Microplastic identification and quantification from organic rich sediments: A validated laboratory protocol
Plastic pollution presents a global environmental concern with potentially widespread ecological, socio-economic and health implications. Methodological advances in microplastic extraction, quantification and identification from sediments have been made. However, integrating these fragmentary advanc...
Saved in:
Published in | Environmental pollution (1987) Vol. 262; p. 114298 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
England
Elsevier Ltd
01.07.2020
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Plastic pollution presents a global environmental concern with potentially widespread ecological, socio-economic and health implications. Methodological advances in microplastic extraction, quantification and identification from sediments have been made. However, integrating these fragmentary advances into a holistic, cost-effective protocol and applying it to organic rich sediments with fine grain size remains a challenge. Nonetheless, many hot spots of microplastic contamination such as harbour and estuarine sediments are characterised by such sediments. We conducted a series of experiments to integrate methodological advances, and clarify their applicability to organic rich sediments with fine grain size. The resulting protocol consisted of three stages. First, pre-treatment with Fenton’s reagent was found to be efficient in reducing organic matter content, compatible with later Fourier Transform-Infrared Spectroscopy (FT-IR) for polymer identification, although it did affect the size of polyethylene (PE) and polyethylene terephthalate (PET). Secondly, a novel density separation column with a top overflow (the OC-T) obtained recovery rates above 90% for microplastics present in a ZnCL2 solution. Finally, automated epifluorescence microscopic image analysis of Nile Red stained filters with selected validation of polymer identities using FT-IR revealed 91.7% of stained particles to be plastics. A case study on estuarine sediments demonstrated a high extraction efficiency with quantification possible down to 125 μm and detection possible down to 62.5 μm. This makes this protocol suitable for large scale monitoring of microplastics in sediments of estuarine origin provided polymer specific recovery rates, background contamination and uncertainty in Nile Red identification is accounted for. Subject to further validation, the protocol could also offer a solution to similar organic rich sediments with fine grain size, such as some soils and sludge, to improve our ability to conduct cost-effective, large scale monitoring of microplastic contamination.
[Display omitted]
•Methodological advances were integrated into a holistic microplastic lab protocol.•The protocol targets cost-effective, large scale monitoring of microplastic pollution.•A new density separation column (OC-T column) obtained high extraction efficiency.•Validation of Nile Red fluorescent stained particles revealed 91.7% to be plastics.•Microplastic quantification down to 125 μm was possible in an estuarine case study.
We developed a three-stage protocol, integrating current fragmentary methodological advances for microplastic extraction, identification and quantification. A combination of fluorescent quantification with selected polymer identification for particles down to 125 μm makes this protocol suitable for cost-effective, repeatable, large scale monitoring of microplastic contamination in organic rich sediments. |
---|---|
AbstractList | Plastic pollution presents a global environmental concern with potentially widespread ecological, socio-economic and health implications. Methodological advances in microplastic extraction, quantification and identification from sediments have been made. However, integrating these fragmentary advances into a holistic, cost-effective protocol and applying it to organic rich sediments with fine grain size remains a challenge. Nonetheless, many hot spots of microplastic contamination such as harbour and estuarine sediments are characterised by such sediments. We conducted a series of experiments to integrate methodological advances, and clarify their applicability to organic rich sediments with fine grain size. The resulting protocol consisted of three stages. First, pre-treatment with Fenton’s reagent was found to be efficient in reducing organic matter content, compatible with later Fourier Transform-Infrared Spectroscopy (FT-IR) for polymer identification, although it did affect the size of polyethylene (PE) and polyethylene terephthalate (PET). Secondly, a novel density separation column with a top overflow (the OC-T) obtained recovery rates above 90% for microplastics present in a ZnCL₂ solution. Finally, automated epifluorescence microscopic image analysis of Nile Red stained filters with selected validation of polymer identities using FT-IR revealed 91.7% of stained particles to be plastics. A case study on estuarine sediments demonstrated a high extraction efficiency with quantification possible down to 125 μm and detection possible down to 62.5 μm. This makes this protocol suitable for large scale monitoring of microplastics in sediments of estuarine origin provided polymer specific recovery rates, background contamination and uncertainty in Nile Red identification is accounted for. Subject to further validation, the protocol could also offer a solution to similar organic rich sediments with fine grain size, such as some soils and sludge, to improve our ability to conduct cost-effective, large scale monitoring of microplastic contamination. Plastic pollution presents a global environmental concern with potentially widespread ecological, socio-economic and health implications. Methodological advances in microplastic extraction, quantification and identification from sediments have been made. However, integrating these fragmentary advances into a holistic, cost-effective protocol and applying it to organic rich sediments with fine grain size remains a challenge. Nonetheless, many hot spots of microplastic contamination such as harbour and estuarine sediments are characterised by such sediments. We conducted a series of experiments to integrate methodological advances, and clarify their applicability to organic rich sediments with fine grain size. The resulting protocol consisted of three stages. First, pre-treatment with Fenton's reagent was found to be efficient in reducing organic matter content, compatible with later Fourier Transform-Infrared Spectroscopy (FT-IR) for polymer identification, although it did affect the size of polyethylene (PE) and polyethylene terephthalate (PET). Secondly, a novel density separation column with a top overflow (the OC-T) obtained recovery rates above 90% for microplastics present in a ZnCL2 solution. Finally, automated epifluorescence microscopic image analysis of Nile Red stained filters with selected validation of polymer identities using FT-IR revealed 91.7% of stained particles to be plastics. A case study on estuarine sediments demonstrated a high extraction efficiency with quantification possible down to 125 μm and detection possible down to 62.5 μm. This makes this protocol suitable for large scale monitoring of microplastics in sediments of estuarine origin provided polymer specific recovery rates, background contamination and uncertainty in Nile Red identification is accounted for. Subject to further validation, the protocol could also offer a solution to similar organic rich sediments with fine grain size, such as some soils and sludge, to improve our ability to conduct cost-effective, large scale monitoring of microplastic contamination.Plastic pollution presents a global environmental concern with potentially widespread ecological, socio-economic and health implications. Methodological advances in microplastic extraction, quantification and identification from sediments have been made. However, integrating these fragmentary advances into a holistic, cost-effective protocol and applying it to organic rich sediments with fine grain size remains a challenge. Nonetheless, many hot spots of microplastic contamination such as harbour and estuarine sediments are characterised by such sediments. We conducted a series of experiments to integrate methodological advances, and clarify their applicability to organic rich sediments with fine grain size. The resulting protocol consisted of three stages. First, pre-treatment with Fenton's reagent was found to be efficient in reducing organic matter content, compatible with later Fourier Transform-Infrared Spectroscopy (FT-IR) for polymer identification, although it did affect the size of polyethylene (PE) and polyethylene terephthalate (PET). Secondly, a novel density separation column with a top overflow (the OC-T) obtained recovery rates above 90% for microplastics present in a ZnCL2 solution. Finally, automated epifluorescence microscopic image analysis of Nile Red stained filters with selected validation of polymer identities using FT-IR revealed 91.7% of stained particles to be plastics. A case study on estuarine sediments demonstrated a high extraction efficiency with quantification possible down to 125 μm and detection possible down to 62.5 μm. This makes this protocol suitable for large scale monitoring of microplastics in sediments of estuarine origin provided polymer specific recovery rates, background contamination and uncertainty in Nile Red identification is accounted for. Subject to further validation, the protocol could also offer a solution to similar organic rich sediments with fine grain size, such as some soils and sludge, to improve our ability to conduct cost-effective, large scale monitoring of microplastic contamination. Plastic pollution presents a global environmental concern with potentially widespread ecological, socio-economic and health implications. Methodological advances in microplastic extraction, quantification and identification from sediments have been made. However, integrating these fragmentary advances into a holistic, cost-effective protocol and applying it to organic rich sediments with fine grain size remains a challenge. Nonetheless, many hot spots of microplastic contamination such as harbour and estuarine sediments are characterised by such sediments. We conducted a series of experiments to integrate methodological advances, and clarify their applicability to organic rich sediments with fine grain size. The resulting protocol consisted of three stages. First, pre-treatment with Fenton's reagent was found to be efficient in reducing organic matter content, compatible with later Fourier Transform-Infrared Spectroscopy (FT-IR) for polymer identification, although it did affect the size of polyethylene (PE) and polyethylene terephthalate (PET). Secondly, a novel density separation column with a top overflow (the OC-T) obtained recovery rates above 90% for microplastics present in a ZnCL solution. Finally, automated epifluorescence microscopic image analysis of Nile Red stained filters with selected validation of polymer identities using FT-IR revealed 91.7% of stained particles to be plastics. A case study on estuarine sediments demonstrated a high extraction efficiency with quantification possible down to 125 μm and detection possible down to 62.5 μm. This makes this protocol suitable for large scale monitoring of microplastics in sediments of estuarine origin provided polymer specific recovery rates, background contamination and uncertainty in Nile Red identification is accounted for. Subject to further validation, the protocol could also offer a solution to similar organic rich sediments with fine grain size, such as some soils and sludge, to improve our ability to conduct cost-effective, large scale monitoring of microplastic contamination. Plastic pollution presents a global environmental concern with potentially widespread ecological, socio-economic and health implications. Methodological advances in microplastic extraction, quantification and identification from sediments have been made. However, integrating these fragmentary advances into a holistic, cost-effective protocol and applying it to organic rich sediments with fine grain size remains a challenge. Nonetheless, many hot spots of microplastic contamination such as harbour and estuarine sediments are characterised by such sediments. We conducted a series of experiments to integrate methodological advances, and clarify their applicability to organic rich sediments with fine grain size. The resulting protocol consisted of three stages. First, pre-treatment with Fenton’s reagent was found to be efficient in reducing organic matter content, compatible with later Fourier Transform-Infrared Spectroscopy (FT-IR) for polymer identification, although it did affect the size of polyethylene (PE) and polyethylene terephthalate (PET). Secondly, a novel density separation column with a top overflow (the OC-T) obtained recovery rates above 90% for microplastics present in a ZnCL2 solution. Finally, automated epifluorescence microscopic image analysis of Nile Red stained filters with selected validation of polymer identities using FT-IR revealed 91.7% of stained particles to be plastics. A case study on estuarine sediments demonstrated a high extraction efficiency with quantification possible down to 125 μm and detection possible down to 62.5 μm. This makes this protocol suitable for large scale monitoring of microplastics in sediments of estuarine origin provided polymer specific recovery rates, background contamination and uncertainty in Nile Red identification is accounted for. Subject to further validation, the protocol could also offer a solution to similar organic rich sediments with fine grain size, such as some soils and sludge, to improve our ability to conduct cost-effective, large scale monitoring of microplastic contamination. [Display omitted] •Methodological advances were integrated into a holistic microplastic lab protocol.•The protocol targets cost-effective, large scale monitoring of microplastic pollution.•A new density separation column (OC-T column) obtained high extraction efficiency.•Validation of Nile Red fluorescent stained particles revealed 91.7% to be plastics.•Microplastic quantification down to 125 μm was possible in an estuarine case study. We developed a three-stage protocol, integrating current fragmentary methodological advances for microplastic extraction, identification and quantification. A combination of fluorescent quantification with selected polymer identification for particles down to 125 μm makes this protocol suitable for cost-effective, repeatable, large scale monitoring of microplastic contamination in organic rich sediments. |
ArticleNumber | 114298 |
Author | Muñoz, C. Ikejima, K. Vermeiren, P. |
Author_xml | – sequence: 1 givenname: P. surname: Vermeiren fullname: Vermeiren, P. email: pvermeiren@science.ru.nl organization: Laboratory for Coastal Ecology and Conservation, Faculty of Agriculture and Marine Science, Kochi University, Japan – sequence: 2 givenname: C. surname: Muñoz fullname: Muñoz, C. organization: Laboratory for Coastal Ecology and Conservation, Faculty of Agriculture and Marine Science, Kochi University, Japan – sequence: 3 givenname: K. surname: Ikejima fullname: Ikejima, K. organization: Laboratory for Coastal Ecology and Conservation, Faculty of Agriculture and Marine Science, Kochi University, Japan |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/32163807$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkU1LXDEUhoModbT9B6Vk6eZO83WTXBeCiLYFixtdh0ySazPNTcYkM-C_N_ZakS7q6sDhec6B9z0C-zFFB8BnjJYYYf51vXRxt0lhSRBpK8zIIPfAAktBO84I2wcLRPjQCTbgQ3BUyhohxCilH8AhJZhTicQC_P7pTU6boEv1BnrrYvWjN7r6FKGOFj5s9dvVmNMEU77XseHZm1-wOOunppVTeA53Onirq7Mw6FXKuqb8CDc51WRS-AgORh2K-_Qyj8Hd1eXtxffu-ubbj4vz6073FNVOci00loYaJjkasUbYsJ5gyvveicEIPhjOmKBMCizxuELEup5xaewK9UNPj8HJfLc9fti6UtXki3Eh6OjStijCKJZ0oAN6H6Wi_eGUk4Z-eUG3q8lZtcl-0vlR_c2yAWwGWqClZDe-Ihip58rUWs2VqefK1FxZ007_0Yyvf8KuWfvwnnw2y67lufMuq2K8i6Z1kp2pyib__wNP4ru0NA |
CitedBy_id | crossref_primary_10_1016_j_marenvres_2023_105951 crossref_primary_10_1177_0734242X20983914 crossref_primary_10_3390_polym15163356 crossref_primary_10_1016_j_marpolbul_2023_115784 crossref_primary_10_1016_j_chemosphere_2024_142832 crossref_primary_10_1016_j_watres_2025_123433 crossref_primary_10_1007_s12257_022_0262_y crossref_primary_10_1007_s10661_023_11410_7 crossref_primary_10_2965_jwet_23_137 crossref_primary_10_1016_j_jenvman_2023_118240 crossref_primary_10_1016_j_scitotenv_2023_161400 crossref_primary_10_1016_j_cej_2021_132351 crossref_primary_10_1016_j_scitotenv_2023_164878 crossref_primary_10_1016_j_chemosphere_2023_140648 crossref_primary_10_1680_jenge_21_00072 crossref_primary_10_2139_ssrn_4166601 crossref_primary_10_1016_j_jhazmat_2024_136765 crossref_primary_10_3390_su142114338 crossref_primary_10_1002_chem_202102692 crossref_primary_10_1080_10643389_2023_2301052 crossref_primary_10_1016_j_teac_2022_e00181 crossref_primary_10_1007_s00216_025_05810_6 crossref_primary_10_1038_s41598_021_00228_3 crossref_primary_10_1016_j_envpol_2024_125550 crossref_primary_10_1111_sum_12849 crossref_primary_10_4236_jep_2024_1512060 crossref_primary_10_3390_jmse10030390 crossref_primary_10_1016_j_envpol_2021_117308 crossref_primary_10_1016_j_scitotenv_2021_146695 crossref_primary_10_1016_j_psep_2024_02_007 crossref_primary_10_1016_j_watres_2020_116572 crossref_primary_10_1007_s11356_021_17681_2 crossref_primary_10_1016_j_scitotenv_2021_147745 crossref_primary_10_3390_app112210640 crossref_primary_10_1016_j_still_2024_106134 crossref_primary_10_1089_ees_2021_0295 crossref_primary_10_1039_D1AY02154K crossref_primary_10_1016_j_envpol_2022_120978 crossref_primary_10_1038_s41598_024_70501_8 crossref_primary_10_3390_ani12030297 crossref_primary_10_3390_atmos15111380 crossref_primary_10_1016_j_mex_2024_102638 crossref_primary_10_1016_j_scitotenv_2021_150227 crossref_primary_10_1016_j_watres_2021_117409 crossref_primary_10_1016_j_chemosphere_2022_134220 crossref_primary_10_1016_j_apsoil_2024_105343 crossref_primary_10_3390_polym13101588 crossref_primary_10_1016_j_scitotenv_2021_147670 crossref_primary_10_1007_s13762_021_03591_w crossref_primary_10_17721_1728_2713_107_14 crossref_primary_10_1016_j_jconhyd_2024_104411 crossref_primary_10_1016_j_marpolbul_2020_111762 crossref_primary_10_1080_15275922_2024_2366772 crossref_primary_10_1016_j_jenvman_2023_118381 crossref_primary_10_1016_j_scitotenv_2021_146225 crossref_primary_10_1016_j_jfca_2022_104856 crossref_primary_10_1186_s12302_024_00898_6 crossref_primary_10_1007_s00128_022_03568_6 crossref_primary_10_3390_toxics10010018 crossref_primary_10_1016_j_scitotenv_2022_160572 crossref_primary_10_1016_j_trac_2024_117559 crossref_primary_10_1016_j_greeac_2024_100191 crossref_primary_10_3390_microplastics2040026 crossref_primary_10_1080_26395940_2021_1960198 crossref_primary_10_1186_s43591_024_00108_3 crossref_primary_10_1016_j_chemosphere_2021_132654 crossref_primary_10_3390_su12219074 crossref_primary_10_1039_D0AY01738H crossref_primary_10_1186_s43591_024_00093_7 crossref_primary_10_1016_j_jwpe_2024_105277 crossref_primary_10_3390_microplastics1030032 crossref_primary_10_2139_ssrn_4017357 crossref_primary_10_1007_s11270_024_07168_4 crossref_primary_10_1016_j_jhazmat_2020_124525 crossref_primary_10_1016_j_ecoenv_2020_110910 crossref_primary_10_1016_j_ecoenv_2023_115637 crossref_primary_10_1016_j_marenvres_2023_106252 crossref_primary_10_1016_j_heliyon_2022_e09853 crossref_primary_10_1039_D0AY02086A crossref_primary_10_1002_tqem_22035 crossref_primary_10_3389_fmars_2021_804208 crossref_primary_10_1016_j_scitotenv_2020_144316 crossref_primary_10_1007_s11356_022_21474_6 crossref_primary_10_3390_w14203255 crossref_primary_10_1016_j_cej_2022_139217 crossref_primary_10_1007_s11356_021_17378_6 crossref_primary_10_1016_j_teac_2021_e00151 crossref_primary_10_1016_j_envres_2022_114404 crossref_primary_10_1186_s42269_023_01148_0 crossref_primary_10_3390_su142316017 crossref_primary_10_3390_soilsystems6020054 crossref_primary_10_1016_j_jhazmat_2025_137807 crossref_primary_10_1021_acs_est_2c03695 |
Cites_doi | 10.1071/EN14205 10.1016/j.marpolbul.2013.11.025 10.1016/j.envpol.2013.01.046 10.1016/j.marpolbul.2016.10.002 10.1021/acs.est.9b01363 10.1016/j.marpolbul.2011.05.030 10.1002/anie.201606957 10.1007/s00216-015-8850-8 10.1021/acs.analchem.5b00495 10.1126/sciadv.aax1157 10.1016/j.marpolbul.2016.10.049 10.1039/C6CC08798A 10.1016/j.marpolbul.2017.11.010 10.15436/JESES.2.2.1 10.1021/es903784e 10.1016/j.marpolbul.2011.09.025 10.1016/j.envpol.2013.07.027 10.1016/j.marpolbul.2018.01.066 10.1016/S0025-326X(96)00047-1 10.1038/nmeth.2089 10.1039/C6AY02476A 10.1098/rstb.2008.0304 10.1016/j.marpolbul.2017.08.058 10.1016/j.envpol.2017.11.013 10.1016/j.marpolbul.2013.03.009 10.1016/j.envres.2008.07.025 10.1098/rstb.2008.0205 10.1016/j.envpol.2013.02.031 10.1016/j.scitotenv.2011.11.078 10.1038/srep44501 10.1016/j.gloenvcha.2011.08.005 10.1021/es2031505 10.1016/j.envpol.2017.07.017 |
ContentType | Journal Article |
Copyright | 2020 The Authors Copyright © 2020 The Authors. Published by Elsevier Ltd.. All rights reserved. |
Copyright_xml | – notice: 2020 The Authors – notice: Copyright © 2020 The Authors. Published by Elsevier Ltd.. All rights reserved. |
DBID | 6I. AAFTH AAYXX CITATION NPM 7X8 7S9 L.6 |
DOI | 10.1016/j.envpol.2020.114298 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA MEDLINE - Academic PubMed |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Anatomy & Physiology Environmental Sciences |
EISSN | 1873-6424 |
ExternalDocumentID | 32163807 10_1016_j_envpol_2020_114298 S0269749119353060 |
Genre | Journal Article |
GroupedDBID | --- --K --M -~X .~1 0R~ 1B1 1RT 1~. 29G 4.4 457 53G 5GY 5VS 6I. 6TJ 71M 8P~ 9JM AABNK AACTN AAEDT AAEDW AAFTH AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO ABEFU ABFNM ABFYP ABJNI ABLST ABMAC ABXDB ABYKQ ACDAQ ACGFS ACIUM ACRLP ADBBV ADEZE ADMUD AEBSH AEKER AENEX AFFNX AFKWA AFTJW AFXIZ AGHFR AGUBO AGYEJ AHEUO AHHHB AI. AIEXJ AIKHN AITUG AJBFU AJOXV AKIFW ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BKOJK BLECG BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HLV HMC HVGLF HZ~ IHE J1W KCYFY KOM LW9 LY9 M41 MO0 N9A O-L O9- OAUVE OHT OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SAB SCC SCU SDF SDG SDP SEN SES SEW SPCBC SSJ SSZ T5K TWZ VH1 WH7 WUQ XJT XOL XPP ZMT ~G- AAHBH AATTM AAXKI AAYWO AAYXX ABWVN ACRPL ACVFH ADCNI ADNMO AEGFY AEIPS AEUPX AFJKZ AFPUW AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH NPM 7X8 7S9 L.6 |
ID | FETCH-LOGICAL-a530t-86a7a18c3c4860f1a01c45213655e79c769c64473487181fb02de5468cdb05953 |
IEDL.DBID | .~1 |
ISSN | 0269-7491 1873-6424 |
IngestDate | Thu Jul 10 22:02:01 EDT 2025 Fri Jul 11 04:04:47 EDT 2025 Wed Feb 19 02:31:00 EST 2025 Thu Apr 24 23:16:01 EDT 2025 Tue Jul 01 03:14:53 EDT 2025 Fri Feb 23 02:46:26 EST 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Fourier transform infrared spectroscopy Nile red dye Automated particle counting Density separation Debris Fluorescence microscopy |
Language | English |
License | This is an open access article under the CC BY license. Copyright © 2020 The Authors. Published by Elsevier Ltd.. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a530t-86a7a18c3c4860f1a01c45213655e79c769c64473487181fb02de5468cdb05953 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
OpenAccessLink | https://www.sciencedirect.com/science/article/pii/S0269749119353060 |
PMID | 32163807 |
PQID | 2377346362 |
PQPubID | 23479 |
ParticipantIDs | proquest_miscellaneous_2431839390 proquest_miscellaneous_2377346362 pubmed_primary_32163807 crossref_primary_10_1016_j_envpol_2020_114298 crossref_citationtrail_10_1016_j_envpol_2020_114298 elsevier_sciencedirect_doi_10_1016_j_envpol_2020_114298 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | July 2020 2020-07-00 2020-Jul 20200701 |
PublicationDateYYYYMMDD | 2020-07-01 |
PublicationDate_xml | – month: 07 year: 2020 text: July 2020 |
PublicationDecade | 2020 |
PublicationPlace | England |
PublicationPlace_xml | – name: England |
PublicationTitle | Environmental pollution (1987) |
PublicationTitleAlternate | Environ Pollut |
PublicationYear | 2020 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Farrell, Nelson (bib10) 2013; 177 Gregory (bib13) 1996; 32 Tamminga, Hengstmann, Kerstin Fisher (bib38) 2018; 128 Andrady (bib2) 2015 Bergmann, Mützel, Primpke, Tekman, Trachsel, Gerdts (bib5) 2019; 5 Masura, Baker, Foster, Arthur (bib24) 2015 Vermeiren, Muñoz, Ikejima (bib40) 2016; 113 Wentworth (bib43) 1922; 30 Liu, Olesen, Borregaard, Vollertsen (bib19) 2019; 671 Coppock, Cole, Lindeque, Queir, Galloway (bib9) 2017; 230 Löder, Kuczera, Mintenig, Lorenz, Gerdts (bib20) 2015; 12 Nuelle, Dekiff, Remy, Fries (bib29) 2014; 184 Andrady (bib1) 2011; 62 Wagner, Scherer, Alvarez-Munoz, Brennholt, Bourrain, Buchinger, Fries, Grosbois, Klasmeier, Marti, Rodriguez-Mozaz, Urbatzka, Vethaak, Winther-Nielsen, Reifferscheid (bib42) 2014; 26 Miller, Kroon, Motti (bib25) 2017; 123 Seto (bib32) 2011; 21S Hidalgo-Ruz, Gutow, Thompson, Thiel (bib16) 2012; 46 Wright, Thompson, Galloway (bib44) 2013; 148 Harrison, Ojeda, Romero-González (bib14) 2012; 416 Tagg, Harrison, Ju-Nam, Sapp, Bradley, Sinclair, Ojeda (bib36) 2017; 53 Cole, Lindeque, Halsband, Galloway (bib8) 2011; 62 Fischer (bib12) 2019 Barnes, Galgani, Thompson, Barlaz (bib4) 2009; 364 Norén (bib28) 2007; 11 (bib39) 2014 Browne, Galloway, Thompson (bib6) 2010; 44 Maes, Jessop, Wellner, Haupt, Mayes (bib22) 2017; 7 Mani, Primpke, Lorenz, Gerdts, Burkhardt-Holm (bib23) 2019; 53 Moore (bib26) 2008; 108 Schneider, Rasband, Eliceiri (bib31) 2012; 9 Löder, Gerdts (bib21) 2015 Andrady, Neal (bib3) 2009; 364 Claessens, Van Cauwenberghe, Vandegehuchte, Janssen (bib7) 2013; 70 Hengstmann, Tamminga, vom Bruch, Kerstin (bib15) 2018; 126 Nor, Obbard (bib27) 2014; 79 Ivleva, Wiesheu, Niessner (bib17) 2017; 56 Felsing, Kochleus, Buchinger, Brennholt, Stock, Reifferscheid (bib11) 2018; 234 Tagg, Sapp, Harrison, Ojeda (bib35) 2015; 87 Primpke, Lorenz, Rascher-Friesenhausen, Gerdts (bib30) 2017; 9 Tamminga, Hengstmann, Kerstin Fisher (bib37) 2017; 2 Käppler, Windrich, Löder, Malanin, Fischer, Labrenz, Eichhorn, Voit (bib18) 2015; 407 Wagner, Wang, Ghosal, Rochman, Gassel, Wall (bib41) 2017; 62 Shim, Song, Hong, Jang (bib33) 2016; 113 Nor (10.1016/j.envpol.2020.114298_bib27) 2014; 79 Barnes (10.1016/j.envpol.2020.114298_bib4) 2009; 364 Tamminga (10.1016/j.envpol.2020.114298_bib38) 2018; 128 Masura (10.1016/j.envpol.2020.114298_bib24) 2015; 48 Norén (10.1016/j.envpol.2020.114298_bib28) 2007; 11 Seto (10.1016/j.envpol.2020.114298_bib32) 2011; 21S Shim (10.1016/j.envpol.2020.114298_bib33) 2016; 113 Wright (10.1016/j.envpol.2020.114298_bib44) 2013; 148 Tagg (10.1016/j.envpol.2020.114298_bib35) 2015; 87 Bergmann (10.1016/j.envpol.2020.114298_bib5) 2019; 5 Nuelle (10.1016/j.envpol.2020.114298_bib29) 2014; 184 Wagner (10.1016/j.envpol.2020.114298_bib41) 2017; 62 Käppler (10.1016/j.envpol.2020.114298_bib18) 2015; 407 Cole (10.1016/j.envpol.2020.114298_bib8) 2011; 62 Moore (10.1016/j.envpol.2020.114298_bib26) 2008; 108 Andrady (10.1016/j.envpol.2020.114298_bib1) 2011; 62 Vermeiren (10.1016/j.envpol.2020.114298_bib40) 2016; 113 Andrady (10.1016/j.envpol.2020.114298_bib2) 2015 Primpke (10.1016/j.envpol.2020.114298_bib30) 2017; 9 Liu (10.1016/j.envpol.2020.114298_bib19) 2019; 671 Mani (10.1016/j.envpol.2020.114298_bib23) 2019; 53 Wagner (10.1016/j.envpol.2020.114298_bib42) 2014; 26 Farrell (10.1016/j.envpol.2020.114298_bib10) 2013; 177 Tamminga (10.1016/j.envpol.2020.114298_bib37) 2017; 2 Wentworth (10.1016/j.envpol.2020.114298_bib43) 1922; 30 Harrison (10.1016/j.envpol.2020.114298_bib14) 2012; 416 Browne (10.1016/j.envpol.2020.114298_bib6) 2010; 44 Löder (10.1016/j.envpol.2020.114298_bib20) 2015; 12 Maes (10.1016/j.envpol.2020.114298_bib22) 2017; 7 (10.1016/j.envpol.2020.114298_bib39) 2014 Andrady (10.1016/j.envpol.2020.114298_bib3) 2009; 364 Ivleva (10.1016/j.envpol.2020.114298_bib17) 2017; 56 Tagg (10.1016/j.envpol.2020.114298_bib36) 2017; 53 Coppock (10.1016/j.envpol.2020.114298_bib9) 2017; 230 Fischer (10.1016/j.envpol.2020.114298_bib12) 2019 Gregory (10.1016/j.envpol.2020.114298_bib13) 1996; 32 Hidalgo-Ruz (10.1016/j.envpol.2020.114298_bib16) 2012; 46 Felsing (10.1016/j.envpol.2020.114298_bib11) 2018; 234 Löder (10.1016/j.envpol.2020.114298_bib21) 2015 Miller (10.1016/j.envpol.2020.114298_bib25) 2017; 123 Hengstmann (10.1016/j.envpol.2020.114298_bib15) 2018; 126 Claessens (10.1016/j.envpol.2020.114298_bib7) 2013; 70 Schneider (10.1016/j.envpol.2020.114298_bib31) 2012; 9 |
References_xml | – volume: 230 start-page: 829 year: 2017 end-page: 837 ident: bib9 article-title: A small-scale , portable method for extracting microplastics from marine sediments publication-title: Environ. Pollut. – volume: 56 start-page: 1720 year: 2017 end-page: 1739 ident: bib17 article-title: Microplastic in aquatic ecosystems publication-title: Angew. Chem. Int. Ed. – volume: 7 start-page: 1 year: 2017 end-page: 10 ident: bib22 article-title: A rapid-screening approach to detect and quantify microplastics based on fluorescent tagging with Nile Red publication-title: Sci. Rep. – volume: 62 start-page: 1596 year: 2011 end-page: 1605 ident: bib1 article-title: Microplastics in the marine environment publication-title: Mar. Pollut. Bull. – year: 2015 ident: bib24 article-title: Laboratory methods for the analysis of microplastics in the marine environment: recommendations for auantifying synthetic particles in waters and sediments publication-title: NOAA technical memorandu, NOS-OR&R – volume: 62 start-page: 2588 year: 2017 end-page: 2597 ident: bib41 article-title: Novel method for the extraction and identification of microplastics in ocean trawl and fish gut matrices publication-title: Anal. Methods – volume: 26 start-page: 12 year: 2014 ident: bib42 article-title: Microplastics in freshwater ecosystems: what we know and what we need to know publication-title: ESEU – volume: 62 start-page: 2588 year: 2011 end-page: 2597 ident: bib8 article-title: Microplastics as contaminants in the marine environment: a review publication-title: Mar. Pollut. Bull. – volume: 46 start-page: 3060 year: 2012 end-page: 3075 ident: bib16 article-title: Microplastics in the marine environment: a review of the methods used for identification and quantification publication-title: Environ. Sci. Technol. – volume: 364 start-page: 1985 year: 2009 end-page: 1998 ident: bib4 article-title: Accumulation and fragmentation of plastic debris in global environments publication-title: Phil. Trans. Roy. Soc. Lond. – volume: 5 year: 2019 ident: bib5 article-title: White and wonderful? Microplastics prevail in snow from the alps to the arctic publication-title: Sci. Adv. – volume: 416 start-page: 455 year: 2012 end-page: 463 ident: bib14 article-title: The applicability of reflectance micro-Fourier-transform infrared spectroscopy for the detection of synthetic microplastics in marine sediments publication-title: Sci. Total Environ. – volume: 148 start-page: 483 year: 2013 end-page: 492 ident: bib44 article-title: The physical impacts of microplastics on marine organisms: a review publication-title: Environ. Pol. – volume: 12 start-page: 563 year: 2015 end-page: 581 ident: bib20 article-title: Focal plane array detector-based micro-Fourier-transform infrared imaging for the analysis of microplastics in environmental samples publication-title: Environ. Chem. – volume: 21S start-page: 94 year: 2011 end-page: 107 ident: bib32 article-title: Exploring the dynamics of migration to mega-delta cities in Asia and Africa: contemporary drivers and future scenarios publication-title: Global Environ. Change – volume: 407 start-page: 6791 year: 2015 end-page: 6801 ident: bib18 article-title: Identification of microplastics by FTIR and Raman microscopy: a novel silicon filter substrate opens the important spectral range below 1300 cm(-1) for FTIR transmission measurements publication-title: Anal. Bioanal. Chem. – volume: 70 start-page: 227 year: 2013 end-page: 233 ident: bib7 article-title: New techniques for the detection of microplastics in sediments and field collected organisms publication-title: Mar. Pollut. Bull. – volume: 128 start-page: 601 year: 2018 end-page: 608 ident: bib38 article-title: Microplastic analysis in the south Funen Archipelago, Baltic Sea, implementing manta trawling and bulk sampling publication-title: Mar. Pollut. Bull. – volume: 113 start-page: 469 year: 2016 end-page: 476 ident: bib33 article-title: Identification and quantification of microplastics using Nile Red staining publication-title: Mar. Pollut. Bull. – volume: 30 start-page: 377 year: 1922 end-page: 392 ident: bib43 article-title: A scale of grade and class rerms for clastic sediments publication-title: J. Geol. – volume: 108 start-page: 131 year: 2008 end-page: 139 ident: bib26 article-title: Synthetic polymers in the marine environment: a rapidly increasing, long-term threat publication-title: Environ. Res. – volume: 79 start-page: 278 year: 2014 end-page: 283 ident: bib27 article-title: Microplastics in Singapore’s coastal mangrove ecosystems publication-title: Mar. Pollut. Bull. – volume: 44 start-page: 3404 year: 2010 end-page: 3409 ident: bib6 article-title: Spatial patterns of plastic debris along estuarine shorelines publication-title: Environ. Sci. Technol. – volume: 671 start-page: 992 year: 2019 end-page: 1000 ident: bib19 article-title: Microplastics in urban and highway stormwater retention ponds publication-title: STOTEN – volume: 113 start-page: 7 year: 2016 end-page: 16 ident: bib40 article-title: Sources and sinks of plastic debris in estuaries: a conceptual model integrating biological, physical and chemical distribution mechanisms publication-title: Mar. Pollut. Bull. – volume: 9 start-page: 671 year: 2012 end-page: 675 ident: bib31 article-title: NIH Image to ImageJ: 25 years of image analysis publication-title: Nat. Methods – volume: 2 year: 2017 ident: bib37 article-title: Nile red staining as a subsidiary method for microplastic quantification: a comparison of three solvents and factors influencing application reliability publication-title: JESES – volume: 234 start-page: 20 year: 2018 end-page: 28 ident: bib11 article-title: A new approach in separating microplastics from environmental samples based on their electrostatic behavior publication-title: Environ. Pol. – volume: 177 start-page: 1 year: 2013 end-page: 3 ident: bib10 article-title: Trophic level transfer of microplastic: Mytilus edulis (L.) to Carcinus maenas (L.) publication-title: Environ. Pol. – year: 2019 ident: bib12 article-title: Distribution of Microplastics in Marine Species of the Wadden Sea along the Coastline of Schleswig-Holstein – volume: 9 start-page: 1499 year: 2017 end-page: 1511 ident: bib30 article-title: An automated approach for microplastics analysis using focal plane array (FPA) FTIR miscroscopy and image analysis publication-title: Anal. Methods – volume: 11 year: 2007 ident: bib28 article-title: Small plastic particles in coastal Swedish waters publication-title: KIMO Rep. – volume: 53 start-page: 6053 year: 2019 end-page: 6062 ident: bib23 article-title: Microplastic pollution in benthic midstream sediments of the Rhine river publication-title: Environ. Sci. Technol. – volume: 87 start-page: 6032 year: 2015 end-page: 6040 ident: bib35 article-title: Identification and quantification of microplastics in wastewater using focal plane array-based reflectance micro-FT-IR imaging publication-title: Anal. Chem. – volume: 364 year: 2009 ident: bib3 article-title: Applications and societal benefits of plastics publication-title: Philos. Trans. Royal Soc. B – volume: 123 start-page: 6 year: 2017 end-page: 18 ident: bib25 article-title: Recovering microplastics from marine samples: a review of current practices publication-title: Mar. Pollut. Bull. – year: 2014 ident: bib39 article-title: UNEP Year Book 2014: Emerging Issues in Our Global Environment – volume: 53 start-page: 372 year: 2017 end-page: 375 ident: bib36 article-title: Fenton’s reagent for the rapid and efficient isolation of microplastics from wastewater publication-title: Chem. Commun. – start-page: 201 year: 2015 end-page: 227 ident: bib21 article-title: Chapter 8, Methodology used for the detection and identification of microplastics - a critical appraisal publication-title: Marine Anthropogenic Litter – start-page: 57 year: 2015 end-page: 72 ident: bib2 article-title: Persistence of plastics litter in the oceans publication-title: Marine Anthropogenic Litter – volume: 184 start-page: 161 year: 2014 end-page: 169 ident: bib29 article-title: A new analytical approach for monitoring microplastics in marine sediments publication-title: Environ. Pol. – volume: 32 start-page: 867 year: 1996 end-page: 871 ident: bib13 article-title: Plastic ‘scrubbers’ in hand cleansers: a further (and minor) source for marine pollution identified publication-title: Mar. Pollut. Bull. – volume: 126 start-page: 263 year: 2018 end-page: 274 ident: bib15 article-title: Microplastic in beach sediments of the Isle of Rügen (Baltic Sea) – implementing a novel glass elutriation column publication-title: Mar. Pollut. Bull. – volume: 12 start-page: 563 year: 2015 ident: 10.1016/j.envpol.2020.114298_bib20 article-title: Focal plane array detector-based micro-Fourier-transform infrared imaging for the analysis of microplastics in environmental samples publication-title: Environ. Chem. doi: 10.1071/EN14205 – volume: 79 start-page: 278 year: 2014 ident: 10.1016/j.envpol.2020.114298_bib27 article-title: Microplastics in Singapore’s coastal mangrove ecosystems publication-title: Mar. Pollut. Bull. doi: 10.1016/j.marpolbul.2013.11.025 – start-page: 201 year: 2015 ident: 10.1016/j.envpol.2020.114298_bib21 article-title: Chapter 8, Methodology used for the detection and identification of microplastics - a critical appraisal – volume: 177 start-page: 1 year: 2013 ident: 10.1016/j.envpol.2020.114298_bib10 article-title: Trophic level transfer of microplastic: Mytilus edulis (L.) to Carcinus maenas (L.) publication-title: Environ. Pol. doi: 10.1016/j.envpol.2013.01.046 – volume: 113 start-page: 7 year: 2016 ident: 10.1016/j.envpol.2020.114298_bib40 article-title: Sources and sinks of plastic debris in estuaries: a conceptual model integrating biological, physical and chemical distribution mechanisms publication-title: Mar. Pollut. Bull. doi: 10.1016/j.marpolbul.2016.10.002 – volume: 53 start-page: 6053 year: 2019 ident: 10.1016/j.envpol.2020.114298_bib23 article-title: Microplastic pollution in benthic midstream sediments of the Rhine river publication-title: Environ. Sci. Technol. doi: 10.1021/acs.est.9b01363 – volume: 62 start-page: 1596 year: 2011 ident: 10.1016/j.envpol.2020.114298_bib1 article-title: Microplastics in the marine environment publication-title: Mar. Pollut. Bull. doi: 10.1016/j.marpolbul.2011.05.030 – volume: 56 start-page: 1720 year: 2017 ident: 10.1016/j.envpol.2020.114298_bib17 article-title: Microplastic in aquatic ecosystems publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201606957 – volume: 407 start-page: 6791 year: 2015 ident: 10.1016/j.envpol.2020.114298_bib18 article-title: Identification of microplastics by FTIR and Raman microscopy: a novel silicon filter substrate opens the important spectral range below 1300 cm(-1) for FTIR transmission measurements publication-title: Anal. Bioanal. Chem. doi: 10.1007/s00216-015-8850-8 – year: 2014 ident: 10.1016/j.envpol.2020.114298_bib39 – volume: 87 start-page: 6032 year: 2015 ident: 10.1016/j.envpol.2020.114298_bib35 article-title: Identification and quantification of microplastics in wastewater using focal plane array-based reflectance micro-FT-IR imaging publication-title: Anal. Chem. doi: 10.1021/acs.analchem.5b00495 – volume: 30 start-page: 377 year: 1922 ident: 10.1016/j.envpol.2020.114298_bib43 article-title: A scale of grade and class rerms for clastic sediments publication-title: J. Geol. – volume: 5 year: 2019 ident: 10.1016/j.envpol.2020.114298_bib5 article-title: White and wonderful? Microplastics prevail in snow from the alps to the arctic publication-title: Sci. Adv. doi: 10.1126/sciadv.aax1157 – volume: 113 start-page: 469 year: 2016 ident: 10.1016/j.envpol.2020.114298_bib33 article-title: Identification and quantification of microplastics using Nile Red staining publication-title: Mar. Pollut. Bull. doi: 10.1016/j.marpolbul.2016.10.049 – volume: 53 start-page: 372 year: 2017 ident: 10.1016/j.envpol.2020.114298_bib36 article-title: Fenton’s reagent for the rapid and efficient isolation of microplastics from wastewater publication-title: Chem. Commun. doi: 10.1039/C6CC08798A – volume: 126 start-page: 263 year: 2018 ident: 10.1016/j.envpol.2020.114298_bib15 article-title: Microplastic in beach sediments of the Isle of Rügen (Baltic Sea) – implementing a novel glass elutriation column publication-title: Mar. Pollut. Bull. doi: 10.1016/j.marpolbul.2017.11.010 – volume: 671 start-page: 992 year: 2019 ident: 10.1016/j.envpol.2020.114298_bib19 article-title: Microplastics in urban and highway stormwater retention ponds publication-title: STOTEN – volume: 2 year: 2017 ident: 10.1016/j.envpol.2020.114298_bib37 article-title: Nile red staining as a subsidiary method for microplastic quantification: a comparison of three solvents and factors influencing application reliability publication-title: JESES doi: 10.15436/JESES.2.2.1 – volume: 44 start-page: 3404 year: 2010 ident: 10.1016/j.envpol.2020.114298_bib6 article-title: Spatial patterns of plastic debris along estuarine shorelines publication-title: Environ. Sci. Technol. doi: 10.1021/es903784e – volume: 62 start-page: 2588 year: 2011 ident: 10.1016/j.envpol.2020.114298_bib8 article-title: Microplastics as contaminants in the marine environment: a review publication-title: Mar. Pollut. Bull. doi: 10.1016/j.marpolbul.2011.09.025 – volume: 48 year: 2015 ident: 10.1016/j.envpol.2020.114298_bib24 article-title: Laboratory methods for the analysis of microplastics in the marine environment: recommendations for auantifying synthetic particles in waters and sediments publication-title: NOAA technical memorandu, NOS-OR&R – volume: 184 start-page: 161 year: 2014 ident: 10.1016/j.envpol.2020.114298_bib29 article-title: A new analytical approach for monitoring microplastics in marine sediments publication-title: Environ. Pol. doi: 10.1016/j.envpol.2013.07.027 – volume: 128 start-page: 601 year: 2018 ident: 10.1016/j.envpol.2020.114298_bib38 article-title: Microplastic analysis in the south Funen Archipelago, Baltic Sea, implementing manta trawling and bulk sampling publication-title: Mar. Pollut. Bull. doi: 10.1016/j.marpolbul.2018.01.066 – volume: 32 start-page: 867 year: 1996 ident: 10.1016/j.envpol.2020.114298_bib13 article-title: Plastic ‘scrubbers’ in hand cleansers: a further (and minor) source for marine pollution identified publication-title: Mar. Pollut. Bull. doi: 10.1016/S0025-326X(96)00047-1 – volume: 9 start-page: 671 year: 2012 ident: 10.1016/j.envpol.2020.114298_bib31 article-title: NIH Image to ImageJ: 25 years of image analysis publication-title: Nat. Methods doi: 10.1038/nmeth.2089 – volume: 9 start-page: 1499 year: 2017 ident: 10.1016/j.envpol.2020.114298_bib30 article-title: An automated approach for microplastics analysis using focal plane array (FPA) FTIR miscroscopy and image analysis publication-title: Anal. Methods doi: 10.1039/C6AY02476A – start-page: 57 year: 2015 ident: 10.1016/j.envpol.2020.114298_bib2 article-title: Persistence of plastics litter in the oceans – volume: 364 year: 2009 ident: 10.1016/j.envpol.2020.114298_bib3 article-title: Applications and societal benefits of plastics publication-title: Philos. Trans. Royal Soc. B doi: 10.1098/rstb.2008.0304 – volume: 123 start-page: 6 year: 2017 ident: 10.1016/j.envpol.2020.114298_bib25 article-title: Recovering microplastics from marine samples: a review of current practices publication-title: Mar. Pollut. Bull. doi: 10.1016/j.marpolbul.2017.08.058 – volume: 234 start-page: 20 year: 2018 ident: 10.1016/j.envpol.2020.114298_bib11 article-title: A new approach in separating microplastics from environmental samples based on their electrostatic behavior publication-title: Environ. Pol. doi: 10.1016/j.envpol.2017.11.013 – volume: 11 year: 2007 ident: 10.1016/j.envpol.2020.114298_bib28 article-title: Small plastic particles in coastal Swedish waters publication-title: KIMO Rep. – volume: 26 start-page: 12 year: 2014 ident: 10.1016/j.envpol.2020.114298_bib42 article-title: Microplastics in freshwater ecosystems: what we know and what we need to know publication-title: ESEU – volume: 70 start-page: 227 year: 2013 ident: 10.1016/j.envpol.2020.114298_bib7 article-title: New techniques for the detection of microplastics in sediments and field collected organisms publication-title: Mar. Pollut. Bull. doi: 10.1016/j.marpolbul.2013.03.009 – volume: 108 start-page: 131 year: 2008 ident: 10.1016/j.envpol.2020.114298_bib26 article-title: Synthetic polymers in the marine environment: a rapidly increasing, long-term threat publication-title: Environ. Res. doi: 10.1016/j.envres.2008.07.025 – volume: 62 start-page: 2588 year: 2017 ident: 10.1016/j.envpol.2020.114298_bib41 article-title: Novel method for the extraction and identification of microplastics in ocean trawl and fish gut matrices publication-title: Anal. Methods – volume: 364 start-page: 1985 year: 2009 ident: 10.1016/j.envpol.2020.114298_bib4 article-title: Accumulation and fragmentation of plastic debris in global environments publication-title: Phil. Trans. Roy. Soc. Lond. doi: 10.1098/rstb.2008.0205 – year: 2019 ident: 10.1016/j.envpol.2020.114298_bib12 – volume: 148 start-page: 483 year: 2013 ident: 10.1016/j.envpol.2020.114298_bib44 article-title: The physical impacts of microplastics on marine organisms: a review publication-title: Environ. Pol. doi: 10.1016/j.envpol.2013.02.031 – volume: 416 start-page: 455 year: 2012 ident: 10.1016/j.envpol.2020.114298_bib14 article-title: The applicability of reflectance micro-Fourier-transform infrared spectroscopy for the detection of synthetic microplastics in marine sediments publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2011.11.078 – volume: 7 start-page: 1 year: 2017 ident: 10.1016/j.envpol.2020.114298_bib22 article-title: A rapid-screening approach to detect and quantify microplastics based on fluorescent tagging with Nile Red publication-title: Sci. Rep. doi: 10.1038/srep44501 – volume: 21S start-page: 94 year: 2011 ident: 10.1016/j.envpol.2020.114298_bib32 article-title: Exploring the dynamics of migration to mega-delta cities in Asia and Africa: contemporary drivers and future scenarios publication-title: Global Environ. Change doi: 10.1016/j.gloenvcha.2011.08.005 – volume: 46 start-page: 3060 year: 2012 ident: 10.1016/j.envpol.2020.114298_bib16 article-title: Microplastics in the marine environment: a review of the methods used for identification and quantification publication-title: Environ. Sci. Technol. doi: 10.1021/es2031505 – volume: 230 start-page: 829 year: 2017 ident: 10.1016/j.envpol.2020.114298_bib9 article-title: A small-scale , portable method for extracting microplastics from marine sediments publication-title: Environ. Pollut. doi: 10.1016/j.envpol.2017.07.017 |
SSID | ssj0004333 |
Score | 2.597824 |
Snippet | Plastic pollution presents a global environmental concern with potentially widespread ecological, socio-economic and health implications. Methodological... |
SourceID | proquest pubmed crossref elsevier |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 114298 |
SubjectTerms | Automated particle counting automation case studies cost effectiveness Debris Density separation estuaries estuarine sediments filters Fluorescence microscopy Fourier transform infrared spectroscopy image analysis microplastics monitoring Nile red dye organic matter pollution polyethylene polyethylene terephthalates sludge socioeconomics soil uncertainty |
Title | Microplastic identification and quantification from organic rich sediments: A validated laboratory protocol |
URI | https://dx.doi.org/10.1016/j.envpol.2020.114298 https://www.ncbi.nlm.nih.gov/pubmed/32163807 https://www.proquest.com/docview/2377346362 https://www.proquest.com/docview/2431839390 |
Volume | 262 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwEB4huNBDBUtpl5eMVPXmbhIncdLbCoG2reDSInGzvLZX3QLJwu4iceG3d8Z2gB4oUo-xxpY1M575HM8D4KMW2aRKdMLHJrWcntZ4pbXkrjLW1NbWwpdjOD0rR-f5t4viYgWOulwYCquMtj_YdG-t48ggcnMwm04HP_D2gGAYD2stCgS-dG_Pc0la_vnhKcwjF6GdPBJzou7S53yMl2vuZi09QGS-aG5WVy-5p5fgp3dDJxvwNuJHNgxb3IQV1_Rga9jg3fn6nn1iPqLT_yrvwZtnxQZ7sH38lNOGK8RDPd-Cy1MKypshjMY12dTG-CEvMqYby26W-vkQZaSw0A3KMDSjv9gcuehT5b6wIUPVndJvBMuigrW394zKQbSoc-_g_OT459GIxx4MXCNTF7wqtdRpZYShblWTVCepydHli7IonKyNLGuDkIpq5KCXSyfjJLOuyEsU9RiRWyG2YbVpG_cBmJEuq1BlLOWzam000uHyAidNMpHbPoiO9crEAuXUJ-NKdZFov1UQmCKBqSCwPvDHWbNQoOMVetlJVf2laAp9yCszDzslUHgG6WFFN65dzlUmJDKgRCzwD5qcrGct6qQP74MGPe5XZISKE7nz33vbhXX6CnHEe7C6uF26fURLi_GBPw4HsDb8-n109gfUAxX3 |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LTxsxEB6hcKA9VCVASQvFSBU3K7vrfXKLECg8kktB4mY5tqOmpbspSSrx7ztje4EeKFKvXo9lzYxnPq_nAfBFiWRaRiriEx0bTk9rvFSq4LbURlfGVMKVYxiN8-FNenGb3a7BSZsLQ2GVwfZ7m-6sdRjpB27257NZ_yveHhAM42GtRIbAF-_t61SdKuvA-uD8cjh-So8UvqM8zudE0GbQuTAvW_-eN_QGkbi6uUlVvuShXkKgzhOdvYd3AUKygd_lJqzZugtbgxqvzz8f2BFzQZ3ub3kX3j6rN9iFndOntDZcIZzrxRb8GFFc3hyRNK7JZiaEEDmpMVUb9mulng9RUgrzDaE0Q0v6jS2QkS5b7pgNGGrvjP4kGBZ0rLl_YFQRokG124abs9PrkyEPbRi4Qr4ueZmrQsWlFpoaVk1jFcU6Ra8v8iyzRaWLvNKIqqhMDjq6eDqJEmOzNEdpTxC8ZWIHOnVT211gurBJiVpjKKVVKa1wHi4vkGiaiNT0QLSslzrUKKdWGXeyDUb7Lr3AJAlMeoH1gD9SzX2NjlfmF61U5V-6JtGNvEJ52CqBxGNIbyuqts1qIRNRIANyhAP_mJOSAa1EFfXgg9egx_2KhIBxVHz8770dwMbwenQlr87Hl5_gDX3xYcV70Fner-w-gqfl5HM4HH8AR_oYqA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Microplastic+identification+and+quantification+from+organic+rich+sediments%3A+A+validated+laboratory+protocol&rft.jtitle=Environmental+pollution+%281987%29&rft.au=Vermeiren%2C+P&rft.au=Mu%C3%B1oz%2C+C&rft.au=Ikejima%2C+K&rft.date=2020-07-01&rft.eissn=1873-6424&rft.volume=262&rft.spage=114298&rft_id=info:doi/10.1016%2Fj.envpol.2020.114298&rft_id=info%3Apmid%2F32163807&rft.externalDocID=32163807 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0269-7491&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0269-7491&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0269-7491&client=summon |