Capillary bundle model of hydraulic conductivity for frozen soil
We developed a capillary bundle model to describe water flow in frozen soil. We assume that the soil can be represented as a bundle of cylindrical capillaries. We consider that the freezing point in the capillaries is depressed according to the Gibbs-Thomson effect and that when stable ice forms in...
Saved in:
Published in | Water resources research Vol. 44; no. 12 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
01.12.2008
|
Subjects | |
Online Access | Get more information |
Cover
Loading…
Abstract | We developed a capillary bundle model to describe water flow in frozen soil. We assume that the soil can be represented as a bundle of cylindrical capillaries. We consider that the freezing point in the capillaries is depressed according to the Gibbs-Thomson effect and that when stable ice forms in a capillary, the ice forms in the center of the capillaries, leaving a circular annulus open for liquid water flow. We use the model to demonstrate how the hydraulic conductivity changes as a function of temperature for both saturated and unsaturated soils, using a sand and two silt loam soils as examples. As temperature decreases, more and more ice forms, and the water flux consequently decreases. In frozen soil near 0°C, water predominantly flows through ice-free capillaries, so that the hydraulic conductivity of frozen soil is similar to that of an unfrozen soil with a water content equal to the unfrozen water content of the frozen soil. At low temperatures, however, ice forms in almost all capillaries, and the hydraulic conductivity of frozen soil is greater than that of unfrozen soil with the same water potential. |
---|---|
AbstractList | We developed a capillary bundle model to describe water flow in frozen soil. We assume that the soil can be represented as a bundle of cylindrical capillaries. We consider that the freezing point in the capillaries is depressed according to the Gibbs-Thomson effect and that when stable ice forms in a capillary, the ice forms in the center of the capillaries, leaving a circular annulus open for liquid water flow. We use the model to demonstrate how the hydraulic conductivity changes as a function of temperature for both saturated and unsaturated soils, using a sand and two silt loam soils as examples. As temperature decreases, more and more ice forms, and the water flux consequently decreases. In frozen soil near 0°C, water predominantly flows through ice-free capillaries, so that the hydraulic conductivity of frozen soil is similar to that of an unfrozen soil with a water content equal to the unfrozen water content of the frozen soil. At low temperatures, however, ice forms in almost all capillaries, and the hydraulic conductivity of frozen soil is greater than that of unfrozen soil with the same water potential. |
Author | Flury, Markus Watanabe, Kunio |
Author_xml | – sequence: 1 fullname: Watanabe, Kunio – sequence: 2 fullname: Flury, Markus |
BookMark | eNotzs1KxDAUQOEgI9gZ3bk3L1C9ucltJjul-AcDgjq4HJI20UhMpJ0K9ekVdHV2H2fJFrlkz9ipgHMBaC4QYP3yCKBB4AGrhFGq1kbLBasAlKyFNPqILcfxHUAoanTFLlv7GVOyw8zdlPvk-UfpfeIl8Le5H-yUYse7kvup28evuJ95KAMPQ_n2mY8lpmN2GGwa_cl_V2x7c_3c3tWbh9v79mpTW5Jg6uBNICfJWEDvAIXSv5dC9YQSlLPonKZgdONccETUNLQG6qAhB8HqDlfs7M8Ntuzs6xDH3fYJQUgQZJRExB_PTElE |
CitedBy_id | crossref_primary_10_1063_5_0141543 crossref_primary_10_3390_cryst12091304 crossref_primary_10_1111_ejss_13210 crossref_primary_10_1029_2012WR011916 crossref_primary_10_1007_s13369_018_3250_y crossref_primary_10_1007_s11440_024_02432_7 crossref_primary_10_1016_j_catena_2022_106844 crossref_primary_10_1061_JCRGEI_CRENG_746 crossref_primary_10_1016_j_cam_2024_115964 crossref_primary_10_15377_2409_983X_2014_01_01_1 crossref_primary_10_1002_saj2_20794 crossref_primary_10_1016_j_coldregions_2020_103011 crossref_primary_10_1103_PhysRevE_104_025112 crossref_primary_10_1016_j_scitotenv_2019_134132 crossref_primary_10_2136_vzj2013_03_0064 crossref_primary_10_1007_s00231_016_1795_4 crossref_primary_10_1016_j_petrol_2018_09_038 crossref_primary_10_1029_2019WR025876 crossref_primary_10_1080_23311916_2020_1716438 crossref_primary_10_1016_j_advwatres_2023_104461 crossref_primary_10_1016_j_ijheatmasstransfer_2021_121774 crossref_primary_10_1016_j_coldregions_2009_05_011 crossref_primary_10_3390_w11020369 crossref_primary_10_1139_cgj_2016_0150 crossref_primary_10_3390_geotechnics4030038 crossref_primary_10_2136_vzj2018_04_0084 crossref_primary_10_1080_08916152_2018_1535528 crossref_primary_10_1002_ppp_2037 crossref_primary_10_1016_j_jhydrol_2014_12_055 crossref_primary_10_3390_geosciences11090375 crossref_primary_10_1061__ASCE_GT_1943_5606_0002468 crossref_primary_10_1016_j_jhydrol_2023_129312 crossref_primary_10_1016_j_jhydrol_2023_129675 crossref_primary_10_1007_s10040_012_0916_5 crossref_primary_10_2136_vzj2018_08_0147 crossref_primary_10_1002_ppp_2031 crossref_primary_10_1029_2018JF004611 crossref_primary_10_1016_j_ijheatmasstransfer_2020_120718 crossref_primary_10_1016_j_icheatmasstransfer_2020_104527 crossref_primary_10_1007_s10064_024_03954_w crossref_primary_10_1093_gji_ggab491 crossref_primary_10_1061__ASCE_GT_1943_5606_0002597 crossref_primary_10_1016_j_jhydrol_2021_126475 crossref_primary_10_1016_j_jhydrol_2022_128314 crossref_primary_10_1175_JHM_D_15_0152_1 crossref_primary_10_3189_002214311796406149 crossref_primary_10_1016_j_advwatres_2013_07_016 crossref_primary_10_2136_vzj2015_11_0154 crossref_primary_10_1016_j_jhydrol_2020_125885 crossref_primary_10_1016_j_advwatres_2021_103846 crossref_primary_10_2136_vzj2012_0051 crossref_primary_10_1016_j_epsl_2016_08_019 crossref_primary_10_1016_j_jhydrol_2024_132146 crossref_primary_10_1016_j_coldregions_2023_103862 crossref_primary_10_1016_j_coldregions_2019_102876 crossref_primary_10_1016_j_geoderma_2024_116790 crossref_primary_10_3189_172756409789624300 crossref_primary_10_1029_2018WR023221 crossref_primary_10_5331_seppyo_75_3_111 crossref_primary_10_1061_IJGNAI_GMENG_9961 crossref_primary_10_1016_j_advwatres_2020_103681 crossref_primary_10_1007_s10712_022_09761_w crossref_primary_10_1061__ASCE_CF_1943_5509_0000851 crossref_primary_10_2136_vzj2012_0045 crossref_primary_10_1016_j_jag_2015_06_010 crossref_primary_10_1134_S1064229323600549 crossref_primary_10_1016_j_coldregions_2009_12_007 crossref_primary_10_1016_j_coldregions_2010_05_008 crossref_primary_10_1002_ppp_2028 crossref_primary_10_1016_j_coldregions_2019_03_002 crossref_primary_10_1021_es403698u crossref_primary_10_1016_j_coldregions_2015_03_007 crossref_primary_10_3389_feart_2022_1102748 crossref_primary_10_1016_j_ijheatmasstransfer_2019_07_030 crossref_primary_10_1016_j_jhydrol_2019_05_031 crossref_primary_10_1016_j_colsurfa_2011_02_031 crossref_primary_10_1016_j_scitotenv_2022_160121 crossref_primary_10_1007_s12205_019_0561_9 crossref_primary_10_1051_e3sconf_202338209002 crossref_primary_10_1002_2015WR018057 crossref_primary_10_1016_j_coldregions_2023_103880 crossref_primary_10_1016_j_ijheatmasstransfer_2017_12_065 crossref_primary_10_1016_j_advwatres_2019_103394 crossref_primary_10_1016_j_coldregions_2018_11_005 crossref_primary_10_1029_2022JB025254 crossref_primary_10_1007_s11440_018_0637_6 crossref_primary_10_1016_j_coldregions_2020_102993 crossref_primary_10_5331_seppyo_76_2_179 crossref_primary_10_1029_2023WR034845 crossref_primary_10_2136_vzj2011_0188 crossref_primary_10_1061__ASCE_CR_1943_5495_0000050 crossref_primary_10_5331_seppyo_75_5_253 crossref_primary_10_5194_esurf_9_1381_2021 crossref_primary_10_1016_j_coldregions_2025_104420 crossref_primary_10_1016_j_compgeo_2023_105794 crossref_primary_10_2136_sssaj2010_0370 crossref_primary_10_1016_j_coldregions_2019_102940 crossref_primary_10_1016_j_coldregions_2019_102784 crossref_primary_10_1016_j_buildenv_2020_106939 crossref_primary_10_1038_s43247_022_00367_z crossref_primary_10_3390_pr11061610 crossref_primary_10_5194_tc_15_2133_2021 crossref_primary_10_1002_hyp_15175 crossref_primary_10_1029_2024GL111946 crossref_primary_10_1021_acs_langmuir_0c01965 crossref_primary_10_1016_j_jhydrol_2022_129048 crossref_primary_10_1016_j_scitotenv_2019_02_152 crossref_primary_10_5331_seppyo_83_6_547 crossref_primary_10_1016_j_jhydrol_2024_131049 crossref_primary_10_1016_j_coldregions_2018_08_023 crossref_primary_10_1016_j_jhydrol_2016_01_050 crossref_primary_10_3389_feart_2022_826961 crossref_primary_10_1016_j_jhydrol_2021_126838 crossref_primary_10_1016_j_coldregions_2014_03_007 crossref_primary_10_1016_j_jhydrol_2025_133004 crossref_primary_10_1016_j_compgeo_2021_104378 crossref_primary_10_1002_2016WR018849 crossref_primary_10_1016_j_jhydrol_2023_130173 crossref_primary_10_1029_2021WR030067 crossref_primary_10_1007_s12665_011_1386_0 |
ContentType | Journal Article |
DBID | FBQ |
DOI | 10.1029/2008WR007012 |
DatabaseName | AGRIS |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: FBQ name: AGRIS url: http://www.fao.org/agris/Centre.asp?Menu_1ID=DB&Menu_2ID=DB1&Language=EN&Content=http://www.fao.org/agris/search?Language=EN sourceTypes: Publisher |
DeliveryMethod | no_fulltext_linktorsrc |
Discipline | Geography Economics |
EISSN | 1944-7973 |
ExternalDocumentID | US201301594322 |
GroupedDBID | -~X ..I .DC 05W 0R~ 123 1OB 1OC 24P 31~ 33P 3V. 50Y 5VS 6TJ 7WY 7XC 8-1 8CJ 8FE 8FG 8FH 8FL 8G5 8R4 8R5 8WZ A00 A6W AAESR AAHHS AAIHA AAIKC AAJUZ AAMNW AANLZ AASGY AAXRX AAYJJ AAYOK AAZKR ABCUV ABCVL ABHUG ABJCF ABJNI ABPPZ ABTAH ABUWG ACAHQ ACBWZ ACCFJ ACCZN ACGFO ACGFS ACIWK ACKIV ACNCT ACPOU ACPRK ACXBN ACXQS ADAWD ADBBV ADDAD ADEOM ADKYN ADMGS ADOZA ADXAS ADZMN AEEZP AEIGN AENEX AEQDE AETEA AEUQT AEUYR AFBPY AFGKR AFKRA AFMIJ AFPWT AFRAH AFVGU AFZJQ AGJLS AIDBO AIURR AIWBW AJBDE ALMA_UNASSIGNED_HOLDINGS ALUQN ALXUD AMYDB ASPBG ATCPS AVWKF AZFZN AZQEC AZVAB BDRZF BENPR BEZIV BFHJK BGLVJ BHPHI BKSAR BMXJE BPHCQ BRXPI CCPQU CS3 D0L D1J DCZOG DDYGU DPXWK DRFUL DRSTM DU5 DWQXO EBS EJD F5P FBQ FEDTE FRNLG G-S GNUQQ GODZA GROUPED_ABI_INFORM_COMPLETE GUQSH HCIFZ HVGLF HZ~ K60 K6~ L6V LATKE LEEKS LITHE LK5 LOXES LUTES LYRES M0C M2O M7R M7S MEWTI MSFUL MSSTM MVM MW2 MXFUL MXSTM MY~ O9- OHT OK1 P-X P2P P2W PALCI PATMY PCBAR PQBIZ PQQKQ PROAC PTHSS PYCSY Q2X R.K RIWAO RJQFR ROL SAMSI SUPJJ TAE TN5 TWZ UQL VJK VOH WBKPD WXSBR WYJ XOL XSW YHZ YV5 ZCG ZY4 ZZTAW ~02 ~KM ~OA ~~A |
ID | FETCH-LOGICAL-a5309-fe9f5b359a02eb0214770114d52304ba2bb75f976bbfb555665805c065b0fa7c2 |
ISSN | 0043-1397 |
IngestDate | Wed Dec 27 19:15:46 EST 2023 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 12 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-a5309-fe9f5b359a02eb0214770114d52304ba2bb75f976bbfb555665805c065b0fa7c2 |
OpenAccessLink | https://onlinelibrary.wiley.com/doi/pdfdirect/10.1029/2008WR007012 |
PageCount | 9 |
ParticipantIDs | fao_agris_US201301594322 |
PublicationCentury | 2000 |
PublicationDate | December 2008 |
PublicationDateYYYYMMDD | 2008-12-01 |
PublicationDate_xml | – month: 12 year: 2008 text: December 2008 |
PublicationDecade | 2000 |
PublicationTitle | Water resources research |
PublicationYear | 2008 |
SSID | ssj0014567 |
Score | 2.3294437 |
Snippet | We developed a capillary bundle model to describe water flow in frozen soil. We assume that the soil can be represented as a bundle of cylindrical capillaries.... |
SourceID | fao |
SourceType | Publisher |
SubjectTerms | capillarity frozen soils groundwater flow hydraulic conductivity hydrologic models ice mathematical models sandy soils saturated flow saturated hydraulic conductivity silt loam soils simulation models soil temperature soil water unsaturated flow unsaturated hydraulic conductivity |
Title | Capillary bundle model of hydraulic conductivity for frozen soil |
Volume | 44 |
hasFullText | |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1JS8QwFA4uB72IK-7k4E061jSZtDcXlEFBcBmc25DXJoqHjozOYfz1vtekYxUF9RJKC2nJ175-ecv3GNtTVgswiYxckkIkU5tGUMgiKhJtpROuLfMqy_eq3enKi57qfXT8rKpLXqGVv31bV_IfVPEc4kpVsn9AdjIpnsBjxBdHRBjHX2F8ap6padBwvA8jEkvwfW0q_jcuhmZEAta43yVJV98jgnIK3XDwZsv9l0FIrniq-8CQXOIwePMpmNDwc1Ued6SRBir_5-Wo9OlbHvkQiqeyny9uhLSRkhFMI2mVJj5ZtmW9NcykjHTme43U5tLLNdavhfjWDMeCVEzpNvc3JCgUMqU_C1t3bwWFTZFPSbQq02waiT7pdJ5cT8JAyO50nSJAzxYqF3D6g-bkyAucafKCu0W2EAg9P_boLLEpWy6zubre-wWPQ5_5x_EKO5ogxj1ivEKMDxyfIMabiHFEjHvEOCG2yrrnZ3ennSj0sIiMouCVs5lTkKjMxMICCdRpTXvQovLGgxEAWjnkhAAOlEJyrdJY5UgMIXZG52KNzZSD0q4zrg9dnjlRWJ2C1MUh2KwwCeQxWWYF7Q22jqvQNw_4d-h_XtzNny9tsfmP12GbzTr8NuwOEq1X2K3AeAcB-yZD |
linkProvider | FAO Food and Agriculture Organization of the United Nations |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Capillary+bundle+model+of+hydraulic+conductivity+for+frozen+soil&rft.jtitle=Water+resources+research&rft.au=Watanabe%2C+Kunio&rft.au=Flury%2C+Markus&rft.date=2008-12-01&rft.issn=0043-1397&rft.eissn=1944-7973&rft.volume=44&rft.issue=12&rft_id=info:doi/10.1029%2F2008WR007012&rft.externalDocID=US201301594322 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0043-1397&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0043-1397&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0043-1397&client=summon |