Exact analytic formula for conductance predicting a tunable Sommerfeld-Arrhenius thermal transition within a single-step tunneling mechanism in molecular junctions subject to mechanical stretching

We show that the conductance \(G\) of molecular tunnel junctions wherein the charge transport is dominated by a single energy level can be expressed in closed analytic form which is exact and valid at arbitrary temperature \(T\) and model parameter values. On this basis, we show that the single-step...

Full description

Saved in:
Bibliographic Details
Published inarXiv.org
Main Author Baldea, Ioan
Format Paper Journal Article
LanguageEnglish
Published Ithaca Cornell University Library, arXiv.org 22.10.2022
Subjects
Online AccessGet full text
ISSN2331-8422
DOI10.48550/arxiv.2210.12544

Cover

Loading…
Abstract We show that the conductance \(G\) of molecular tunnel junctions wherein the charge transport is dominated by a single energy level can be expressed in closed analytic form which is exact and valid at arbitrary temperature \(T\) and model parameter values. On this basis, we show that the single-step tunneling mechanism is compatible with a continuous thermal transition from a weakly \(T\)-dependent \(G\) at low \(T\) (Sommerfeld regime) to a nearly exponential \(1/T\)-dependent \(G\) at high \(T\) (Arrhenius-like regime). We predict that this Sommerfeld-Arrhenius transition can be observed in real molecular junctions % (e.g., based on perylene diimide) and can be continuously tuned, e.g., via mechanical stretching.
AbstractList Adv. Theor. Simul. 5(7), 202200158 (2022) We show that the conductance $G$ of molecular tunnel junctions wherein the charge transport is dominated by a single energy level can be expressed in closed analytic form which is exact and valid at arbitrary temperature $T$ and model parameter values. On this basis, we show that the single-step tunneling mechanism is compatible with a continuous thermal transition from a weakly $T$-dependent $G$ at low $T$ (Sommerfeld regime) to a nearly exponential $1/T$-dependent $G$ at high $T$ (Arrhenius-like regime). We predict that this Sommerfeld-Arrhenius transition can be observed in real molecular junctions % (e.g., based on perylene diimide) and can be continuously tuned, e.g., via mechanical stretching.
We show that the conductance \(G\) of molecular tunnel junctions wherein the charge transport is dominated by a single energy level can be expressed in closed analytic form which is exact and valid at arbitrary temperature \(T\) and model parameter values. On this basis, we show that the single-step tunneling mechanism is compatible with a continuous thermal transition from a weakly \(T\)-dependent \(G\) at low \(T\) (Sommerfeld regime) to a nearly exponential \(1/T\)-dependent \(G\) at high \(T\) (Arrhenius-like regime). We predict that this Sommerfeld-Arrhenius transition can be observed in real molecular junctions % (e.g., based on perylene diimide) and can be continuously tuned, e.g., via mechanical stretching.
Author Baldea, Ioan
Author_xml – sequence: 1
  givenname: Ioan
  surname: Baldea
  fullname: Baldea, Ioan
BackLink https://doi.org/10.48550/arXiv.2210.12544$$DView paper in arXiv
https://doi.org/10.1002/adts.202200158$$DView published paper (Access to full text may be restricted)
BookMark eNo1kEtLxDAUhYMoOD5-gCsDrju2aZq2y2HwBYIL3Zfb5NbJkCZjkvr4f_4wU0dXBy7fOedyTsihdRYJuSjyJW-qKr8G_6nfl4ylQ8Eqzg_IgpVlkTWcsWNyHsI2z3MmalZV5YJ833yCjBQsmK-oJR2cHycDs1LprJpkBCuR7jwqLaO2rxRonCz0BumzG0f0AxqVrbzfoNVToHGDfgRDowcbdNTO0g8dN9omY0h-g1mIuJtDLJo5cES5AavDSBM0OoMyfeDpdrJytgcapn6L6cvo_lmZCkL0GGUKfj0jRwOYgOd_ekpebm9e1vfZ49Pdw3r1mEHF2gxzqfq65aqBqhQNE4rVrB-StAJrMdRKAci-lLzPAZgQLRPAqxpzJZTirDwll_vY34m7ndcj-K9unrr7nToRV3ti593bhCF2Wzf5tG3oUldTFk3B2_IHOWKKSg
ContentType Paper
Journal Article
Copyright 2022. This work is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
http://creativecommons.org/licenses/by-nc-nd/4.0
Copyright_xml – notice: 2022. This work is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: http://creativecommons.org/licenses/by-nc-nd/4.0
DBID 8FE
8FG
ABJCF
ABUWG
AFKRA
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
HCIFZ
L6V
M7S
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
GOX
DOI 10.48550/arxiv.2210.12544
DatabaseName ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
Technology Collection
ProQuest One Community College
ProQuest Central
SciTech Premium Collection (Proquest)
ProQuest Engineering Collection
Engineering Database
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database (Proquest)
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
arXiv.org
DatabaseTitle Publicly Available Content Database
Engineering Database
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
ProQuest One Academic UKI Edition
ProQuest Central Korea
Materials Science & Engineering Collection
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
Engineering Collection
DatabaseTitleList
Publicly Available Content Database
Database_xml – sequence: 1
  dbid: GOX
  name: arXiv.org
  url: http://arxiv.org/find
  sourceTypes: Open Access Repository
– sequence: 2
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 2331-8422
ExternalDocumentID 2210_12544
Genre Working Paper/Pre-Print
GroupedDBID 8FE
8FG
ABJCF
ABUWG
AFKRA
ALMA_UNASSIGNED_HOLDINGS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
FRJ
HCIFZ
L6V
M7S
M~E
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
GOX
ID FETCH-LOGICAL-a529-e0cdb794d8a536826d272bf6d296e76f7ddaacb3c4b0aa266926a457e0d6dd423
IEDL.DBID 8FG
IngestDate Tue Jul 22 23:12:10 EDT 2025
Mon Jun 30 09:20:10 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a529-e0cdb794d8a536826d272bf6d296e76f7ddaacb3c4b0aa266926a457e0d6dd423
Notes SourceType-Working Papers-1
ObjectType-Working Paper/Pre-Print-1
content type line 50
OpenAccessLink https://www.proquest.com/docview/2728318149?pq-origsite=%requestingapplication%
PQID 2728318149
PQPubID 2050157
ParticipantIDs arxiv_primary_2210_12544
proquest_journals_2728318149
PublicationCentury 2000
PublicationDate 20221022
2022-10-22
PublicationDateYYYYMMDD 2022-10-22
PublicationDate_xml – month: 10
  year: 2022
  text: 20221022
  day: 22
PublicationDecade 2020
PublicationPlace Ithaca
PublicationPlace_xml – name: Ithaca
PublicationTitle arXiv.org
PublicationYear 2022
Publisher Cornell University Library, arXiv.org
Publisher_xml – name: Cornell University Library, arXiv.org
SSID ssj0002672553
Score 1.8135931
SecondaryResourceType preprint
Snippet We show that the conductance \(G\) of molecular tunnel junctions wherein the charge transport is dominated by a single energy level can be expressed in closed...
Adv. Theor. Simul. 5(7), 202200158 (2022) We show that the conductance $G$ of molecular tunnel junctions wherein the charge transport is dominated by a single...
SourceID arxiv
proquest
SourceType Open Access Repository
Aggregation Database
SubjectTerms Charge transport
Diimide
Energy levels
Physics - Chemical Physics
Physics - Materials Science
Physics - Mesoscale and Nanoscale Physics
Stretching
Tunnel junctions
SummonAdditionalLinks – databaseName: arXiv.org
  dbid: GOX
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwdV3NS8MwFA9zJy-iqGw65R28Frs0bdfjkM0hqAcn7FaSJsXK2o1-yP5A_zDfS1s8iKdCeElLf0neR97vhbE77RrcG6VyPM8odFB848iZEA5PdZrijEINTUTh55dg9S6eNv5mwKDnwsjykH219YFVdc-5rX_gC3HEjjinlK3H1017OGlLcXXyv3JoY9qmP1ur1RfLU3bSGXowb5E5YwNTnLPvxUEmNUiqBILtQBZjs5X0BHRMqfYqoQD7ks5PKCMZJNSN5TfB246CzKnZamdelh-myJoKyH7L8T016RybfgUUWs0K7EhhgK1xEMc9DVJY6jnkhsi-WZUDCuX97bjwiQrOzkGoGkXBGah3vSziCEQqqW3i5QVbLxfrh5XT3aPgSJ9HjnETrXDZ6Zn0vQDdCc1DrlJ8RIEJgzTUWspEeYlQrpSosCMeSOGHxtWB1mhuXbJhsSvMiIGc8cRP0ikVCRM6cVU01SoQJvBwNFz-Yzayfz_et6UyYgImtsCM2aQHJO6WSRXjh8xwU0Ev7er_ntfsmBPnABUG5xM2rMvG3KAlUKtbOx1-AHkMupQ
  priority: 102
  providerName: Cornell University
Title Exact analytic formula for conductance predicting a tunable Sommerfeld-Arrhenius thermal transition within a single-step tunneling mechanism in molecular junctions subject to mechanical stretching
URI https://www.proquest.com/docview/2728318149
https://arxiv.org/abs/2210.12544
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELagKyRu5aW2lGoOXE2zjuNsThVFu62QWioo0t6i8SNi0W425IF64tfxwzrjZuGAxCVWHMcHz3i-8XgeQrz1SSDZiFamabB0QMmCxJnWUlW-qoijCKE5UPjq2lx-1R-X2XI0uHWjW-VOJkZB7beObeSnKicgJDjSxVnzQ3LVKL5dHUtoPBaTKSENc_hscfHHxqJMThpz-nCZGVN3nWJ7t_r5TqmYVyHTmnTS2PWPKI74stgXkxtsQvtMPAr1c_EkumW67oX4Pb9D1wNy5hCiMLCGOayRW6CDLOdqZapB0_J9C3swA0I_xHgo-LJlo3QV1l6-b9tvoV4NHbC-t8E19IxR0V0L2BS7qulHNhusgyS6NzxJHUPVYRM4OHjVbYAGbXbVdOE7AWLkWegGy8Yc6Le7sUR34CCUPjpqvhS3i_nth0s51l2QmKlChsR5S9vUzzBLDR0_PK29ragpTMhNlXuP6GzqtE0QadkLZVBneUi88Z7Us1dir97W4UAAzpTLXDXlpGLau8QWU2-NDial2UhcHIqDuPpl85Bao2TClJEwh-J4R5By3FZd-ZcJjv7_-bV4qjhOgUBGqWOx17dDeEPaQ29PIouciMn5_PrmM71dfFrS8-rX_B4lOc8o
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELaqVghuPNVCgTnA0TR1HGdzQAhBly19CIlF6i0aPyIW7WZDHlB-FP-CH8aMt4EDEreeLCWOD5nP843H8xDimU8C6Ua0Mk2DpQNKFiROtJaq8lVFiCKG5kThs3Mz-6TfX2QXW-LnmAvDYZWjToyK2q8d-8gPVE5ESHSki1fNV8ldo_h2dWyhsYHFSfjxnY5s3cvjtyTf50pNj-ZvZvKqq4DETBUyJM5bAqGfYJYaMq49rWwrGgoTclPl3iM6mzptE0Sir0IZ1FkeEm-811zngDT-jk7TgiMIJ9N3f1w6yuRkoKebu9NYKewA28vFtxdKxTIOmdZkAsdH_2j-SGfT22LnAzahvSO2Qn1X3IhRoK67J34dXaLrAblQCQEK2KAdlsgj0LmZS8MySKBp-XqHA6YBoR9i-hV8XLMPvApLL1-37edQL4YO2Lxc4RJ6psQYHQbs-V3U9CF7KZZBEswaXqSOmfGwCpyLvOhWQJNWY_Ne-EL8G7cIdINl3xH063EuwQw456WPcaH3xfw6BPJAbNfrOuwKwIlymasOuYaZ9i6xxaG3RgeT0mqknfbEbvz7ZbOp5FGyYMoomD2xPwqkvNrFXfkXcw____qpuDmbn52Wp8fnJ4_ELcUpEsRvSu2L7b4dwmMyXHr7JMIFRHnN8PwNckEISQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Exact+analytic+formula+for+conductance+predicting+a+tunable+Sommerfeld-Arrhenius+thermal+transition+within+a+single-step+tunneling+mechanism+in+molecular+junctions+subject+to+mechanical+stretching&rft.jtitle=arXiv.org&rft.au=Baldea%2C+Ioan&rft.date=2022-10-22&rft.pub=Cornell+University+Library%2C+arXiv.org&rft.eissn=2331-8422&rft_id=info:doi/10.48550%2Farxiv.2210.12544