Aging phenomena in the two-dimensional complex Ginzburg-Landau equation

The complex Ginzburg-Landau equation with additive noise is a stochastic partial differential equation that describes a remarkably wide range of physical systems which include coupled non-linear oscillators subject to external noise near a Hopf bifurcation instability and spontaneous structure forma...

Full description

Saved in:
Bibliographic Details
Published inarXiv.org
Main Authors Liu, Weigang, Täuber, Uwe C
Format Paper Journal Article
LanguageEnglish
Published Ithaca Cornell University Library, arXiv.org 21.11.2019
Subjects
Online AccessGet full text
ISSN2331-8422
DOI10.48550/arxiv.1910.01168

Cover

Loading…
Abstract The complex Ginzburg-Landau equation with additive noise is a stochastic partial differential equation that describes a remarkably wide range of physical systems which include coupled non-linear oscillators subject to external noise near a Hopf bifurcation instability and spontaneous structure formation in non-equilibrium systems, e.g., in cyclically competing populations or oscillatory chemical reactions. We employ a finite-difference method to numerically solve the noisy complex Ginzburg-Landau equation on a two-dimensional domain with the goal to investigate its non-equilibrium dynamics when the system is quenched into the "defocusing spiral quadrant". We observe slow coarsening dynamics as oppositely charged topological defects annihilate each other, and characterize the ensuing aging scaling behavior. We conclude that the physical aging features in this system are governed by non-universal aging scaling exponents. We also investigate systems with control parameters residing in the "focusing quadrant", and identify slow aging kinetics in that regime as well. We provide heuristic criteria for the existence of slow coarsening dynamics and physical aging behavior in the complex Ginzburg-Landau equation.
AbstractList EPL 128 (2019) 30006 The complex Ginzburg-Landau equation with additive noise is a stochastic partial differential equation that describes a remarkably wide range of physical systems which include coupled non-linear oscillators subject to external noise near a Hopf bifurcation instability and spontaneous structure formation in non-equilibrium systems, e.g., in cyclically competing populations or oscillatory chemical reactions. We employ a finite-difference method to numerically solve the noisy complex Ginzburg-Landau equation on a two-dimensional domain with the goal to investigate its non-equilibrium dynamics when the system is quenched into the "defocusing spiral quadrant". We observe slow coarsening dynamics as oppositely charged topological defects annihilate each other, and characterize the ensuing aging scaling behavior. We conclude that the physical aging features in this system are governed by non-universal aging scaling exponents. We also investigate systems with control parameters residing in the "focusing quadrant", and identify slow aging kinetics in that regime as well. We provide heuristic criteria for the existence of slow coarsening dynamics and physical aging behavior in the complex Ginzburg-Landau equation.
The complex Ginzburg-Landau equation with additive noise is a stochastic partial differential equation that describes a remarkably wide range of physical systems which include coupled non-linear oscillators subject to external noise near a Hopf bifurcation instability and spontaneous structure formation in non-equilibrium systems, e.g., in cyclically competing populations or oscillatory chemical reactions. We employ a finite-difference method to numerically solve the noisy complex Ginzburg-Landau equation on a two-dimensional domain with the goal to investigate its non-equilibrium dynamics when the system is quenched into the "defocusing spiral quadrant". We observe slow coarsening dynamics as oppositely charged topological defects annihilate each other, and characterize the ensuing aging scaling behavior. We conclude that the physical aging features in this system are governed by non-universal aging scaling exponents. We also investigate systems with control parameters residing in the "focusing quadrant", and identify slow aging kinetics in that regime as well. We provide heuristic criteria for the existence of slow coarsening dynamics and physical aging behavior in the complex Ginzburg-Landau equation.
Author Täuber, Uwe C
Liu, Weigang
Author_xml – sequence: 1
  givenname: Weigang
  surname: Liu
  fullname: Liu, Weigang
– sequence: 2
  givenname: Uwe
  surname: Täuber
  middlename: C
  fullname: Täuber, Uwe C
BackLink https://doi.org/10.48550/arXiv.1910.01168$$DView paper in arXiv
https://doi.org/10.1209/0295-5075/128/30006$$DView published paper (Access to full text may be restricted)
BookMark eNotj11LwzAYhYMoOOd-gFcGvO5M8i5JczmGTqHgze5L2r7tMrak64dOf71x8-rA4eFwnjty7YNHQh44my9SKdmz7U7uc85NLBjnKr0iEwHAk3QhxC2Z9f2OMSaUFlLChKyXjfMNbbfowwG9pc7TYYt0-ApJ5WLTu-Dtnpbh0O7xRNfO_xRj1ySZ9ZUdKR5HO0TkntzUdt_j7D-nZPP6slm9JdnH-n21zBIrhUkACm1Qoy50xTVXFa-NqhTIuqx0YRWLJxdQY2pqUyKIskRjBNdgJSpb1DAlj5fZs2Xedu5gu-_8zzY_20bi6UK0XTiO2A_5LoxdVOhzAYxpowwY-AUkbFnL
ContentType Paper
Journal Article
Copyright 2019. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
http://arxiv.org/licenses/nonexclusive-distrib/1.0
Copyright_xml – notice: 2019. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: http://arxiv.org/licenses/nonexclusive-distrib/1.0
DBID 8FE
8FG
ABJCF
ABUWG
AFKRA
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
HCIFZ
L6V
M7S
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
ALA
GOX
DOI 10.48550/arxiv.1910.01168
DatabaseName ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central (New)
ProQuest Technology Collection
ProQuest One
ProQuest Central Korea
SciTech Premium Collection
ProQuest Engineering Collection
Engineering Database
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
arXiv Nonlinear Science
arXiv.org
DatabaseTitle Publicly Available Content Database
Engineering Database
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
ProQuest One Academic UKI Edition
ProQuest Central Korea
Materials Science & Engineering Collection
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
Engineering Collection
DatabaseTitleList
Publicly Available Content Database
Database_xml – sequence: 1
  dbid: GOX
  name: arXiv.org
  url: http://arxiv.org/find
  sourceTypes: Open Access Repository
– sequence: 2
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 2331-8422
ExternalDocumentID 1910_01168
Genre Working Paper/Pre-Print
GroupedDBID 8FE
8FG
ABJCF
ABUWG
AFKRA
ALMA_UNASSIGNED_HOLDINGS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
FRJ
HCIFZ
L6V
M7S
M~E
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
ALA
GOX
ID FETCH-LOGICAL-a529-33b79e7e7b7d1716d1f96d635fcd7ba6084243fe89f9ce32cce992173a5e6abf3
IEDL.DBID GOX
IngestDate Tue Jul 22 23:14:31 EDT 2025
Mon Jun 30 09:22:19 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a529-33b79e7e7b7d1716d1f96d635fcd7ba6084243fe89f9ce32cce992173a5e6abf3
Notes SourceType-Working Papers-1
ObjectType-Working Paper/Pre-Print-1
content type line 50
OpenAccessLink https://arxiv.org/abs/1910.01168
PQID 2300796939
PQPubID 2050157
ParticipantIDs arxiv_primary_1910_01168
proquest_journals_2300796939
PublicationCentury 2000
PublicationDate 20191121
PublicationDateYYYYMMDD 2019-11-21
PublicationDate_xml – month: 11
  year: 2019
  text: 20191121
  day: 21
PublicationDecade 2010
PublicationPlace Ithaca
PublicationPlace_xml – name: Ithaca
PublicationTitle arXiv.org
PublicationYear 2019
Publisher Cornell University Library, arXiv.org
Publisher_xml – name: Cornell University Library, arXiv.org
SSID ssj0002672553
Score 1.708196
SecondaryResourceType preprint
Snippet The complex Ginzburg-Landau equation with additive noise is a stochastic partial differential equation that describes a remarkably wide range of physical...
EPL 128 (2019) 30006 The complex Ginzburg-Landau equation with additive noise is a stochastic partial differential equation that describes a remarkably wide...
SourceID arxiv
proquest
SourceType Open Access Repository
Aggregation Database
SubjectTerms Aging
Chemical reactions
Coarsening
Defocusing
Finite difference method
Hopf bifurcation
Landau-Ginzburg equations
Nonlinear systems
Organic chemistry
Oscillators
Parameter identification
Partial differential equations
Physics - Pattern Formation and Solitons
Physics - Statistical Mechanics
Reaction kinetics
SummonAdditionalLinks – databaseName: ProQuest Central (New)
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LSwMxEA7aInjzSatVcvCadneT3WxOotIHoqVIhd6WPCbQy_atxV9vkm71IHhNbjNh5puZL98gdKfjSCsOQDLQKWFKcqI8kGOUWmrzCOKgs_06zAbv7HmSTqqG26qiVe5jYgjUZqZ9j7zjoHLERSaouJ8viN8a5aer1QqNQ1R3IThPa6j-2B2O3n66LEnGHWamu3FmEO_qyOV2-tF2ZUrU9kOI3KHScPQnGIcM0ztB9ZGcw_IUHUB5ho4CMVOvzlH_wW8Rwp6J5bUSJJ6W2GE2vP6cEeOV-XeqGjhQw2GL-9Pyy09OyItvEWwwLHZa3hdo3OuOnwakWn5AZJoIQqniAjhwxY1XtDGxFZlx6MBqw5XMopwljFrIhRUaaKI1COHKCypTyKSy9BLVylkJDYQhAuNwXyozK1jOjGLWlcQ2jQzksdW6iRrBAMV8p29ReNsUwTZN1NrbpKje9qr49cTV_9fX6NjBC-F_7iVxC9XWyw3cuBS-VreVn74BdbSc6Q
  priority: 102
  providerName: ProQuest
Title Aging phenomena in the two-dimensional complex Ginzburg-Landau equation
URI https://www.proquest.com/docview/2300796939
https://arxiv.org/abs/1910.01168
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwdZ09T8MwEIattiwsCASohVJ5YDUksRPHY0FtKkQLQkXqFvnjLHVJoR9QMfDbsZ1WDIjFQ-QsZ8v3vrrzY4SudRxpxQFIBjolTElOlBdyjFJLbR5BHDjb40k2emUPs3TWQHh_F0Yut_OPmg-sVrfOTEQ3vlSQN1EzSXzLVvE0q4uTAcW1m_87z2nM8OnP0RryxfAYHe2EHu7XK3OCGlCdoqLv3wTCvq_Kkw8knlfYKTC8_lwQ4zn7NSMDh0Zv2OJiXn35Ogh59IZ_g-G9JnOfoelwML0fkd1TBkSmiSCUKi6AA1fceD6Nia3IjMv1VhuuZBblLGHUQi6s0EATrUEIZxaoTCGTytJz1KoWFbQRhgiMU3GpzKxgOTOKWWdwbRoZyGOrdQe1QwDKt5pWUfrYlCE2HdTdx6Tc7dRV6SxIxEUmqLj4_89LdOiEgvB38JK4i1rr5QauXDJeqx5q5sOihw7uBpPnl15YHzeOvwc_UKqOgQ
linkProvider Cornell University
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV07b9swED4kNopkS9MWceK2HNKRtiRKojgEQR-JncQ2jMIFsgl8HAEvsmM7r_6n_seQlN0OBbJ5FQEN35HH7x78DuBUx5FWHJHmqDOaKsmp8kQuZcwyW0QYB53t4Sjv_0qvb7PbHfizeQvj2yo3PjE4ajPTPkfedVQ54iIXTJzP76ifGuWrq5sRGvW2uMHnRxeyLc-ufjj7fkmSy4vJ9z5dTxWgMksEZUxxgRy54sZLxZjYity4a9dqw5XMoyJNUmaxEFZoZInWKITj7UxmmEtlmfvtLjQdyxDuEDW_XYzGP_8mdZKcO4rO6upp0ArrysXT9KHjoqKo42sehSPB4dN_vj9caJcH0BzLOS7ewg5Wh_Am9IHq5TvoffVDi4hv_PLSDJJMK-IoIlk9zqjxgwBqEQ8SOtHxifSm1W9fqKEDn5G4J3hXS4e_h8k2UPkAjWpW4REQjNA4mpnJ3Iq0SI1KrYvAbRYZLGKrdQuOAgDlvJbTKD02ZcCmBe0NJuX6KC3Lf4Y_fn35M-z1J8NBObga3ZzAvmM2wj8aTOI2NFaLe_zo2MNKfVrbjEC55V3yAn3u2bo
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Aging+phenomena+in+the+two-dimensional+complex+Ginzburg-Landau+equation&rft.jtitle=arXiv.org&rft.au=Liu%2C+Weigang&rft.au=T%C3%A4uber%2C+Uwe+C&rft.date=2019-11-21&rft.pub=Cornell+University+Library%2C+arXiv.org&rft.eissn=2331-8422&rft_id=info:doi/10.48550%2Farxiv.1910.01168