Capillary bundle model of hydraulic conductivity for frozen soil

We developed a capillary bundle model to describe water flow in frozen soil. We assume that the soil can be represented as a bundle of cylindrical capillaries. We consider that the freezing point in the capillaries is depressed according to the Gibbs-Thomson effect and that when stable ice forms in...

Full description

Saved in:
Bibliographic Details
Published inWater resources research Vol. 44; no. 12
Main Authors Watanabe, Kunio, Flury, Markus
Format Journal Article
LanguageEnglish
Published 01.12.2008
Subjects
Online AccessGet more information

Cover

Loading…
Abstract We developed a capillary bundle model to describe water flow in frozen soil. We assume that the soil can be represented as a bundle of cylindrical capillaries. We consider that the freezing point in the capillaries is depressed according to the Gibbs-Thomson effect and that when stable ice forms in a capillary, the ice forms in the center of the capillaries, leaving a circular annulus open for liquid water flow. We use the model to demonstrate how the hydraulic conductivity changes as a function of temperature for both saturated and unsaturated soils, using a sand and two silt loam soils as examples. As temperature decreases, more and more ice forms, and the water flux consequently decreases. In frozen soil near 0°C, water predominantly flows through ice-free capillaries, so that the hydraulic conductivity of frozen soil is similar to that of an unfrozen soil with a water content equal to the unfrozen water content of the frozen soil. At low temperatures, however, ice forms in almost all capillaries, and the hydraulic conductivity of frozen soil is greater than that of unfrozen soil with the same water potential.
AbstractList We developed a capillary bundle model to describe water flow in frozen soil. We assume that the soil can be represented as a bundle of cylindrical capillaries. We consider that the freezing point in the capillaries is depressed according to the Gibbs-Thomson effect and that when stable ice forms in a capillary, the ice forms in the center of the capillaries, leaving a circular annulus open for liquid water flow. We use the model to demonstrate how the hydraulic conductivity changes as a function of temperature for both saturated and unsaturated soils, using a sand and two silt loam soils as examples. As temperature decreases, more and more ice forms, and the water flux consequently decreases. In frozen soil near 0°C, water predominantly flows through ice-free capillaries, so that the hydraulic conductivity of frozen soil is similar to that of an unfrozen soil with a water content equal to the unfrozen water content of the frozen soil. At low temperatures, however, ice forms in almost all capillaries, and the hydraulic conductivity of frozen soil is greater than that of unfrozen soil with the same water potential.
Author Flury, Markus
Watanabe, Kunio
Author_xml – sequence: 1
  fullname: Watanabe, Kunio
– sequence: 2
  fullname: Flury, Markus
BookMark eNotzs1KxDAUQOEgI9gZ3bk3L1C9ucltJjul-AcDgjq4HJI20UhMpJ0K9ekVdHV2H2fJFrlkz9ipgHMBaC4QYP3yCKBB4AGrhFGq1kbLBasAlKyFNPqILcfxHUAoanTFLlv7GVOyw8zdlPvk-UfpfeIl8Le5H-yUYse7kvup28evuJ95KAMPQ_n2mY8lpmN2GGwa_cl_V2x7c_3c3tWbh9v79mpTW5Jg6uBNICfJWEDvAIXSv5dC9YQSlLPonKZgdONccETUNLQG6qAhB8HqDlfs7M8Ntuzs6xDH3fYJQUgQZJRExB_PTElE
CitedBy_id crossref_primary_10_1063_5_0141543
crossref_primary_10_3390_cryst12091304
crossref_primary_10_1111_ejss_13210
crossref_primary_10_1029_2012WR011916
crossref_primary_10_1007_s13369_018_3250_y
crossref_primary_10_1007_s11440_024_02432_7
crossref_primary_10_1016_j_catena_2022_106844
crossref_primary_10_1061_JCRGEI_CRENG_746
crossref_primary_10_1016_j_cam_2024_115964
crossref_primary_10_15377_2409_983X_2014_01_01_1
crossref_primary_10_1002_saj2_20794
crossref_primary_10_1016_j_coldregions_2020_103011
crossref_primary_10_1103_PhysRevE_104_025112
crossref_primary_10_1016_j_scitotenv_2019_134132
crossref_primary_10_2136_vzj2013_03_0064
crossref_primary_10_1007_s00231_016_1795_4
crossref_primary_10_1016_j_petrol_2018_09_038
crossref_primary_10_1029_2019WR025876
crossref_primary_10_1080_23311916_2020_1716438
crossref_primary_10_1016_j_advwatres_2023_104461
crossref_primary_10_1016_j_ijheatmasstransfer_2021_121774
crossref_primary_10_1016_j_coldregions_2009_05_011
crossref_primary_10_3390_w11020369
crossref_primary_10_1139_cgj_2016_0150
crossref_primary_10_3390_geotechnics4030038
crossref_primary_10_2136_vzj2018_04_0084
crossref_primary_10_1080_08916152_2018_1535528
crossref_primary_10_1002_ppp_2037
crossref_primary_10_1016_j_jhydrol_2014_12_055
crossref_primary_10_3390_geosciences11090375
crossref_primary_10_1061__ASCE_GT_1943_5606_0002468
crossref_primary_10_1016_j_jhydrol_2023_129312
crossref_primary_10_1016_j_jhydrol_2023_129675
crossref_primary_10_1007_s10040_012_0916_5
crossref_primary_10_2136_vzj2018_08_0147
crossref_primary_10_1002_ppp_2031
crossref_primary_10_1029_2018JF004611
crossref_primary_10_1016_j_ijheatmasstransfer_2020_120718
crossref_primary_10_1016_j_icheatmasstransfer_2020_104527
crossref_primary_10_1007_s10064_024_03954_w
crossref_primary_10_1093_gji_ggab491
crossref_primary_10_1061__ASCE_GT_1943_5606_0002597
crossref_primary_10_1016_j_jhydrol_2021_126475
crossref_primary_10_1016_j_jhydrol_2022_128314
crossref_primary_10_1175_JHM_D_15_0152_1
crossref_primary_10_3189_002214311796406149
crossref_primary_10_1016_j_advwatres_2013_07_016
crossref_primary_10_2136_vzj2015_11_0154
crossref_primary_10_1016_j_jhydrol_2020_125885
crossref_primary_10_1016_j_advwatres_2021_103846
crossref_primary_10_2136_vzj2012_0051
crossref_primary_10_1016_j_epsl_2016_08_019
crossref_primary_10_1016_j_jhydrol_2024_132146
crossref_primary_10_1016_j_coldregions_2023_103862
crossref_primary_10_1016_j_coldregions_2019_102876
crossref_primary_10_1016_j_geoderma_2024_116790
crossref_primary_10_3189_172756409789624300
crossref_primary_10_1029_2018WR023221
crossref_primary_10_5331_seppyo_75_3_111
crossref_primary_10_1061_IJGNAI_GMENG_9961
crossref_primary_10_1016_j_advwatres_2020_103681
crossref_primary_10_1007_s10712_022_09761_w
crossref_primary_10_1061__ASCE_CF_1943_5509_0000851
crossref_primary_10_2136_vzj2012_0045
crossref_primary_10_1016_j_jag_2015_06_010
crossref_primary_10_1134_S1064229323600549
crossref_primary_10_1016_j_coldregions_2009_12_007
crossref_primary_10_1016_j_coldregions_2010_05_008
crossref_primary_10_1002_ppp_2028
crossref_primary_10_1016_j_coldregions_2019_03_002
crossref_primary_10_1021_es403698u
crossref_primary_10_1016_j_coldregions_2015_03_007
crossref_primary_10_3389_feart_2022_1102748
crossref_primary_10_1016_j_ijheatmasstransfer_2019_07_030
crossref_primary_10_1016_j_jhydrol_2019_05_031
crossref_primary_10_1016_j_colsurfa_2011_02_031
crossref_primary_10_1016_j_scitotenv_2022_160121
crossref_primary_10_1007_s12205_019_0561_9
crossref_primary_10_1051_e3sconf_202338209002
crossref_primary_10_1002_2015WR018057
crossref_primary_10_1016_j_coldregions_2023_103880
crossref_primary_10_1016_j_ijheatmasstransfer_2017_12_065
crossref_primary_10_1016_j_advwatres_2019_103394
crossref_primary_10_1016_j_coldregions_2018_11_005
crossref_primary_10_1029_2022JB025254
crossref_primary_10_1007_s11440_018_0637_6
crossref_primary_10_1016_j_coldregions_2020_102993
crossref_primary_10_5331_seppyo_76_2_179
crossref_primary_10_1029_2023WR034845
crossref_primary_10_2136_vzj2011_0188
crossref_primary_10_1061__ASCE_CR_1943_5495_0000050
crossref_primary_10_5331_seppyo_75_5_253
crossref_primary_10_5194_esurf_9_1381_2021
crossref_primary_10_1016_j_coldregions_2025_104420
crossref_primary_10_1016_j_compgeo_2023_105794
crossref_primary_10_2136_sssaj2010_0370
crossref_primary_10_1016_j_coldregions_2019_102940
crossref_primary_10_1016_j_coldregions_2019_102784
crossref_primary_10_1016_j_buildenv_2020_106939
crossref_primary_10_1038_s43247_022_00367_z
crossref_primary_10_3390_pr11061610
crossref_primary_10_5194_tc_15_2133_2021
crossref_primary_10_1002_hyp_15175
crossref_primary_10_1029_2024GL111946
crossref_primary_10_1021_acs_langmuir_0c01965
crossref_primary_10_1016_j_jhydrol_2022_129048
crossref_primary_10_1016_j_scitotenv_2019_02_152
crossref_primary_10_5331_seppyo_83_6_547
crossref_primary_10_1016_j_jhydrol_2024_131049
crossref_primary_10_1016_j_coldregions_2018_08_023
crossref_primary_10_1016_j_jhydrol_2016_01_050
crossref_primary_10_3389_feart_2022_826961
crossref_primary_10_1016_j_jhydrol_2021_126838
crossref_primary_10_1016_j_coldregions_2014_03_007
crossref_primary_10_1016_j_jhydrol_2025_133004
crossref_primary_10_1016_j_compgeo_2021_104378
crossref_primary_10_1002_2016WR018849
crossref_primary_10_1016_j_jhydrol_2023_130173
crossref_primary_10_1029_2021WR030067
crossref_primary_10_1007_s12665_011_1386_0
ContentType Journal Article
DBID FBQ
DOI 10.1029/2008WR007012
DatabaseName AGRIS
DatabaseTitleList
Database_xml – sequence: 1
  dbid: FBQ
  name: AGRIS
  url: http://www.fao.org/agris/Centre.asp?Menu_1ID=DB&Menu_2ID=DB1&Language=EN&Content=http://www.fao.org/agris/search?Language=EN
  sourceTypes: Publisher
DeliveryMethod no_fulltext_linktorsrc
Discipline Geography
Economics
EISSN 1944-7973
ExternalDocumentID US201301594322
GroupedDBID -~X
..I
.DC
05W
0R~
123
1OB
1OC
24P
31~
33P
3V.
50Y
5VS
6TJ
7WY
7XC
8-1
8CJ
8FE
8FG
8FH
8FL
8G5
8R4
8R5
8WZ
A00
A6W
AAESR
AAHHS
AAIHA
AAIKC
AAJUZ
AAMNW
AANLZ
AASGY
AAXRX
AAYJJ
AAYOK
AAZKR
ABCUV
ABCVL
ABHUG
ABJCF
ABJNI
ABPPZ
ABTAH
ABUWG
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFO
ACGFS
ACIWK
ACKIV
ACNCT
ACPOU
ACPRK
ACXBN
ACXQS
ADAWD
ADBBV
ADDAD
ADEOM
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
AEEZP
AEIGN
AENEX
AEQDE
AETEA
AEUQT
AEUYR
AFBPY
AFGKR
AFKRA
AFMIJ
AFPWT
AFRAH
AFVGU
AFZJQ
AGJLS
AIDBO
AIURR
AIWBW
AJBDE
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALXUD
AMYDB
ASPBG
ATCPS
AVWKF
AZFZN
AZQEC
AZVAB
BDRZF
BENPR
BEZIV
BFHJK
BGLVJ
BHPHI
BKSAR
BMXJE
BPHCQ
BRXPI
CCPQU
CS3
D0L
D1J
DCZOG
DDYGU
DPXWK
DRFUL
DRSTM
DU5
DWQXO
EBS
EJD
F5P
FBQ
FEDTE
FRNLG
G-S
GNUQQ
GODZA
GROUPED_ABI_INFORM_COMPLETE
GUQSH
HCIFZ
HVGLF
HZ~
K60
K6~
L6V
LATKE
LEEKS
LITHE
LK5
LOXES
LUTES
LYRES
M0C
M2O
M7R
M7S
MEWTI
MSFUL
MSSTM
MVM
MW2
MXFUL
MXSTM
MY~
O9-
OHT
OK1
P-X
P2P
P2W
PALCI
PATMY
PCBAR
PQBIZ
PQQKQ
PROAC
PTHSS
PYCSY
Q2X
R.K
RIWAO
RJQFR
ROL
SAMSI
SUPJJ
TAE
TN5
TWZ
UQL
VJK
VOH
WBKPD
WXSBR
WYJ
XOL
XSW
YHZ
YV5
ZCG
ZY4
ZZTAW
~02
~KM
~OA
~~A
ID FETCH-LOGICAL-a5309-fe9f5b359a02eb0214770114d52304ba2bb75f976bbfb555665805c065b0fa7c2
ISSN 0043-1397
IngestDate Wed Dec 27 19:15:46 EST 2023
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 12
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-a5309-fe9f5b359a02eb0214770114d52304ba2bb75f976bbfb555665805c065b0fa7c2
OpenAccessLink https://onlinelibrary.wiley.com/doi/pdfdirect/10.1029/2008WR007012
PageCount 9
ParticipantIDs fao_agris_US201301594322
PublicationCentury 2000
PublicationDate December 2008
PublicationDateYYYYMMDD 2008-12-01
PublicationDate_xml – month: 12
  year: 2008
  text: December 2008
PublicationDecade 2000
PublicationTitle Water resources research
PublicationYear 2008
SSID ssj0014567
Score 2.3294437
Snippet We developed a capillary bundle model to describe water flow in frozen soil. We assume that the soil can be represented as a bundle of cylindrical capillaries....
SourceID fao
SourceType Publisher
SubjectTerms capillarity
frozen soils
groundwater flow
hydraulic conductivity
hydrologic models
ice
mathematical models
sandy soils
saturated flow
saturated hydraulic conductivity
silt loam soils
simulation models
soil temperature
soil water
unsaturated flow
unsaturated hydraulic conductivity
Title Capillary bundle model of hydraulic conductivity for frozen soil
Volume 44
hasFullText
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1JS8QwFA4uB72IK-7k4E061jSZtDcXlEFBcBmc25DXJoqHjozOYfz1vtekYxUF9RJKC2nJ175-ecv3GNtTVgswiYxckkIkU5tGUMgiKhJtpROuLfMqy_eq3enKi57qfXT8rKpLXqGVv31bV_IfVPEc4kpVsn9AdjIpnsBjxBdHRBjHX2F8ap6padBwvA8jEkvwfW0q_jcuhmZEAta43yVJV98jgnIK3XDwZsv9l0FIrniq-8CQXOIwePMpmNDwc1Ued6SRBir_5-Wo9OlbHvkQiqeyny9uhLSRkhFMI2mVJj5ZtmW9NcykjHTme43U5tLLNdavhfjWDMeCVEzpNvc3JCgUMqU_C1t3bwWFTZFPSbQq02waiT7pdJ5cT8JAyO50nSJAzxYqF3D6g-bkyAucafKCu0W2EAg9P_boLLEpWy6zubre-wWPQ5_5x_EKO5ogxj1ivEKMDxyfIMabiHFEjHvEOCG2yrrnZ3ennSj0sIiMouCVs5lTkKjMxMICCdRpTXvQovLGgxEAWjnkhAAOlEJyrdJY5UgMIXZG52KNzZSD0q4zrg9dnjlRWJ2C1MUh2KwwCeQxWWYF7Q22jqvQNw_4d-h_XtzNny9tsfmP12GbzTr8NuwOEq1X2K3AeAcB-yZD
linkProvider FAO Food and Agriculture Organization of the United Nations
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Capillary+bundle+model+of+hydraulic+conductivity+for+frozen+soil&rft.jtitle=Water+resources+research&rft.au=Watanabe%2C+Kunio&rft.au=Flury%2C+Markus&rft.date=2008-12-01&rft.issn=0043-1397&rft.eissn=1944-7973&rft.volume=44&rft.issue=12&rft_id=info:doi/10.1029%2F2008WR007012&rft.externalDocID=US201301594322
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0043-1397&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0043-1397&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0043-1397&client=summon