Agriculture and Marine Science, Kochi University, Japan
– sequence: 2
  givenname: C.
  surname: Muñoz
  fullname: Muñoz, C.
  organization: Laboratory for Coastal Ecology and Conservation, Faculty of Agriculture and Marine Science, Kochi University, Japan
– sequence: 3
  givenname: K.
  surname: Ikejima
  fullname: Ikejima, K.
  organization: Laboratory for Coastal Ecology and Conservation, Faculty of Agriculture and Marine Science, Kochi University, Japan
BackLink https://www.ncbi.nlm.nih.gov/pubmed/32163807$$D View this record in MEDLINE/PubMed
BookMark eNqFkU1LXDEUhoModbT9B6Vk6eZO83WTXBeCiLYFixtdh0ySazPNTcYkM-C_N_ZakS7q6sDhec6B9z0C-zFFB8BnjJYYYf51vXRxt0lhSRBpK8zIIPfAAktBO84I2wcLRPjQCTbgQ3BUyhohxCilH8AhJZhTicQC_P7pTU6boEv1BnrrYvWjN7r6FKGOFj5s9dvVmNMEU77XseHZm1-wOOunppVTeA53Onirq7Mw6FXKuqb8CDc51WRS-AgORh2K-_Qyj8Hd1eXtxffu-ubbj4vz6073FNVOci00loYaJjkasUbYsJ5gyvveicEIPhjOmKBMCizxuELEup5xaewK9UNPj8HJfLc9fti6UtXki3Eh6OjStijCKJZ0oAN6H6Wi_eGUk4Z-eUG3q8lZtcl-0vlR_c2yAWwGWqClZDe-Ihip58rUWs2VqefK1FxZ007_0Yyvf8KuWfvwnnw2y67lufMuq2K8i6Z1kp2pyib__wNP4ru0NA
CitedBy_id crossref_primary_10_1016_j_marenvres_2023_105951
crossref_primary_10_1177_0734242X20983914
crossref_primary_10_3390_polym15163356
crossref_primary_10_1016_j_marpolbul_2023_115784
crossref_primary_10_1016_j_chemosphere_2024_142832
crossref_primary_10_1016_j_watres_2025_123433
crossref_primary_10_1007_s12257_022_0262_y
crossref_primary_10_1007_s10661_023_11410_7
crossref_primary_10_2965_jwet_23_137
crossref_primary_10_1016_j_jenvman_2023_118240
crossref_primary_10_1016_j_scitotenv_2023_161400
crossref_primary_10_1016_j_cej_2021_132351
crossref_primary_10_1016_j_scitotenv_2023_164878
crossref_primary_10_1016_j_chemosphere_2023_140648
crossref_primary_10_1680_jenge_21_00072
crossref_primary_10_2139_ssrn_4166601
crossref_primary_10_1016_j_jhazmat_2024_136765
crossref_primary_10_3390_su142114338
crossref_primary_10_1002_chem_202102692
crossref_primary_10_1080_10643389_2023_2301052
crossref_primary_10_1016_j_teac_2022_e00181
crossref_primary_10_1007_s00216_025_05810_6
crossref_primary_10_1038_s41598_021_00228_3
crossref_primary_10_1016_j_envpol_2024_125550
crossref_primary_10_1111_sum_12849
crossref_primary_10_4236_jep_2024_1512060
crossref_primary_10_3390_jmse10030390
crossref_primary_10_1016_j_envpol_2021_117308
crossref_primary_10_1016_j_scitotenv_2021_146695
crossref_primary_10_1016_j_psep_2024_02_007
crossref_primary_10_1016_j_watres_2020_116572
crossref_primary_10_1007_s11356_021_17681_2
crossref_primary_10_1016_j_scitotenv_2021_147745
crossref_primary_10_3390_app112210640
crossref_primary_10_1016_j_still_2024_106134
crossref_primary_10_1089_ees_2021_0295
crossref_primary_10_1039_D1AY02154K
crossref_primary_10_1016_j_envpol_2022_120978
crossref_primary_10_1038_s41598_024_70501_8
crossref_primary_10_3390_ani12030297
crossref_primary_10_3390_atmos15111380
crossref_primary_10_1016_j_mex_2024_102638
crossref_primary_10_1016_j_scitotenv_2021_150227
crossref_primary_10_1016_j_watres_2021_117409
crossref_primary_10_1016_j_chemosphere_2022_134220
crossref_primary_10_1016_j_apsoil_2024_105343
crossref_primary_10_3390_polym13101588
crossref_primary_10_1016_j_scitotenv_2021_147670
crossref_primary_10_1007_s13762_021_03591_w
crossref_primary_10_17721_1728_2713_107_14
crossref_primary_10_1016_j_jconhyd_2024_104411
crossref_primary_10_1016_j_marpolbul_2020_111762
crossref_primary_10_1080_15275922_2024_2366772
crossref_primary_10_1016_j_jenvman_2023_118381
crossref_primary_10_1016_j_scitotenv_2021_146225
crossref_primary_10_1016_j_jfca_2022_104856
crossref_primary_10_1186_s12302_024_00898_6
crossref_primary_10_1007_s00128_022_03568_6
crossref_primary_10_3390_toxics10010018
crossref_primary_10_1016_j_scitotenv_2022_160572
crossref_primary_10_1016_j_trac_2024_117559
crossref_primary_10_1016_j_greeac_2024_100191
crossref_primary_10_3390_microplastics2040026
crossref_primary_10_1080_26395940_2021_1960198
crossref_primary_10_1186_s43591_024_00108_3
crossref_primary_10_1016_j_chemosphere_2021_132654
crossref_primary_10_3390_su12219074
crossref_primary_10_1039_D0AY01738H
crossref_primary_10_1186_s43591_024_00093_7
crossref_primary_10_1016_j_jwpe_2024_105277
crossref_primary_10_3390_microplastics1030032
crossref_primary_10_2139_ssrn_4017357
crossref_primary_10_1007_s11270_024_07168_4
crossref_primary_10_1016_j_jhazmat_2020_124525
crossref_primary_10_1016_j_ecoenv_2020_110910
crossref_primary_10_1016_j_ecoenv_2023_115637
crossref_primary_10_1016_j_marenvres_2023_106252
crossref_primary_10_1016_j_heliyon_2022_e09853
crossref_primary_10_1039_D0AY02086A
crossref_primary_10_1002_tqem_22035
crossref_primary_10_3389_fmars_2021_804208
crossref_primary_10_1016_j_scitotenv_2020_144316
crossref_primary_10_1007_s11356_022_21474_6
crossref_primary_10_3390_w14203255
crossref_primary_10_1016_j_cej_2022_139217
crossref_primary_10_1007_s11356_021_17378_6
crossref_primary_10_1016_j_teac_2021_e00151
crossref_primary_10_1016_j_envres_2022_114404
crossref_primary_10_1186_s42269_023_01148_0
crossref_primary_10_3390_su142316017
crossref_primary_10_3390_soilsystems6020054
crossref_primary_10_1016_j_jhazmat_2025_137807
crossref_primary_10_1021_acs_est_2c03695
Cites_doi 10.1071/EN14205
10.1016/j.marpolbul.2013.11.025
10.1016/j.envpol.2013.01.046
10.1016/j.marpolbul.2016.10.002
10.1021/acs.est.9b01363
10.1016/j.marpolbul.2011.05.030
10.1002/anie.201606957
10.1007/s00216-015-8850-8
10.1021/acs.analchem.5b00495
10.1126/sciadv.aax1157
10.1016/j.marpolbul.2016.10.049
10.1039/C6CC08798A
10.1016/j.marpolbul.2017.11.010
10.15436/JESES.2.2.1
10.1021/es903784e
10.1016/j.marpolbul.2011.09.025
10.1016/j.envpol.2013.07.027
10.1016/j.marpolbul.2018.01.066
10.1016/S0025-326X(96)00047-1
10.1038/nmeth.2089
10.1039/C6AY02476A
10.1098/rstb.2008.0304
10.1016/j.marpolbul.2017.08.058
10.1016/j.envpol.2017.11.013
10.1016/j.marpolbul.2013.03.009
10.1016/j.envres.2008.07.025
10.1098/rstb.2008.0205
10.1016/j.envpol.2013.02.031
10.1016/j.scitotenv.2011.11.078
10.1038/srep44501
10.1016/j.gloenvcha.2011.08.005
10.1021/es2031505
10.1016/j.envpol.2017.07.017
ContentType Journal Article
Copyright 2020 The Authors
Copyright © 2020 The Authors. Published by Elsevier Ltd.. All rights reserved.
Copyright_xml – notice: 2020 The Authors
– notice: Copyright © 2020 The Authors. Published by Elsevier Ltd.. All rights reserved.
DBID 6I.
AAFTH
AAYXX
CITATION
NPM
7X8
7S9
L.6
DOI 10.1016/j.envpol.2020.114298
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList AGRICOLA
MEDLINE - Academic
PubMed

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Anatomy & Physiology
Environmental Sciences
EISSN 1873-6424
ExternalDocumentID 32163807
10_1016_j_envpol_2020_114298
S0269749119353060
Genre Journal Article
GroupedDBID ---
--K
--M
-~X
.~1
0R~
1B1
1RT
1~.
29G
4.4
457
53G
5GY
5VS
6I.
6TJ
71M
8P~
9JM
AABNK
AACTN
AAEDT
AAEDW
AAFTH
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
ABEFU
ABFNM
ABFYP
ABJNI
ABLST
ABMAC
ABXDB
ABYKQ
ACDAQ
ACGFS
ACIUM
ACRLP
ADBBV
ADEZE
ADMUD
AEBSH
AEKER
AENEX
AFFNX
AFKWA
AFTJW
AFXIZ
AGHFR
AGUBO
AGYEJ
AHEUO
AHHHB
AI.
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
AKIFW
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLECG
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HLV
HMC
HVGLF
HZ~
IHE
J1W
KCYFY
KOM
LW9
LY9
M41
MO0
N9A
O-L
O9-
OAUVE
OHT
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SAB
SCC
SCU
SDF
SDG
SDP
SEN
SES
SEW
SPCBC
SSJ
SSZ
T5K
TWZ
VH1
WH7
WUQ
XJT
XOL
XPP
ZMT
~G-
AAHBH
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEGFY
AEIPS
AEUPX
AFJKZ
AFPUW
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
NPM
7X8
7S9
L.6
ID FETCH-LOGICAL-a530t-86a7a18c3c4860f1a01c45213655e79c769c64473487181fb02de5468cdb05953
IEDL.DBID .~1
ISSN 0269-7491
1873-6424
IngestDate Thu Jul 10 22:02:01 EDT 2025
Fri Jul 11 04:04:47 EDT 2025
Wed Feb 19 02:31:00 EST 2025
Thu Apr 24 23:16:01 EDT 2025
Tue Jul 01 03:14:53 EDT 2025
Fri Feb 23 02:46:26 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Fourier transform infrared spectroscopy
Nile red dye
Automated particle counting
Density separation
Debris
Fluorescence microscopy
Language English
License This is an open access article under the CC BY license.
Copyright © 2020 The Authors. Published by Elsevier Ltd.. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a530t-86a7a18c3c4860f1a01c45213655e79c769c64473487181fb02de5468cdb05953
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://www.sciencedirect.com/science/article/pii/S0269749119353060
PMID 32163807
PQID 2377346362
PQPubID 23479
ParticipantIDs proquest_miscellaneous_2431839390
proquest_miscellaneous_2377346362
pubmed_primary_32163807
crossref_primary_10_1016_j_envpol_2020_114298
crossref_citationtrail_10_1016_j_envpol_2020_114298
elsevier_sciencedirect_doi_10_1016_j_envpol_2020_114298
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate July 2020
2020-07-00
2020-Jul
20200701
PublicationDateYYYYMMDD 2020-07-01
PublicationDate_xml – month: 07
  year: 2020
  text: July 2020
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle Environmental pollution (1987)
PublicationTitleAlternate Environ Pollut
PublicationYear 2020
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Farrell, Nelson (bib10) 2013; 177
Gregory (bib13) 1996; 32
Tamminga, Hengstmann, Kerstin Fisher (bib38) 2018; 128
Andrady (bib2) 2015
Bergmann, Mützel, Primpke, Tekman, Trachsel, Gerdts (bib5) 2019; 5
Masura, Baker, Foster, Arthur (bib24) 2015
Vermeiren, Muñoz, Ikejima (bib40) 2016; 113
Wentworth (bib43) 1922; 30
Liu, Olesen, Borregaard, Vollertsen (bib19) 2019; 671
Coppock, Cole, Lindeque, Queir, Galloway (bib9) 2017; 230
Löder, Kuczera, Mintenig, Lorenz, Gerdts (bib20) 2015; 12
Nuelle, Dekiff, Remy, Fries (bib29) 2014; 184
Andrady (bib1) 2011; 62
Wagner, Scherer, Alvarez-Munoz, Brennholt, Bourrain, Buchinger, Fries, Grosbois, Klasmeier, Marti, Rodriguez-Mozaz, Urbatzka, Vethaak, Winther-Nielsen, Reifferscheid (bib42) 2014; 26
Miller, Kroon, Motti (bib25) 2017; 123
Seto (bib32) 2011; 21S
Hidalgo-Ruz, Gutow, Thompson, Thiel (bib16) 2012; 46
Wright, Thompson, Galloway (bib44) 2013; 148
Harrison, Ojeda, Romero-González (bib14) 2012; 416
Tagg, Harrison, Ju-Nam, Sapp, Bradley, Sinclair, Ojeda (bib36) 2017; 53
Cole, Lindeque, Halsband, Galloway (bib8) 2011; 62
Fischer (bib12) 2019
Barnes, Galgani, Thompson, Barlaz (bib4) 2009; 364
Norén (bib28) 2007; 11
(bib39) 2014
Browne, Galloway, Thompson (bib6) 2010; 44
Maes, Jessop, Wellner, Haupt, Mayes (bib22) 2017; 7
Mani, Primpke, Lorenz, Gerdts, Burkhardt-Holm (bib23) 2019; 53
Moore (bib26) 2008; 108
Schneider, Rasband, Eliceiri (bib31) 2012; 9
Löder, Gerdts (bib21) 2015
Andrady, Neal (bib3) 2009; 364
Claessens, Van Cauwenberghe, Vandegehuchte, Janssen (bib7) 2013; 70
Hengstmann, Tamminga, vom Bruch, Kerstin (bib15) 2018; 126
Nor, Obbard (bib27) 2014; 79
Ivleva, Wiesheu, Niessner (bib17) 2017; 56
Felsing, Kochleus, Buchinger, Brennholt, Stock, Reifferscheid (bib11) 2018; 234
Tagg, Sapp, Harrison, Ojeda (bib35) 2015; 87
Primpke, Lorenz, Rascher-Friesenhausen, Gerdts (bib30) 2017; 9
Tamminga, Hengstmann, Kerstin Fisher (bib37) 2017; 2
Käppler, Windrich, Löder, Malanin, Fischer, Labrenz, Eichhorn, Voit (bib18) 2015; 407
Wagner, Wang, Ghosal, Rochman, Gassel, Wall (bib41) 2017; 62
Shim, Song, Hong, Jang (bib33) 2016; 113
Nor (10.1016/j.envpol.2020.114298_bib27) 2014; 79
Barnes (10.1016/j.envpol.2020.114298_bib4) 2009; 364
Tamminga (10.1016/j.envpol.2020.114298_bib38) 2018; 128
Masura (10.1016/j.envpol.2020.114298_bib24) 2015; 48
Norén (10.1016/j.envpol.2020.114298_bib28) 2007; 11
Seto (10.1016/j.envpol.2020.114298_bib32) 2011; 21S
Shim (10.1016/j.envpol.2020.114298_bib33) 2016; 113
Wright (10.1016/j.envpol.2020.114298_bib44) 2013; 148
Tagg (10.1016/j.envpol.2020.114298_bib35) 2015; 87
Bergmann (10.1016/j.envpol.2020.114298_bib5) 2019; 5
Nuelle (10.1016/j.envpol.2020.114298_bib29) 2014; 184
Wagner (10.1016/j.envpol.2020.114298_bib41) 2017; 62
Käppler (10.1016/j.envpol.2020.114298_bib18) 2015; 407
Cole (10.1016/j.envpol.2020.114298_bib8) 2011; 62
Moore (10.1016/j.envpol.2020.114298_bib26) 2008; 108
Andrady (10.1016/j.envpol.2020.114298_bib1) 2011; 62
Vermeiren (10.1016/j.envpol.2020.114298_bib40) 2016; 113
Andrady (10.1016/j.envpol.2020.114298_bib2) 2015
Primpke (10.1016/j.envpol.2020.114298_bib30) 2017; 9
Liu (10.1016/j.envpol.2020.114298_bib19) 2019; 671
Mani (10.1016/j.envpol.2020.114298_bib23) 2019; 53
Wagner (10.1016/j.envpol.2020.114298_bib42) 2014; 26
Farrell (10.1016/j.envpol.2020.114298_bib10) 2013; 177
Tamminga (10.1016/j.envpol.2020.114298_bib37) 2017; 2
Wentworth (10.1016/j.envpol.2020.114298_bib43) 1922; 30
Harrison (10.1016/j.envpol.2020.114298_bib14) 2012; 416
Browne (10.1016/j.envpol.2020.114298_bib6) 2010; 44
Löder (10.1016/j.envpol.2020.114298_bib20) 2015; 12
Maes (10.1016/j.envpol.2020.114298_bib22) 2017; 7
(10.1016/j.envpol.2020.114298_bib39) 2014
Andrady (10.1016/j.envpol.2020.114298_bib3) 2009; 364
Ivleva (10.1016/j.envpol.2020.114298_bib17) 2017; 56
Tagg (10.1016/j.envpol.2020.114298_bib36) 2017; 53
Coppock (10.1016/j.envpol.2020.114298_bib9) 2017; 230
Fischer (10.1016/j.envpol.2020.114298_bib12) 2019
Gregory (10.1016/j.envpol.2020.114298_bib13) 1996; 32
Hidalgo-Ruz (10.1016/j.envpol.2020.114298_bib16) 2012; 46
Felsing (10.1016/j.envpol.2020.114298_bib11) 2018; 234
Löder (10.1016/j.envpol.2020.114298_bib21) 2015
Miller (10.1016/j.envpol.2020.114298_bib25) 2017; 123
Hengstmann (10.1016/j.envpol.2020.114298_bib15) 2018; 126
Claessens (10.1016/j.envpol.2020.114298_bib7) 2013; 70
Schneider (10.1016/j.envpol.2020.114298_bib31) 2012; 9
References_xml – volume: 230
  start-page: 829
  year: 2017
  end-page: 837
  ident: bib9
  article-title: A small-scale , portable method for extracting microplastics from marine sediments
  publication-title: Environ. Pollut.
– volume: 56
  start-page: 1720
  year: 2017
  end-page: 1739
  ident: bib17
  article-title: Microplastic in aquatic ecosystems
  publication-title: Angew. Chem. Int. Ed.
– volume: 7
  start-page: 1
  year: 2017
  end-page: 10
  ident: bib22
  article-title: A rapid-screening approach to detect and quantify microplastics based on fluorescent tagging with Nile Red
  publication-title: Sci. Rep.
– volume: 62
  start-page: 1596
  year: 2011
  end-page: 1605
  ident: bib1
  article-title: Microplastics in the marine environment
  publication-title: Mar. Pollut. Bull.
– year: 2015
  ident: bib24
  article-title: Laboratory methods for the analysis of microplastics in the marine environment: recommendations for auantifying synthetic particles in waters and sediments
  publication-title: NOAA technical memorandu, NOS-OR&R
– volume: 62
  start-page: 2588
  year: 2017
  end-page: 2597
  ident: bib41
  article-title: Novel method for the extraction and identification of microplastics in ocean trawl and fish gut matrices
  publication-title: Anal. Methods
– volume: 26
  start-page: 12
  year: 2014
  ident: bib42
  article-title: Microplastics in freshwater ecosystems: what we know and what we need to know
  publication-title: ESEU
– volume: 62
  start-page: 2588
  year: 2011
  end-page: 2597
  ident: bib8
  article-title: Microplastics as contaminants in the marine environment: a review
  publication-title: Mar. Pollut. Bull.
– volume: 46
  start-page: 3060
  year: 2012
  end-page: 3075
  ident: bib16
  article-title: Microplastics in the marine environment: a review of the methods used for identification and quantification
  publication-title: Environ. Sci. Technol.
– volume: 364
  start-page: 1985
  year: 2009
  end-page: 1998
  ident: bib4
  article-title: Accumulation and fragmentation of plastic debris in global environments
  publication-title: Phil. Trans. Roy. Soc. Lond.
– volume: 5
  year: 2019
  ident: bib5
  article-title: White and wonderful? Microplastics prevail in snow from the alps to the arctic
  publication-title: Sci. Adv.
– volume: 416
  start-page: 455
  year: 2012
  end-page: 463
  ident: bib14
  article-title: The applicability of reflectance micro-Fourier-transform infrared spectroscopy for the detection of synthetic microplastics in marine sediments
  publication-title: Sci. Total Environ.
– volume: 148
  start-page: 483
  year: 2013
  end-page: 492
  ident: bib44
  article-title: The physical impacts of microplastics on marine organisms: a review
  publication-title: Environ. Pol.
– volume: 12
  start-page: 563
  year: 2015
  end-page: 581
  ident: bib20
  article-title: Focal plane array detector-based micro-Fourier-transform infrared imaging for the analysis of microplastics in environmental samples
  publication-title: Environ. Chem.
– volume: 21S
  start-page: 94
  year: 2011
  end-page: 107
  ident: bib32
  article-title: Exploring the dynamics of migration to mega-delta cities in Asia and Africa: contemporary drivers and future scenarios
  publication-title: Global Environ. Change
– volume: 407
  start-page: 6791
  year: 2015
  end-page: 6801
  ident: bib18
  article-title: Identification of microplastics by FTIR and Raman microscopy: a novel silicon filter substrate opens the important spectral range below 1300 cm(-1) for FTIR transmission measurements
  publication-title: Anal. Bioanal. Chem.
– volume: 70
  start-page: 227
  year: 2013
  end-page: 233
  ident: bib7
  article-title: New techniques for the detection of microplastics in sediments and field collected organisms
  publication-title: Mar. Pollut. Bull.
– volume: 128
  start-page: 601
  year: 2018
  end-page: 608
  ident: bib38
  article-title: Microplastic analysis in the south Funen Archipelago, Baltic Sea, implementing manta trawling and bulk sampling
  publication-title: Mar. Pollut. Bull.
– volume: 113
  start-page: 469
  year: 2016
  end-page: 476
  ident: bib33
  article-title: Identification and quantification of microplastics using Nile Red staining
  publication-title: Mar. Pollut. Bull.
– volume: 30
  start-page: 377
  year: 1922
  end-page: 392
  ident: bib43
  article-title: A scale of grade and class rerms for clastic sediments
  publication-title: J. Geol.
– volume: 108
  start-page: 131
  year: 2008
  end-page: 139
  ident: bib26
  article-title: Synthetic polymers in the marine environment: a rapidly increasing, long-term threat
  publication-title: Environ. Res.
– volume: 79
  start-page: 278
  year: 2014
  end-page: 283
  ident: bib27
  article-title: Microplastics in Singapore’s coastal mangrove ecosystems
  publication-title: Mar. Pollut. Bull.
– volume: 44
  start-page: 3404
  year: 2010
  end-page: 3409
  ident: bib6
  article-title: Spatial patterns of plastic debris along estuarine shorelines
  publication-title: Environ. Sci. Technol.
– volume: 671
  start-page: 992
  year: 2019
  end-page: 1000
  ident: bib19
  article-title: Microplastics in urban and highway stormwater retention ponds
  publication-title: STOTEN
– volume: 113
  start-page: 7
  year: 2016
  end-page: 16
  ident: bib40
  article-title: Sources and sinks of plastic debris in estuaries: a conceptual model integrating biological, physical and chemical distribution mechanisms
  publication-title: Mar. Pollut. Bull.
– volume: 9
  start-page: 671
  year: 2012
  end-page: 675
  ident: bib31
  article-title: NIH Image to ImageJ: 25 years of image analysis
  publication-title: Nat. Methods
– volume: 2
  year: 2017
  ident: bib37
  article-title: Nile red staining as a subsidiary method for microplastic quantification: a comparison of three solvents and factors influencing application reliability
  publication-title: JESES
– volume: 234
  start-page: 20
  year: 2018
  end-page: 28
  ident: bib11
  article-title: A new approach in separating microplastics from environmental samples based on their electrostatic behavior
  publication-title: Environ. Pol.
– volume: 177
  start-page: 1
  year: 2013
  end-page: 3
  ident: bib10
  article-title: Trophic level transfer of microplastic: Mytilus edulis (L.) to Carcinus maenas (L.)
  publication-title: Environ. Pol.
– year: 2019
  ident: bib12
  article-title: Distribution of Microplastics in Marine Species of the Wadden Sea along the Coastline of Schleswig-Holstein
– volume: 9
  start-page: 1499
  year: 2017
  end-page: 1511
  ident: bib30
  article-title: An automated approach for microplastics analysis using focal plane array (FPA) FTIR miscroscopy and image analysis
  publication-title: Anal. Methods
– volume: 11
  year: 2007
  ident: bib28
  article-title: Small plastic particles in coastal Swedish waters
  publication-title: KIMO Rep.
– volume: 53
  start-page: 6053
  year: 2019
  end-page: 6062
  ident: bib23
  article-title: Microplastic pollution in benthic midstream sediments of the Rhine river
  publication-title: Environ. Sci. Technol.
– volume: 87
  start-page: 6032
  year: 2015
  end-page: 6040
  ident: bib35
  article-title: Identification and quantification of microplastics in wastewater using focal plane array-based reflectance micro-FT-IR imaging
  publication-title: Anal. Chem.
– volume: 364
  year: 2009
  ident: bib3
  article-title: Applications and societal benefits of plastics
  publication-title: Philos. Trans. Royal Soc. B
– volume: 123
  start-page: 6
  year: 2017
  end-page: 18
  ident: bib25
  article-title: Recovering microplastics from marine samples: a review of current practices
  publication-title: Mar. Pollut. Bull.
– year: 2014
  ident: bib39
  article-title: UNEP Year Book 2014: Emerging Issues in Our Global Environment
– volume: 53
  start-page: 372
  year: 2017
  end-page: 375
  ident: bib36
  article-title: Fenton’s reagent for the rapid and efficient isolation of microplastics from wastewater
  publication-title: Chem. Commun.
– start-page: 201
  year: 2015
  end-page: 227
  ident: bib21
  article-title: Chapter 8, Methodology used for the detection and identification of microplastics - a critical appraisal
  publication-title: Marine Anthropogenic Litter
– start-page: 57
  year: 2015
  end-page: 72
  ident: bib2
  article-title: Persistence of plastics litter in the oceans
  publication-title: Marine Anthropogenic Litter
– volume: 184
  start-page: 161
  year: 2014
  end-page: 169
  ident: bib29
  article-title: A new analytical approach for monitoring microplastics in marine sediments
  publication-title: Environ. Pol.
– volume: 32
  start-page: 867
  year: 1996
  end-page: 871
  ident: bib13
  article-title: Plastic ‘scrubbers’ in hand cleansers: a further (and minor) source for marine pollution identified
  publication-title: Mar. Pollut. Bull.
– volume: 126
  start-page: 263
  year: 2018
  end-page: 274
  ident: bib15
  article-title: Microplastic in beach sediments of the Isle of Rügen (Baltic Sea) – implementing a novel glass elutriation column
  publication-title: Mar. Pollut. Bull.
– volume: 12
  start-page: 563
  year: 2015
  ident: 10.1016/j.envpol.2020.114298_bib20
  article-title: Focal plane array detector-based micro-Fourier-transform infrared imaging for the analysis of microplastics in environmental samples
  publication-title: Environ. Chem.
  doi: 10.1071/EN14205
– volume: 79
  start-page: 278
  year: 2014
  ident: 10.1016/j.envpol.2020.114298_bib27
  article-title: Microplastics in Singapore’s coastal mangrove ecosystems
  publication-title: Mar. Pollut. Bull.
  doi: 10.1016/j.marpolbul.2013.11.025
– start-page: 201
  year: 2015
  ident: 10.1016/j.envpol.2020.114298_bib21
  article-title: Chapter 8, Methodology used for the detection and identification of microplastics - a critical appraisal
– volume: 177
  start-page: 1
  year: 2013
  ident: 10.1016/j.envpol.2020.114298_bib10
  article-title: Trophic level transfer of microplastic: Mytilus edulis (L.) to Carcinus maenas (L.)
  publication-title: Environ. Pol.
  doi: 10.1016/j.envpol.2013.01.046
– volume: 113
  start-page: 7
  year: 2016
  ident: 10.1016/j.envpol.2020.114298_bib40
  article-title: Sources and sinks of plastic debris in estuaries: a conceptual model integrating biological, physical and chemical distribution mechanisms
  publication-title: Mar. Pollut. Bull.
  doi: 10.1016/j.marpolbul.2016.10.002
– volume: 53
  start-page: 6053
  year: 2019
  ident: 10.1016/j.envpol.2020.114298_bib23
  article-title: Microplastic pollution in benthic midstream sediments of the Rhine river
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/acs.est.9b01363
– volume: 62
  start-page: 1596
  year: 2011
  ident: 10.1016/j.envpol.2020.114298_bib1
  article-title: Microplastics in the marine environment
  publication-title: Mar. Pollut. Bull.
  doi: 10.1016/j.marpolbul.2011.05.030
– volume: 56
  start-page: 1720
  year: 2017
  ident: 10.1016/j.envpol.2020.114298_bib17
  article-title: Microplastic in aquatic ecosystems
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201606957
– volume: 407
  start-page: 6791
  year: 2015
  ident: 10.1016/j.envpol.2020.114298_bib18
  article-title: Identification of microplastics by FTIR and Raman microscopy: a novel silicon filter substrate opens the important spectral range below 1300 cm(-1) for FTIR transmission measurements
  publication-title: Anal. Bioanal. Chem.
  doi: 10.1007/s00216-015-8850-8
– year: 2014
  ident: 10.1016/j.envpol.2020.114298_bib39
– volume: 87
  start-page: 6032
  year: 2015
  ident: 10.1016/j.envpol.2020.114298_bib35
  article-title: Identification and quantification of microplastics in wastewater using focal plane array-based reflectance micro-FT-IR imaging
  publication-title: Anal. Chem.
  doi: 10.1021/acs.analchem.5b00495
– volume: 30
  start-page: 377
  year: 1922
  ident: 10.1016/j.envpol.2020.114298_bib43
  article-title: A scale of grade and class rerms for clastic sediments
  publication-title: J. Geol.
– volume: 5
  year: 2019
  ident: 10.1016/j.envpol.2020.114298_bib5
  article-title: White and wonderful? Microplastics prevail in snow from the alps to the arctic
  publication-title: Sci. Adv.
  doi: 10.1126/sciadv.aax1157
– volume: 113
  start-page: 469
  year: 2016
  ident: 10.1016/j.envpol.2020.114298_bib33
  article-title: Identification and quantification of microplastics using Nile Red staining
  publication-title: Mar. Pollut. Bull.
  doi: 10.1016/j.marpolbul.2016.10.049
– volume: 53
  start-page: 372
  year: 2017
  ident: 10.1016/j.envpol.2020.114298_bib36
  article-title: Fenton’s reagent for the rapid and efficient isolation of microplastics from wastewater
  publication-title: Chem. Commun.
  doi: 10.1039/C6CC08798A
– volume: 126
  start-page: 263
  year: 2018
  ident: 10.1016/j.envpol.2020.114298_bib15
  article-title: Microplastic in beach sediments of the Isle of Rügen (Baltic Sea) – implementing a novel glass elutriation column
  publication-title: Mar. Pollut. Bull.
  doi: 10.1016/j.marpolbul.2017.11.010
– volume: 671
  start-page: 992
  year: 2019
  ident: 10.1016/j.envpol.2020.114298_bib19
  article-title: Microplastics in urban and highway stormwater retention ponds
  publication-title: STOTEN
– volume: 2
  year: 2017
  ident: 10.1016/j.envpol.2020.114298_bib37
  article-title: Nile red staining as a subsidiary method for microplastic quantification: a comparison of three solvents and factors influencing application reliability
  publication-title: JESES
  doi: 10.15436/JESES.2.2.1
– volume: 44
  start-page: 3404
  year: 2010
  ident: 10.1016/j.envpol.2020.114298_bib6
  article-title: Spatial patterns of plastic debris along estuarine shorelines
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es903784e
– volume: 62
  start-page: 2588
  year: 2011
  ident: 10.1016/j.envpol.2020.114298_bib8
  article-title: Microplastics as contaminants in the marine environment: a review
  publication-title: Mar. Pollut. Bull.
  doi: 10.1016/j.marpolbul.2011.09.025
– volume: 48
  year: 2015
  ident: 10.1016/j.envpol.2020.114298_bib24
  article-title: Laboratory methods for the analysis of microplastics in the marine environment: recommendations for auantifying synthetic particles in waters and sediments
  publication-title: NOAA technical memorandu, NOS-OR&R
– volume: 184
  start-page: 161
  year: 2014
  ident: 10.1016/j.envpol.2020.114298_bib29
  article-title: A new analytical approach for monitoring microplastics in marine sediments
  publication-title: Environ. Pol.
  doi: 10.1016/j.envpol.2013.07.027
– volume: 128
  start-page: 601
  year: 2018
  ident: 10.1016/j.envpol.2020.114298_bib38
  article-title: Microplastic analysis in the south Funen Archipelago, Baltic Sea, implementing manta trawling and bulk sampling
  publication-title: Mar. Pollut. Bull.
  doi: 10.1016/j.marpolbul.2018.01.066
– volume: 32
  start-page: 867
  year: 1996
  ident: 10.1016/j.envpol.2020.114298_bib13
  article-title: Plastic ‘scrubbers’ in hand cleansers: a further (and minor) source for marine pollution identified
  publication-title: Mar. Pollut. Bull.
  doi: 10.1016/S0025-326X(96)00047-1
– volume: 9
  start-page: 671
  year: 2012
  ident: 10.1016/j.envpol.2020.114298_bib31
  article-title: NIH Image to ImageJ: 25 years of image analysis
  publication-title: Nat. Methods
  doi: 10.1038/nmeth.2089
– volume: 9
  start-page: 1499
  year: 2017
  ident: 10.1016/j.envpol.2020.114298_bib30
  article-title: An automated approach for microplastics analysis using focal plane array (FPA) FTIR miscroscopy and image analysis
  publication-title: Anal. Methods
  doi: 10.1039/C6AY02476A
– start-page: 57
  year: 2015
  ident: 10.1016/j.envpol.2020.114298_bib2
  article-title: Persistence of plastics litter in the oceans
– volume: 364
  year: 2009
  ident: 10.1016/j.envpol.2020.114298_bib3
  article-title: Applications and societal benefits of plastics
  publication-title: Philos. Trans. Royal Soc. B
  doi: 10.1098/rstb.2008.0304
– volume: 123
  start-page: 6
  year: 2017
  ident: 10.1016/j.envpol.2020.114298_bib25
  article-title: Recovering microplastics from marine samples: a review of current practices
  publication-title: Mar. Pollut. Bull.
  doi: 10.1016/j.marpolbul.2017.08.058
– volume: 234
  start-page: 20
  year: 2018
  ident: 10.1016/j.envpol.2020.114298_bib11
  article-title: A new approach in separating microplastics from environmental samples based on their electrostatic behavior
  publication-title: Environ. Pol.
  doi: 10.1016/j.envpol.2017.11.013
– volume: 11
  year: 2007
  ident: 10.1016/j.envpol.2020.114298_bib28
  article-title: Small plastic particles in coastal Swedish waters
  publication-title: KIMO Rep.
– volume: 26
  start-page: 12
  year: 2014
  ident: 10.1016/j.envpol.2020.114298_bib42
  article-title: Microplastics in freshwater ecosystems: what we know and what we need to know
  publication-title: ESEU
– volume: 70
  start-page: 227
  year: 2013
  ident: 10.1016/j.envpol.2020.114298_bib7
  article-title: New techniques for the detection of microplastics in sediments and field collected organisms
  publication-title: Mar. Pollut. Bull.
  doi: 10.1016/j.marpolbul.2013.03.009
– volume: 108
  start-page: 131
  year: 2008
  ident: 10.1016/j.envpol.2020.114298_bib26
  article-title: Synthetic polymers in the marine environment: a rapidly increasing, long-term threat
  publication-title: Environ. Res.
  doi: 10.1016/j.envres.2008.07.025
– volume: 62
  start-page: 2588
  year: 2017
  ident: 10.1016/j.envpol.2020.114298_bib41
  article-title: Novel method for the extraction and identification of microplastics in ocean trawl and fish gut matrices
  publication-title: Anal. Methods
– volume: 364
  start-page: 1985
  year: 2009
  ident: 10.1016/j.envpol.2020.114298_bib4
  article-title: Accumulation and fragmentation of plastic debris in global environments
  publication-title: Phil. Trans. Roy. Soc. Lond.
  doi: 10.1098/rstb.2008.0205
– year: 2019
  ident: 10.1016/j.envpol.2020.114298_bib12
– volume: 148
  start-page: 483
  year: 2013
  ident: 10.1016/j.envpol.2020.114298_bib44
  article-title: The physical impacts of microplastics on marine organisms: a review
  publication-title: Environ. Pol.
  doi: 10.1016/j.envpol.2013.02.031
– volume: 416
  start-page: 455
  year: 2012
  ident: 10.1016/j.envpol.2020.114298_bib14
  article-title: The applicability of reflectance micro-Fourier-transform infrared spectroscopy for the detection of synthetic microplastics in marine sediments
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2011.11.078
– volume: 7
  start-page: 1
  year: 2017
  ident: 10.1016/j.envpol.2020.114298_bib22
  article-title: A rapid-screening approach to detect and quantify microplastics based on fluorescent tagging with Nile Red
  publication-title: Sci. Rep.
  doi: 10.1038/srep44501
– volume: 21S
  start-page: 94
  year: 2011
  ident: 10.1016/j.envpol.2020.114298_bib32
  article-title: Exploring the dynamics of migration to mega-delta cities in Asia and Africa: contemporary drivers and future scenarios
  publication-title: Global Environ. Change
  doi: 10.1016/j.gloenvcha.2011.08.005
– volume: 46
  start-page: 3060
  year: 2012
  ident: 10.1016/j.envpol.2020.114298_bib16
  article-title: Microplastics in the marine environment: a review of the methods used for identification and quantification
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es2031505
– volume: 230
  start-page: 829
  year: 2017
  ident: 10.1016/j.envpol.2020.114298_bib9
  article-title: A small-scale , portable method for extracting microplastics from marine sediments
  publication-title: Environ. Pollut.
  doi: 10.1016/j.envpol.2017.07.017
SSID ssj0004333
Score 2.597824
Snippet Plastic pollution presents a global environmental concern with potentially widespread ecological, socio-economic and health implications. Methodological...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 114298
SubjectTerms Automated particle counting
automation
case studies
cost effectiveness
Debris
Density separation
estuaries
estuarine sediments
filters
Fluorescence microscopy
Fourier transform infrared spectroscopy
image analysis
microplastics
monitoring
Nile red dye
organic matter
pollution
polyethylene
polyethylene terephthalates
sludge
socioeconomics
soil
uncertainty
Title Microplastic identification and quantification from organic rich sediments: A validated laboratory protocol
URI https://dx.doi.org/10.1016/j.envpol.2020.114298
https://www.ncbi.nlm.nih.gov/pubmed/32163807
https://www.proquest.com/docview/2377346362
https://www.proquest.com/docview/2431839390
Volume 262
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwEB4huNBDBUtpl5eMVPXmbhIncdLbCoG2reDSInGzvLZX3QLJwu4iceG3d8Z2gB4oUo-xxpY1M575HM8D4KMW2aRKdMLHJrWcntZ4pbXkrjLW1NbWwpdjOD0rR-f5t4viYgWOulwYCquMtj_YdG-t48ggcnMwm04HP_D2gGAYD2stCgS-dG_Pc0la_vnhKcwjF6GdPBJzou7S53yMl2vuZi09QGS-aG5WVy-5p5fgp3dDJxvwNuJHNgxb3IQV1_Rga9jg3fn6nn1iPqLT_yrvwZtnxQZ7sH38lNOGK8RDPd-Cy1MKypshjMY12dTG-CEvMqYby26W-vkQZaSw0A3KMDSjv9gcuehT5b6wIUPVndJvBMuigrW394zKQbSoc-_g_OT459GIxx4MXCNTF7wqtdRpZYShblWTVCepydHli7IonKyNLGuDkIpq5KCXSyfjJLOuyEsU9RiRWyG2YbVpG_cBmJEuq1BlLOWzam000uHyAidNMpHbPoiO9crEAuXUJ-NKdZFov1UQmCKBqSCwPvDHWbNQoOMVetlJVf2laAp9yCszDzslUHgG6WFFN65dzlUmJDKgRCzwD5qcrGct6qQP74MGPe5XZISKE7nz33vbhXX6CnHEe7C6uF26fURLi_GBPw4HsDb8-n109gfUAxX3
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LTxsxEB6hcKA9VCVASQvFSBU3K7vrfXKLECg8kktB4mY5tqOmpbspSSrx7ztje4EeKFKvXo9lzYxnPq_nAfBFiWRaRiriEx0bTk9rvFSq4LbURlfGVMKVYxiN8-FNenGb3a7BSZsLQ2GVwfZ7m-6sdRjpB27257NZ_yveHhAM42GtRIbAF-_t61SdKuvA-uD8cjh-So8UvqM8zudE0GbQuTAvW_-eN_QGkbi6uUlVvuShXkKgzhOdvYd3AUKygd_lJqzZugtbgxqvzz8f2BFzQZ3ub3kX3j6rN9iFndOntDZcIZzrxRb8GFFc3hyRNK7JZiaEEDmpMVUb9mulng9RUgrzDaE0Q0v6jS2QkS5b7pgNGGrvjP4kGBZ0rLl_YFQRokG124abs9PrkyEPbRi4Qr4ueZmrQsWlFpoaVk1jFcU6Ra8v8iyzRaWLvNKIqqhMDjq6eDqJEmOzNEdpTxC8ZWIHOnVT211gurBJiVpjKKVVKa1wHi4vkGiaiNT0QLSslzrUKKdWGXeyDUb7Lr3AJAlMeoH1gD9SzX2NjlfmF61U5V-6JtGNvEJ52CqBxGNIbyuqts1qIRNRIANyhAP_mJOSAa1EFfXgg9egx_2KhIBxVHz8770dwMbwenQlr87Hl5_gDX3xYcV70Fner-w-gqfl5HM4HH8AR_oYqA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Microplastic+identification+and+quantification+from+organic+rich+sediments%3A+A+validated+laboratory+protocol&rft.jtitle=Environmental+pollution+%281987%29&rft.au=Vermeiren%2C+P&rft.au=Mu%C3%B1oz%2C+C&rft.au=Ikejima%2C+K&rft.date=2020-07-01&rft.eissn=1873-6424&rft.volume=262&rft.spage=114298&rft_id=info:doi/10.1016%2Fj.envpol.2020.114298&rft_id=info%3Apmid%2F32163807&rft.externalDocID=32163807
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0269-7491&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0269-7491&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0269-7491&client=summon