Beyond Local Structures In Critical Supercooled Water Through Unsupervised Learning
The presence of a second critical point in water has been a topic of intense investigation for the last few decades. The molecular origins underlying this phenomenon are typically rationalized in terms of the competition between local high-density (HD) and low-density (LD) structures. Their identifi...
Saved in:
Published in | arXiv.org |
---|---|
Main Authors | , , , , |
Format | Paper Journal Article |
Language | English |
Published |
Ithaca
Cornell University Library, arXiv.org
29.03.2024
|
Subjects | |
Online Access | Get full text |
ISSN | 2331-8422 |
DOI | 10.48550/arxiv.2401.16245 |
Cover
Loading…
Abstract | The presence of a second critical point in water has been a topic of intense investigation for the last few decades. The molecular origins underlying this phenomenon are typically rationalized in terms of the competition between local high-density (HD) and low-density (LD) structures. Their identification often require designing parameters that are subject to human intervention. Herein, we use unsupervised learning to discover structures in atomistic simulations of water close to the Liquid-Liquid Critical point (LLCP). Encoding the information of the environment using local descriptors, we do not find evidence for two distinct thermodynamic structures. In contrast, when we deploy non-local descriptors that probe instead heterogeneities on the nanometer length scale, this leads to the emergence of LD and HD domains rationalizing the microscopic origins of the density fluctuations close to criticality. |
---|---|
AbstractList | The presence of a second critical point in water has been a topic of intense investigation for the last few decades. The molecular origins underlying this phenomenon are typically rationalized in terms of the competition between local high-density (HD) and low-density (LD) structures. Their identification often require designing parameters that are subject to human intervention. Herein, we use unsupervised learning to discover structures in atomistic simulations of water close to the Liquid-Liquid Critical point (LLCP). Encoding the information of the environment using local descriptors, we do not find evidence for two distinct thermodynamic structures. In contrast, when we deploy non-local descriptors that probe instead heterogeneities on the nanometer length scale, this leads to the emergence of LD and HD domains rationalizing the microscopic origins of the density fluctuations close to criticality. The presence of a second critical point in water has been a topic of intense investigation for the last few decades. The molecular origins underlying this phenomenon are typically rationalized in terms of the competition between local high-density (HD) and low-density (LD) structures. Their identification often require designing parameters that are subject to human intervention. Herein, we use unsupervised learning to discover structures in atomistic simulations of water close to the Liquid-Liquid Critical point (LLCP). Encoding the information of the environment using local descriptors, we do not find evidence for two distinct thermodynamic structures. In contrast, when we deploy non-local descriptors that probe instead heterogeneities on the nanometer length scale, this leads to the emergence of LD and HD domains rationalizing the microscopic origins of the density fluctuations close to criticality. |
Author | Rodriguez, Alex Ali, Hassanali Offei-Danso, Adu Sciortino, Francesco Edward Danquah Donkor |
Author_xml | – sequence: 1 fullname: Edward Danquah Donkor – sequence: 2 givenname: Adu surname: Offei-Danso fullname: Offei-Danso, Adu – sequence: 3 givenname: Alex surname: Rodriguez fullname: Rodriguez, Alex – sequence: 4 givenname: Francesco surname: Sciortino fullname: Sciortino, Francesco – sequence: 5 givenname: Hassanali surname: Ali fullname: Ali, Hassanali |
BackLink | https://doi.org/10.1021/acs.jpclett.4c00383$$DView published paper (Access to full text may be restricted) https://doi.org/10.48550/arXiv.2401.16245$$DView paper in arXiv |
BookMark | eNotj11LwzAUhoMoOOd-gFcGvO5MTnrS5lKHH4OCF6t4WdIs3TpmMpN2uH9vt3l14DwvL-9zQy6dd5aQO86maY7IHnX4bfdTSBmfcgkpXpARCMGTPAW4JpMYN4wxkBkgihFZPNuDd0taeKO3dNGF3nR9sJHOHZ2FtmtP735ng_F-a5f0S3c20HIdfL9a008Xj2zfxgEVVgfXutUtuWr0NtrJ_x2T8vWlnL0nxcfbfPZUJBpBJciFxgyzhhuBAkyT10tRm2F4LmXDUSslpah5hvUAgVusTcalNdo0rAEmxuT-XHsyrnah_dbhUB3Nq5P5kHg4J3bB__Q2dtXG98ENmypQXClgTCrxB9zdXZ8 |
ContentType | Paper Journal Article |
Copyright | 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. http://creativecommons.org/licenses/by/4.0 |
Copyright_xml | – notice: 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: http://creativecommons.org/licenses/by/4.0 |
DBID | 8FE 8FG ABJCF ABUWG AFKRA AZQEC BENPR BGLVJ CCPQU DWQXO HCIFZ L6V M7S PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS GOX |
DOI | 10.48550/arxiv.2401.16245 |
DatabaseName | ProQuest SciTech Collection ProQuest Technology Collection Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central Technology Collection ProQuest One ProQuest Central Korea ProQuest SciTech Premium Collection ProQuest Engineering Collection Engineering Database ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection arXiv.org |
DatabaseTitle | Publicly Available Content Database Engineering Database Technology Collection ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest One Academic Eastern Edition ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Technology Collection ProQuest SciTech Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Engineering Collection ProQuest One Academic UKI Edition ProQuest Central Korea Materials Science & Engineering Collection ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) Engineering Collection |
DatabaseTitleList | Publicly Available Content Database |
Database_xml | – sequence: 1 dbid: GOX name: arXiv.org url: http://arxiv.org/find sourceTypes: Open Access Repository – sequence: 2 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Physics |
EISSN | 2331-8422 |
ExternalDocumentID | 2401_16245 |
Genre | Working Paper/Pre-Print |
GroupedDBID | 8FE 8FG ABJCF ABUWG AFKRA ALMA_UNASSIGNED_HOLDINGS AZQEC BENPR BGLVJ CCPQU DWQXO FRJ HCIFZ L6V M7S M~E PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS GOX |
ID | FETCH-LOGICAL-a529-513a5757f1c3532cf8bd3bc240866f15a99663b175b2cf21e5bc716ecacf0f203 |
IEDL.DBID | GOX |
IngestDate | Tue Jul 22 23:01:21 EDT 2025 Mon Jun 30 09:17:53 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | false |
IsScholarly | false |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a529-513a5757f1c3532cf8bd3bc240866f15a99663b175b2cf21e5bc716ecacf0f203 |
Notes | SourceType-Working Papers-1 ObjectType-Working Paper/Pre-Print-1 content type line 50 |
OpenAccessLink | https://arxiv.org/abs/2401.16245 |
PQID | 2919920069 |
PQPubID | 2050157 |
ParticipantIDs | arxiv_primary_2401_16245 proquest_journals_2919920069 |
PublicationCentury | 2000 |
PublicationDate | 20240329 |
PublicationDateYYYYMMDD | 2024-03-29 |
PublicationDate_xml | – month: 03 year: 2024 text: 20240329 day: 29 |
PublicationDecade | 2020 |
PublicationPlace | Ithaca |
PublicationPlace_xml | – name: Ithaca |
PublicationTitle | arXiv.org |
PublicationYear | 2024 |
Publisher | Cornell University Library, arXiv.org |
Publisher_xml | – name: Cornell University Library, arXiv.org |
SSID | ssj0002672553 |
Score | 1.8676423 |
SecondaryResourceType | preprint |
Snippet | The presence of a second critical point in water has been a topic of intense investigation for the last few decades. The molecular origins underlying this... The presence of a second critical point in water has been a topic of intense investigation for the last few decades. The molecular origins underlying this... |
SourceID | arxiv proquest |
SourceType | Open Access Repository Aggregation Database |
SubjectTerms | Critical point Density Heterogeneity Machine learning Order parameters Origins Physics - Chemical Physics Physics - Data Analysis, Statistics and Probability Physics - Soft Condensed Matter Unsupervised learning Water Water chemistry |
SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LSwMxEA7aRfDmk1ar5OA17Sb7PglKSxUtxbbY25KnFGS3dm3x5zvJbvUgeN1hL5Phm28mk28QujGaCsVTQ3icKAIRIgjEjSJMhRKgQQAe2tbA8zgezcPHRbRoGm5VM1a5w0QH1KqUtkfeZ5kdlLTCurerD2K3Rtnb1WaFxj7yAIJTKL68u8F48vLTZWFxApw5qK8znXhXn6-_ltseJDLaozGzz5g89-kPGLsMMzxC3oSv9PoY7eniBB24wUxZnaJp_cQEP9mcg6dO7XUDJTJ-KPBuTQGebuBXWZbvWuFXII9rPKvX7-B5UVnbdlmBqdFSfTtDs-Fgdj8izSIEwiOWkYgGHFhVYqgMooBJkwoVCGnFyeLY0IjbmiUQQAQEGBnVkZBQBmnJpfEN84Nz1CrKQrcRtgzPhDKNWEJD6WuhqKYqjLVdaCe430Ft54x8VWtd5NZPufNTB3V3_smbOK_y31O5-N98iQ4Z0AE7vcWyLmqBu_QVpPNPcd2c2TfskKBv priority: 102 providerName: ProQuest |
Title | Beyond Local Structures In Critical Supercooled Water Through Unsupervised Learning |
URI | https://www.proquest.com/docview/2919920069 https://arxiv.org/abs/2401.16245 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwdV09T8MwED21ZWFBIEAtlMoDayB24jQdAfUDRAuiregW-RMhobRqaMXEb-fspGJALBly9nI-3XuXnN8BXFpDpRapDUTS1QFGiAwwbnTAdKwwNUjMh-7TwHiSjObxw4IvakB2d2HE-ut9W-oDy-Ia4YZe0YTFvA51xlzL1vBpUf6c9FJc1frfdcgx_as_qdXjxeAQDiqiR27KkzmCmsmPYVpeGCGPDkHI1Gu3brDgJfc52Q0dINPNyqzVcvlhNHlFKrgms3KYDpnnhbNt3ws0VcqobycwG_Rnd6OgGmsQCM56AaeRQI7UtVRFPGLKplJHUjmpsSSxlAtXgUQSYV2ikVHDpcKixiihbGhZGJ1CI1_mpgnE8TUbq5SzLo1VaKSmhuo4MW48nRRhC5reGdmqVK7InJ8y76cWtHf-yaqoLTLWc82oTrz47P-d57DPENhdHxbrtaGBrjIXCMyfsgP1dDDswN5tf_L80vFnhc_xd_8HIXuSAw |
linkProvider | Cornell University |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV07T8MwED4BFYKNp3gU8ABjoLaTtB0QA1BaKAipRbBFfgVVQmlpeP4o_iN3TgMDElvXnOLh8_ke9t13APup49qqRhqouG4D1BAdoN7YQNjQoGnQaA_pauD6Jm7fhZcP0cMMfJW9MFRWWdpEb6jt0NAd-ZFoUqEkEeuejJ4DmhpFr6vlCI1CLa7c5zumbPlx5wz390CI1nn_tB1MpgoEKhLNIOJSYYhST7mRkRQmbWgrtSGmrzhOeaQoAZAavapGoeAu0gZzCmeUSWupqElcdhYqoZRNOlCN1sXPlY6I6xigy-Lt1DOFHanxx-DtEBfnhzwW1DNV8Z_-WH7vzlpLULlVIzdehhmXrcC8rwI1-Sr0in4W1iUHx3qeWvYV83HWyVg5E4H1XvFXMxw-OcvuMVIds34x64fdZTnJ3gY5iibErY9r0J8GPuswlw0ztwGMwsk0NI1I1Hloak5b7rgNY0fT87SqbcKGByMZFcQaCeGUeJw2oVrik0wOVZ78qsDW_-I9WGj3r7tJt3NztQ2LAuMQKhsTzSrMIXRuB-OIF73rd49BMmVt-QbM09qx |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Beyond+Local+Structures+In+Critical+Supercooled+Water+Through+Unsupervised+Learning&rft.jtitle=arXiv.org&rft.au=Edward+Danquah+Donkor&rft.au=Offei-Danso%2C+Adu&rft.au=Rodriguez%2C+Alex&rft.au=Sciortino%2C+Francesco&rft.date=2024-03-29&rft.pub=Cornell+University+Library%2C+arXiv.org&rft.eissn=2331-8422&rft_id=info:doi/10.48550%2Farxiv.2401.16245 |