Chemical reactivity under collective vibrational strong coupling

Recent experiments of chemical reactions in optical cavities have shown great promise to alter and steer chemical reactions but still remain poorly understood theoretically. In particular the origin of resonant effects between the cavity and certain vibrational modes in the collective limit is still...

Full description

Saved in:
Bibliographic Details
Published inarXiv.org
Main Authors Wang, Derek S, Flick, Johannes, Yelin, Susanne F
Format Paper Journal Article
LanguageEnglish
Published Ithaca Cornell University Library, arXiv.org 17.06.2022
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Recent experiments of chemical reactions in optical cavities have shown great promise to alter and steer chemical reactions but still remain poorly understood theoretically. In particular the origin of resonant effects between the cavity and certain vibrational modes in the collective limit is still subject to active research. In this paper, we study unimolecular dissociation reactions of many molecules collectively interacting with an infrared cavity mode through their vibrational dipole moment. We find that the reaction rate can slow down by increasing the number of aligned molecules if the cavity mode is resonant with a vibrational frequency of the molecules. We also discover a simple scaling relation that scales with the collective Rabi splitting to estimate the onset of reaction rate modification by collective vibrational strong coupling and numerically demonstrate these effects for up to 10,000 molecules.
Bibliography:SourceType-Working Papers-1
ObjectType-Working Paper/Pre-Print-1
content type line 50
ISSN:2331-8422
DOI:10.48550/arxiv.2206.08937