Host Serine Proteases TMPRSS2 and TMPRSS11D Mediate Proteolytic Activation and Trypsin-Independent Infection in Group A Rotaviruses

Proteolytic cleavage of the viral VP4 protein is essential for virion maturation and infectivity in group A rotaviruses (RVAs). In cell culture, RVAs are propagated in culture medium supplemented with the exogenous protease trypsin, which cleaves VP4 and induces the maturation of progeny RVA virions...

Full description

Saved in:
Bibliographic Details
Published inJournal of virology Vol. 95; no. 11
Main Authors Sasaki, Michihito, Itakura, Yukari, Kishimoto, Mai, Tabata, Koshiro, Uemura, Kentaro, Ito, Naoto, Sugiyama, Makoto, Wastika, Christida E., Orba, Yasuko, Sawa, Hirofumi
Format Journal Article
LanguageEnglish
Published United States American Society for Microbiology 10.05.2021
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Proteolytic cleavage of the viral VP4 protein is essential for virion maturation and infectivity in group A rotaviruses (RVAs). In cell culture, RVAs are propagated in culture medium supplemented with the exogenous protease trypsin, which cleaves VP4 and induces the maturation of progeny RVA virions. Group A rotaviruses (RVAs) are representative enteric virus species and major causes of diarrhea in humans and animals. The RVA virion is a triple-layered particle, and the outermost layer consists of the glycoprotein VP7 and spike protein VP4. To increase the infectivity of RVA, VP4 is proteolytically cleaved into VP5* and VP8* subunits by trypsin; these subunits form a rigid spike structure on the virion surface. In this study, we investigated the growth of RVAs in cells transduced with type II transmembrane serine proteases (TTSPs), which cleave fusion proteins and promote infection by respiratory viruses, such as influenza viruses, paramyxoviruses, and coronaviruses. We identified TMPRSS2 and TMPRSS11D as host TTSPs that mediate trypsin-independent and multicycle infection by human and animal RVA strains. In vitro cleavage assays revealed that recombinant TMPRSS11D cleaved RVA VP4. We also found that TMPRSS2 and TMPRSS11D promote the infectious entry of immature RVA virions, but they could not activate nascent progeny virions in the late phase of infection. This observation differed from the TTSP-mediated activation process of paramyxoviruses, revealing the existence of virus species-specific activation processes in TTSPs. Our study provides new insights into the interaction between RVAs and host factors, and TTSP-transduced cells offer potential advantages for RVA research and development. IMPORTANCE Proteolytic cleavage of the viral VP4 protein is essential for virion maturation and infectivity in group A rotaviruses (RVAs). In cell culture, RVAs are propagated in culture medium supplemented with the exogenous protease trypsin, which cleaves VP4 and induces the maturation of progeny RVA virions. In this study, we demonstrated that the host proteases TMPRSS2 and TMPRSS11D mediate the trypsin-independent infection and growth of RVAs. Our data revealed that the proteolytic activation of RVAs by TMPRSS2 and TMPRSS11D occurs at the viral entry step. Because TMPRSS2 and TMPRSS11D gene expression induced similar or higher levels of RVA growth as trypsin-supplemented culture, this approach offers potential advantages for RVA research and development.
AbstractList Proteolytic cleavage of the viral VP4 protein is essential for virion maturation and infectivity in group A rotaviruses (RVAs). In cell culture, RVAs are propagated in culture medium supplemented with the exogenous protease trypsin, which cleaves VP4 and induces the maturation of progeny RVA virions. Group A rotaviruses (RVAs) are representative enteric virus species and major causes of diarrhea in humans and animals. The RVA virion is a triple-layered particle, and the outermost layer consists of the glycoprotein VP7 and spike protein VP4. To increase the infectivity of RVA, VP4 is proteolytically cleaved into VP5* and VP8* subunits by trypsin; these subunits form a rigid spike structure on the virion surface. In this study, we investigated the growth of RVAs in cells transduced with type II transmembrane serine proteases (TTSPs), which cleave fusion proteins and promote infection by respiratory viruses, such as influenza viruses, paramyxoviruses, and coronaviruses. We identified TMPRSS2 and TMPRSS11D as host TTSPs that mediate trypsin-independent and multicycle infection by human and animal RVA strains. In vitro cleavage assays revealed that recombinant TMPRSS11D cleaved RVA VP4. We also found that TMPRSS2 and TMPRSS11D promote the infectious entry of immature RVA virions, but they could not activate nascent progeny virions in the late phase of infection. This observation differed from the TTSP-mediated activation process of paramyxoviruses, revealing the existence of virus species-specific activation processes in TTSPs. Our study provides new insights into the interaction between RVAs and host factors, and TTSP-transduced cells offer potential advantages for RVA research and development. IMPORTANCE Proteolytic cleavage of the viral VP4 protein is essential for virion maturation and infectivity in group A rotaviruses (RVAs). In cell culture, RVAs are propagated in culture medium supplemented with the exogenous protease trypsin, which cleaves VP4 and induces the maturation of progeny RVA virions. In this study, we demonstrated that the host proteases TMPRSS2 and TMPRSS11D mediate the trypsin-independent infection and growth of RVAs. Our data revealed that the proteolytic activation of RVAs by TMPRSS2 and TMPRSS11D occurs at the viral entry step. Because TMPRSS2 and TMPRSS11D gene expression induced similar or higher levels of RVA growth as trypsin-supplemented culture, this approach offers potential advantages for RVA research and development.
Group A rotaviruses (RVAs) are representative enteric virus species and major causes of diarrhea in humans and animals. The RVA virion is a triple-layered particle, and the outermost layer consists of the glycoprotein VP7 and spike protein VP4. To increase the infectivity of RVA, VP4 is proteolytically cleaved into VP5* and VP8* subunits by trypsin; and these subunits form a rigid spike structure on the virion surface. In this study, we investigated the growth of RVAs in cells transduced with type II transmembrane serine proteases (TTSPs), which cleave fusion proteins and promote infection by respiratory viruses, such as influenza viruses, paramyxoviruses, and coronaviruses. We identified TMPRSS2 and TMPRSS11D as host TTSPs that mediate trypsin-independent and multi-cycle infection by human and animal RVA strains. In vitro cleavage assays revealed that recombinant TMPRSS11D cleaved RVA VP4. We also found that TMPRSS2 and TMPRSS11D promote the infectious entry of immature RVA virions, but they could not activate nascent progeny virions in the late phase of infection. This observation differed from the TTSP-mediated activation process of paramyxoviruses, revealing the existence of virus species-specific activation processes in TTSPs. Our study provides new insights into the interaction between RVAs and host factors, and TTSP-transduced cells offer potential advantages for RVA research and development.ImportanceProteolytic cleavage of the viral VP4 protein is essential for virion maturation and infectivity in group A rotaviruses (RVAs). In cell culture, RVAs are propagated in culture medium supplemented with the exogenous protease trypsin, which cleaves VP4 and induces the maturation of progeny RVA virions. In this study, we demonstrated that the host proteases TMPRSS2 and TMPRSS11D mediate the trypsin-independent infection and growth of RVA. Our data revealed that the proteolytic activation of RVAs by TMPRSS2 and TMPRSS11D occurs at the viral entry step. Because TMPRSS2 and TMPRSS11D gene expression induced similar or higher levels of RVA growth as trypsin-supplemented culture, this approach offers potential advantages for RVA research and development.Group A rotaviruses (RVAs) are representative enteric virus species and major causes of diarrhea in humans and animals. The RVA virion is a triple-layered particle, and the outermost layer consists of the glycoprotein VP7 and spike protein VP4. To increase the infectivity of RVA, VP4 is proteolytically cleaved into VP5* and VP8* subunits by trypsin; and these subunits form a rigid spike structure on the virion surface. In this study, we investigated the growth of RVAs in cells transduced with type II transmembrane serine proteases (TTSPs), which cleave fusion proteins and promote infection by respiratory viruses, such as influenza viruses, paramyxoviruses, and coronaviruses. We identified TMPRSS2 and TMPRSS11D as host TTSPs that mediate trypsin-independent and multi-cycle infection by human and animal RVA strains. In vitro cleavage assays revealed that recombinant TMPRSS11D cleaved RVA VP4. We also found that TMPRSS2 and TMPRSS11D promote the infectious entry of immature RVA virions, but they could not activate nascent progeny virions in the late phase of infection. This observation differed from the TTSP-mediated activation process of paramyxoviruses, revealing the existence of virus species-specific activation processes in TTSPs. Our study provides new insights into the interaction between RVAs and host factors, and TTSP-transduced cells offer potential advantages for RVA research and development.ImportanceProteolytic cleavage of the viral VP4 protein is essential for virion maturation and infectivity in group A rotaviruses (RVAs). In cell culture, RVAs are propagated in culture medium supplemented with the exogenous protease trypsin, which cleaves VP4 and induces the maturation of progeny RVA virions. In this study, we demonstrated that the host proteases TMPRSS2 and TMPRSS11D mediate the trypsin-independent infection and growth of RVA. Our data revealed that the proteolytic activation of RVAs by TMPRSS2 and TMPRSS11D occurs at the viral entry step. Because TMPRSS2 and TMPRSS11D gene expression induced similar or higher levels of RVA growth as trypsin-supplemented culture, this approach offers potential advantages for RVA research and development.
Group A rotaviruses (RVAs) are representative enteric virus species and major causes of diarrhea in humans and animals. The RVA virion is a triple-layered particle, and the outermost layer consists of the glycoprotein VP7 and spike protein VP4. To increase the infectivity of RVA, VP4 is proteolytically cleaved into VP5* and VP8* subunits by trypsin; these subunits form a rigid spike structure on the virion surface. In this study, we investigated the growth of RVAs in cells transduced with type II transmembrane serine proteases (TTSPs), which cleave fusion proteins and promote infection by respiratory viruses, such as influenza viruses, paramyxoviruses, and coronaviruses. We identified TMPRSS2 and TMPRSS11D as host TTSPs that mediate trypsin-independent and multicycle infection by human and animal RVA strains. In vitro cleavage assays revealed that recombinant TMPRSS11D cleaved RVA VP4. We also found that TMPRSS2 and TMPRSS11D promote the infectious entry of immature RVA virions, but they could not activate nascent progeny virions in the late phase of infection. This observation differed from the TTSP-mediated activation process of paramyxoviruses, revealing the existence of virus species-specific activation processes in TTSPs. Our study provides new insights into the interaction between RVAs and host factors, and TTSP-transduced cells offer potential advantages for RVA research and development. IMPORTANCE Proteolytic cleavage of the viral VP4 protein is essential for virion maturation and infectivity in group A rotaviruses (RVAs). In cell culture, RVAs are propagated in culture medium supplemented with the exogenous protease trypsin, which cleaves VP4 and induces the maturation of progeny RVA virions. In this study, we demonstrated that the host proteases TMPRSS2 and TMPRSS11D mediate the trypsin-independent infection and growth of RVAs. Our data revealed that the proteolytic activation of RVAs by TMPRSS2 and TMPRSS11D occurs at the viral entry step. Because TMPRSS2 and TMPRSS11D gene expression induced similar or higher levels of RVA growth as trypsin-supplemented culture, this approach offers potential advantages for RVA research and development.
Group A rotaviruses (RVAs) are representative enteric virus species and major causes of diarrhea in humans and animals. The RVA virion is a triple-layered particle, and the outermost layer consists of the glycoprotein VP7 and spike protein VP4. To increase the infectivity of RVA, VP4 is proteolytically cleaved into VP5* and VP8* subunits by trypsin; and these subunits form a rigid spike structure on the virion surface. In this study, we investigated the growth of RVAs in cells transduced with type II transmembrane serine proteases (TTSPs), which cleave fusion proteins and promote infection by respiratory viruses, such as influenza viruses, paramyxoviruses, and coronaviruses. We identified TMPRSS2 and TMPRSS11D as host TTSPs that mediate trypsin-independent and multi-cycle infection by human and animal RVA strains. cleavage assays revealed that recombinant TMPRSS11D cleaved RVA VP4. We also found that TMPRSS2 and TMPRSS11D promote the infectious entry of immature RVA virions, but they could not activate nascent progeny virions in the late phase of infection. This observation differed from the TTSP-mediated activation process of paramyxoviruses, revealing the existence of virus species-specific activation processes in TTSPs. Our study provides new insights into the interaction between RVAs and host factors, and TTSP-transduced cells offer potential advantages for RVA research and development. Proteolytic cleavage of the viral VP4 protein is essential for virion maturation and infectivity in group A rotaviruses (RVAs). In cell culture, RVAs are propagated in culture medium supplemented with the exogenous protease trypsin, which cleaves VP4 and induces the maturation of progeny RVA virions. In this study, we demonstrated that the host proteases TMPRSS2 and TMPRSS11D mediate the trypsin-independent infection and growth of RVA. Our data revealed that the proteolytic activation of RVAs by TMPRSS2 and TMPRSS11D occurs at the viral entry step. Because TMPRSS2 and TMPRSS11D gene expression induced similar or higher levels of RVA growth as trypsin-supplemented culture, this approach offers potential advantages for RVA research and development.
Author Tabata, Koshiro
Sugiyama, Makoto
Wastika, Christida E.
Ito, Naoto
Kishimoto, Mai
Itakura, Yukari
Orba, Yasuko
Uemura, Kentaro
Sawa, Hirofumi
Sasaki, Michihito
Author_xml – sequence: 1
  givenname: Michihito
  orcidid: 0000-0003-1607-2175
  surname: Sasaki
  fullname: Sasaki, Michihito
  organization: Division of Molecular Pathobiology, Research Center for Zoonosis Control, Hokkaido University, Sapporo, Japan
– sequence: 2
  givenname: Yukari
  surname: Itakura
  fullname: Itakura, Yukari
  organization: Division of Molecular Pathobiology, Research Center for Zoonosis Control, Hokkaido University, Sapporo, Japan
– sequence: 3
  givenname: Mai
  surname: Kishimoto
  fullname: Kishimoto, Mai
  organization: Division of Molecular Pathobiology, Research Center for Zoonosis Control, Hokkaido University, Sapporo, Japan
– sequence: 4
  givenname: Koshiro
  surname: Tabata
  fullname: Tabata, Koshiro
  organization: Division of Molecular Pathobiology, Research Center for Zoonosis Control, Hokkaido University, Sapporo, Japan
– sequence: 5
  givenname: Kentaro
  surname: Uemura
  fullname: Uemura, Kentaro
  organization: Division of Molecular Pathobiology, Research Center for Zoonosis Control, Hokkaido University, Sapporo, Japan, Drug Discovery and Disease Research Laboratory, Shionogi & Co., Ltd., Osaka, Japan, Laboratory of Biomolecular Science, Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo, Japan
– sequence: 6
  givenname: Naoto
  surname: Ito
  fullname: Ito, Naoto
  organization: Laboratory of Zoonotic Diseases, Faculty of Applied Biological Sciences, Gifu University, Gifu, Japan
– sequence: 7
  givenname: Makoto
  surname: Sugiyama
  fullname: Sugiyama, Makoto
  organization: Laboratory of Zoonotic Diseases, Faculty of Applied Biological Sciences, Gifu University, Gifu, Japan
– sequence: 8
  givenname: Christida E.
  surname: Wastika
  fullname: Wastika, Christida E.
  organization: Division of Molecular Pathobiology, Research Center for Zoonosis Control, Hokkaido University, Sapporo, Japan
– sequence: 9
  givenname: Yasuko
  surname: Orba
  fullname: Orba, Yasuko
  organization: Division of Molecular Pathobiology, Research Center for Zoonosis Control, Hokkaido University, Sapporo, Japan
– sequence: 10
  givenname: Hirofumi
  surname: Sawa
  fullname: Sawa, Hirofumi
  organization: Division of Molecular Pathobiology, Research Center for Zoonosis Control, Hokkaido University, Sapporo, Japan, Global Institution for Collaborative Research and Education (GI-CoRE), Hokkaido University, Sapporo, Japan, Global Virus Network, Baltimore, Maryland, USA
BackLink https://www.ncbi.nlm.nih.gov/pubmed/33762412$$D View this record in MEDLINE/PubMed
BookMark eNp1kc1vEzEQxS1URNPAjTPyESS2-GN3470gRYW2Qa2omoK4WRPvBFxt7K3tjZRz_3HcJEWA4OIZyT-_eZ53RA6cd0jIS86OORfq3aevs2PGZKMKwZ-QEWe5qypeHpARY0IUlVTfDslRjLeM8bKsy2fkUMpJLUouRuT-3MdE5xisQ3oVfEKIGOnN5dX1fC4ouHbfc_6BXmJrIe05322SNXRqkl1Dst7t4LDpo3XFzLXYYz5cojO3RLMlrKNnwQ89ndJrn2Btw5CnPSdPl9BFfLGvY_Ll9OPNyXlx8flsdjK9KKASKhWN5IIJMAuBuCj5BGTT1iAXDNQSVSMRWhBC4AQro7gytcCStwpVPYESaiXH5P1Otx8WK2xN9hag032wKwgb7cHqP2-c_aG_-7VWXDZ1njAmr_cCwd8NGJNe2Wiw68ChH6IWFatkpeTkAX2zQyGuhL71Q3D5a5oz_RCazqHpbWha8My--t3XL0OPKWVA7AATfIwBl9rYtN15tmm7_6m-_evRo-4_8Z_rT7Qy
CitedBy_id crossref_primary_10_3233_CBM_230145
crossref_primary_10_2222_jsv_72_79
crossref_primary_10_3389_fimmu_2023_1041149
crossref_primary_10_3390_v14071356
crossref_primary_10_3390_v15102032
crossref_primary_10_1007_s00439_022_02435_y
crossref_primary_10_1128_jvi_01455_22
crossref_primary_10_1016_j_virusres_2021_198500
crossref_primary_10_1080_13543784_2023_2284385
crossref_primary_10_1002_jcb_30528
crossref_primary_10_1165_rcmb_2022_0256OC
Cites_doi 10.1128/JVI.03677-13
10.1128/JVI.70.9.5832-5839.1996
10.1099/vir.0.033886-0
10.1016/j.cyto.2005.07.002
10.1128/JVI.01490-13
10.1128/JVI.72.6.5323-5327.1998
10.1016/s1286-4579(01)01475-7
10.1371/journal.pone.0183392
10.1016/j.coviro.2017.03.018
10.1128/JVI.06429-11
10.1099/jgv.0.001274
10.1016/0166-0934(83)90020-4
10.1093/cid/cix369
10.1016/j.jviromet.2008.09.025
10.1128/JVI.00464-11
10.1371/journal.ppat.1003774
10.1016/j.pupt.2015.07.001
10.1128/JVI.00140-10
10.1016/j.vaccine.2010.11.028
10.1016/j.virusres.2009.05.005
10.1016/j.isci.2020.101212
10.1128/JVI.03799-13
10.1038/nrmicro2673
10.3390/v9050114
10.1128/JVI.75.13.6052-6061.2001
10.1002/1096-9896(2000)9999:9999<::AID-PATH743>3.0.CO;2-T
10.1128/JVI.02690-09
10.1007/BF01378633
10.1128/JVI.00676-08
10.1385/1-59259-078-0:33
10.1128/JVI.00731-10
10.1016/j.biologicals.2014.07.003
10.1016/j.virusres.2014.06.016
10.1146/annurev-cellbio-092910-154247
10.1371/journal.pone.0174827
10.1128/JVI.02062-10
10.1128/JVI.01542-10
10.1371/journal.pone.0035876
10.1128/JVI.02207-18
10.1093/jb/mvr131
10.1016/j.vaccine.2011.04.087
10.1128/JVI.72.10.8150-8157.1998
10.1128/JVI.03372-12
10.1128/JVI.01815-18
10.1128/JVI.01890-13
10.1128/JVI.01427-14
10.1016/j.biochi.2017.07.016
10.1128/JVI.00625-10
10.1016/j.biologicals.2011.06.001
10.1007/s00705-011-1006-z
ContentType Journal Article
Copyright Copyright © 2021 Sasaki et al.
Copyright © 2021 Sasaki et al. 2021 Sasaki et al.
Copyright_xml – notice: Copyright © 2021 Sasaki et al.
– notice: Copyright © 2021 Sasaki et al. 2021 Sasaki et al.
DBID AAYXX
CITATION
NPM
7X8
5PM
DOI 10.1128/JVI.00398-21
DatabaseName CrossRef
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic

CrossRef
PubMed
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1098-5514
Editor López, Susana
Editor_xml – sequence: 1
  givenname: Susana
  surname: López
  fullname: López, Susana
ExternalDocumentID PMC8139689
00398-21
33762412
10_1128_JVI_00398_21
Genre Journal Article
GrantInformation_xml – fundername: Japan Agency for Medical Research and Development (AMED)
  grantid: JP20wm0125008
  funderid: https://doi.org/10.13039/100009619
– fundername: Uehara Memorial Foundation (上原記念生命科学財団)
  funderid: https://doi.org/10.13039/100008732
– fundername: Ministry of Education, Culture, Sports, Science and Technology (MEXT)
  grantid: 16H06429; 16H06431; 16K21723
  funderid: https://doi.org/10.13039/501100001700
– fundername: MEXT | JST | Science and Technology Research Partnership for Sustainable Development (SATREPS)
  grantid: JP20jm0110019
  funderid: https://doi.org/10.13039/501100009037
– fundername: MEXT | Japan Society for the Promotion of Science (JSPS)
  grantid: 16H05805
  funderid: https://doi.org/10.13039/501100001691
– fundername: ;
– fundername: ;
  grantid: 16H06429; 16H06431; 16K21723
– fundername: ;
  grantid: 16H05805
– fundername: ;
  grantid: JP20wm0125008
– fundername: ;
  grantid: JP20jm0110019
GroupedDBID ---
-~X
0R~
18M
29L
2WC
39C
4.4
53G
5GY
5RE
5VS
85S
AAFWJ
AAGFI
AAYXX
ABPPZ
ACGFO
ACNCT
ADBBV
AENEX
AGVNZ
ALMA_UNASSIGNED_HOLDINGS
AOIJS
BAWUL
BTFSW
CITATION
CS3
DIK
E3Z
EBS
F5P
FRP
GX1
H13
HYE
HZ~
IH2
KQ8
N9A
O9-
OK1
P2P
RHI
RNS
RPM
RSF
TR2
UPT
W2D
W8F
WH7
WOQ
YQT
~02
~KM
NPM
-
02
0R
ABFLS
ABPTK
ADACO
BXI
HZ
KM
RHF
UCJ
X
ZA5
7X8
5PM
ID FETCH-LOGICAL-a528t-931202acb2eeb417a39d6a3b0a8fe893eada222e7e5c818c62e41d8e867a4a683
ISSN 0022-538X
1098-5514
IngestDate Thu Aug 21 17:50:47 EDT 2025
Fri Jul 11 10:28:14 EDT 2025
Tue Dec 28 13:59:15 EST 2021
Thu Apr 03 07:01:53 EDT 2025
Thu Apr 24 22:58:58 EDT 2025
Tue Jul 01 01:32:37 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 11
Keywords viral entry
proteolytic activation
type II transmembrane serine proteases
group A rotavirus
VP4
Language English
License Copyright © 2021 Sasaki et al.
This is an open-access article distributed under the terms of the Creative Commons Attribution 4.0 International license. https://creativecommons.org/licenses/by/4.0
This is an open-access article distributed under the terms of the Creative Commons Attribution 4.0 International license.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-a528t-931202acb2eeb417a39d6a3b0a8fe893eada222e7e5c818c62e41d8e867a4a683
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
Citation Sasaki M, Itakura Y, Kishimoto M, Tabata K, Uemura K, Ito N, Sugiyama M, Wastika CE, Orba Y, Sawa H. 2021. Host serine proteases TMPRSS2 and TMPRSS11D mediate proteolytic activation and trypsin-independent infection in group A rotaviruses. J Virol 95:e00398-21. https://doi.org/10.1128/JVI.00398-21.
ORCID 0000-0003-1607-2175
OpenAccessLink https://pubmed.ncbi.nlm.nih.gov/PMC8139689
PMID 33762412
PQID 2505358379
PQPubID 23479
PageCount 15
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_8139689
proquest_miscellaneous_2505358379
asm2_journals_10_1128_JVI_00398_21
pubmed_primary_33762412
crossref_citationtrail_10_1128_JVI_00398_21
crossref_primary_10_1128_JVI_00398_21
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20210510
PublicationDateYYYYMMDD 2021-05-10
PublicationDate_xml – month: 5
  year: 2021
  text: 20210510
  day: 10
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: 1752 N St., N.W., Washington, DC
PublicationTitle Journal of virology
PublicationTitleAbbrev J Virol
PublicationTitleAlternate J Virol
PublicationYear 2021
Publisher American Society for Microbiology
Publisher_xml – name: American Society for Microbiology
References e_1_3_2_26_2
e_1_3_2_49_2
e_1_3_2_28_2
e_1_3_2_41_2
e_1_3_2_20_2
e_1_3_2_43_2
e_1_3_2_22_2
e_1_3_2_45_2
e_1_3_2_24_2
e_1_3_2_47_2
e_1_3_2_9_2
e_1_3_2_16_2
e_1_3_2_37_2
e_1_3_2_7_2
e_1_3_2_18_2
e_1_3_2_39_2
e_1_3_2_10_2
e_1_3_2_31_2
e_1_3_2_52_2
e_1_3_2_5_2
e_1_3_2_12_2
e_1_3_2_33_2
e_1_3_2_3_2
e_1_3_2_14_2
e_1_3_2_35_2
e_1_3_2_50_2
Estes MK (e_1_3_2_25_2) 2013
e_1_3_2_27_2
e_1_3_2_48_2
e_1_3_2_29_2
e_1_3_2_40_2
e_1_3_2_21_2
e_1_3_2_42_2
e_1_3_2_23_2
e_1_3_2_44_2
e_1_3_2_46_2
e_1_3_2_15_2
e_1_3_2_38_2
e_1_3_2_8_2
e_1_3_2_17_2
e_1_3_2_6_2
e_1_3_2_19_2
e_1_3_2_30_2
e_1_3_2_53_2
e_1_3_2_32_2
e_1_3_2_51_2
e_1_3_2_11_2
e_1_3_2_34_2
e_1_3_2_4_2
e_1_3_2_13_2
e_1_3_2_36_2
e_1_3_2_2_2
Kato, M, Hashimoto, T, Shimomura, T, Kataoka, H, Ohi, H, Kitamura, N (B29) 2012; 151
Bertram, S, Heurich, A, Lavender, H, Gierer, S, Danisch, S, Perin, P, Lucas, JM, Nelson, PS, Pöhlmann, S, Soilleux, EJ (B13) 2012; 7
Shirato, K, Matsuyama, S, Ujike, M, Taguchi, F (B5) 2011; 85
Matthijnssens, J, Ciarlet, M, McDonald, SM, Attoui, H, Bányai, K, Brister, JR, Buesa, J, Esona, MD, Estes, MK, Gentsch, JR, Iturriza-Gómara, M, Johne, R, Kirkwood, CD, Martella, V, Mertens, PP, Nakagomi, O, Parreño, V, Rahman, M, Ruggeri, FM, Saif, LJ, Santos, N, Steyer, A, Taniguchi, K, Patton, JT, Desselberger, U, Van Ranst, M (B37) 2011; 156
Estes, MK, Greenberg, HB (B24) 2013; vol 2
Abe, M, Ito, N, Morikawa, S, Takasu, M, Murase, T, Kawashima, T, Kawai, Y, Kohara, J, Sugiyama, M (B47) 2009; 144
Yamaya, M, Shimotai, Y, Hatachi, Y, Lusamba Kalonji, N, Tando, Y, Kitajima, Y, Matsuo, K, Kubo, H, Nagatomi, R, Hongo, S, Homma, M, Nishimura, H (B28) 2015; 33
Patton, JT, Chizhikov, V, Taraporewala, Z, Chen, D (B52) 2000
Matsuyama, S, Nagata, N, Shirato, K, Kawase, M, Takeda, M, Taguchi, F (B4) 2010; 84
Desselberger, U (B25) 2014; 190
Shen, LW, Mao, HJ, Wu, YL, Tanaka, Y, Zhang, W (B15) 2017; 142
Tarnow, C, Engels, G, Arendt, A, Schwalm, F, Sediri, H, Preuss, A, Nelson, PS, Garten, W, Klenk, HD, Gabriel, G, Böttcher-Friebertshäuser, E (B18) 2014; 88
Nygaard, RM, Golden, JW, Schiff, LA (B7) 2012; 86
Shirogane, Y, Takeda, M, Iwasaki, M, Ishiguro, N, Takeuchi, H, Nakatsu, Y, Tahara, M, Kikuta, H, Yanagi, Y (B2) 2008; 82
Szabo, R, Bugge, TH (B1) 2011; 27
Lambertz, RLO, Gerhauser, I, Nehlmeier, I, Leist, SR, Kollmus, H, Pöhlmann, S, Schughart, K (B20) 2019; 100
Komoto, S, Wakuda, M, Ide, T, Niimi, G, Maeno, Y, Higo-Moriguchi, K, Taniguchi, K (B31) 2011; 92
Victoria, JG, Wang, C, Jones, MS, Jaing, C, McLoughlin, K, Gardner, S, Delwart, EL (B40) 2010; 84
Lundgren, O, Svensson, L (B45) 2001; 3
Abe, M, Tahara, M, Sakai, K, Yamaguchi, H, Kanou, K, Shirato, K, Kawase, M, Noda, M, Kimura, H, Matsuyama, S, Fukuhara, H, Mizuta, K, Maenaka, K, Ami, Y, Esumi, M, Kato, A, Takeda, M (B8) 2013; 87
B38
Minamoto, N, Sugimoto, O, Yokota, M, Tomita, M, Goto, H, Sugiyama, M, Kinjo, T (B49) 1993; 131
Straus, MR, Whittaker, GR (B33) 2017; 12
Gilbert, JM, Greenberg, HB (B34) 1998; 72
Baylis, SA, Finsterbusch, T, Bannert, N, Blümel, J, Mankertz, A (B42) 2011; 29
Gutiérrez, M, Isa, P, Sánchez-San Martin, C, Pérez-Vargas, J, Espinosa, R, Arias, CF, López, S (B35) 2010; 84
Shi, W, Fan, W, Bai, J, Tang, Y, Wang, L, Jiang, Y, Tang, L, Liu, M, Cui, W, Xu, Y, Li, Y (B12) 2017; 9
Jonesteller, CL, Burnett, E, Yen, C, Tate, JE, Parashar, UD (B22) 2017; 65
Iwata-Yoshikawa, N, Okamura, T, Shimizu, Y, Hasegawa, H, Takeda, M, Nagata, N (B19) 2019; 93
Arias, CF, Romero, P, Alvarez, V, López, S (B27) 1996; 70
Trask, SD, McDonald, SM, Patton, JT (B23) 2012; 10
Crawford, SE, Mukherjee, SK, Estes, MK, Lawton, JA, Shaw, AL, Ramig, RF, Prasad, BV (B30) 2001; 75
Rojas, M, Arias, CF, López, S (B36) 2010; 84
Kozasa, T, Aoki, H, Nakajima, N, Fukusho, A, Ishimaru, M, Nakamura, S (B44) 2011; 39
McClenahan, SD, Krause, PR, Uhlenhaut, C (B41) 2011; 29
Sakai, K, Ami, Y, Tahara, M, Kubota, T, Anraku, M, Abe, M, Nakajima, N, Sekizuka, T, Shirato, K, Suzaki, Y, Ainai, A, Nakatsu, Y, Kanou, K, Nakamura, K, Suzuki, T, Komase, K, Nobusawa, E, Maenaka, K, Kuroda, M, Hasegawa, H, Kawaoka, Y, Tashiro, M, Takeda, M (B17) 2014; 88
Petricciani, J, Sheets, R, Griffiths, E, Knezevic, I (B43) 2014; 42
Zmora, P, Blazejewska, P, Moldenhauer, AS, Welsch, K, Nehlmeier, I, Wu, Q, Schneider, H, Pöhlmann, S, Bertram, S (B11) 2014; 88
Hatesuer, B, Bertram, S, Mehnert, N, Bahgat, MM, Nelson, PS, Pöhlmann, S, Pöhlman, S, Schughart, K (B16) 2013; 9
Overbergh, L, Kyama, CM, Valckx, D, Debrock, S, Mwenda, JM, Mathieu, C, D'Hooghe, T (B50) 2005; 31
Vaarala, MH, Porvari, KS, Kellokumpu, S, Kyllönen, AP, Vihko, PT (B46) 2001; 193
Shulla, A, Heald-Sargent, T, Subramanya, G, Zhao, J, Perlman, S, Gallagher, T (B6) 2011; 85
Miyoshi, H, Blömer, U, Takahashi, M, Gage, FH, Verma, IM (B48) 1998; 72
Böttcher-Friebertshäuser, E, Freuer, C, Sielaff, F, Schmidt, S, Eickmann, M, Uhlendorff, J, Steinmetzer, T, Klenk, HD, Garten, W (B3) 2010; 84
Jothikumar, N, Kang, G, Hill, VR (B51) 2009; 155
Jaimes, JA, Millet, JK, Whittaker, GR (B32) 2020; 23
Komoto, S, Fukuda, S, Kugita, M, Hatazawa, R, Koyama, C, Katayama, K, Murata, T, Taniguchi, K (B39) 2019; 93
Offit, PA, Clark, HF, Stroop, WG, Twist, EM, Plotkin, SA (B26) 1983; 7
Clark, A, Black, R, Tate, J, Roose, A, Kotloff, K, Lam, D, Blackwelder, W, Parashar, U, Lanata, C, Kang, G, Troeger, C, Platts-Mills, J, Mokdad, A, Sanderson, C, Lamberti, L, Levine, M, Santosham, M, Steele, D, Network, GRS (B21) 2017; 12
Bertram, S, Dijkman, R, Habjan, M, Heurich, A, Gierer, S, Glowacka, I, Welsch, K, Winkler, M, Schneider, H, Hofmann-Winkler, H, Thiel, V, Pöhlmann, S (B9) 2013; 87
Shirato, K, Kawase, M, Matsuyama, S (B10) 2013; 87
Laporte, M, Naesens, L (B14) 2017; 24
References_xml – ident: e_1_3_2_18_2
  doi: 10.1128/JVI.03677-13
– ident: e_1_3_2_28_2
  doi: 10.1128/JVI.70.9.5832-5839.1996
– ident: e_1_3_2_32_2
  doi: 10.1099/vir.0.033886-0
– ident: e_1_3_2_51_2
  doi: 10.1016/j.cyto.2005.07.002
– ident: e_1_3_2_9_2
  doi: 10.1128/JVI.01490-13
– ident: e_1_3_2_35_2
  doi: 10.1128/JVI.72.6.5323-5327.1998
– ident: e_1_3_2_46_2
  doi: 10.1016/s1286-4579(01)01475-7
– ident: e_1_3_2_22_2
  doi: 10.1371/journal.pone.0183392
– ident: e_1_3_2_15_2
  doi: 10.1016/j.coviro.2017.03.018
– ident: e_1_3_2_8_2
  doi: 10.1128/JVI.06429-11
– ident: e_1_3_2_21_2
  doi: 10.1099/jgv.0.001274
– ident: e_1_3_2_27_2
  doi: 10.1016/0166-0934(83)90020-4
– ident: e_1_3_2_23_2
  doi: 10.1093/cid/cix369
– ident: e_1_3_2_52_2
  doi: 10.1016/j.jviromet.2008.09.025
– ident: e_1_3_2_6_2
  doi: 10.1128/JVI.00464-11
– ident: e_1_3_2_39_2
– ident: e_1_3_2_17_2
  doi: 10.1371/journal.ppat.1003774
– ident: e_1_3_2_29_2
  doi: 10.1016/j.pupt.2015.07.001
– ident: e_1_3_2_4_2
  doi: 10.1128/JVI.00140-10
– ident: e_1_3_2_43_2
  doi: 10.1016/j.vaccine.2010.11.028
– ident: e_1_3_2_48_2
  doi: 10.1016/j.virusres.2009.05.005
– ident: e_1_3_2_33_2
  doi: 10.1016/j.isci.2020.101212
– ident: e_1_3_2_19_2
  doi: 10.1128/JVI.03799-13
– ident: e_1_3_2_24_2
  doi: 10.1038/nrmicro2673
– ident: e_1_3_2_13_2
  doi: 10.3390/v9050114
– ident: e_1_3_2_31_2
  doi: 10.1128/JVI.75.13.6052-6061.2001
– ident: e_1_3_2_47_2
  doi: 10.1002/1096-9896(2000)9999:9999<::AID-PATH743>3.0.CO;2-T
– ident: e_1_3_2_41_2
  doi: 10.1128/JVI.02690-09
– ident: e_1_3_2_50_2
  doi: 10.1007/BF01378633
– ident: e_1_3_2_3_2
  doi: 10.1128/JVI.00676-08
– ident: e_1_3_2_53_2
  doi: 10.1385/1-59259-078-0:33
– ident: e_1_3_2_36_2
  doi: 10.1128/JVI.00731-10
– ident: e_1_3_2_44_2
  doi: 10.1016/j.biologicals.2014.07.003
– ident: e_1_3_2_26_2
  doi: 10.1016/j.virusres.2014.06.016
– ident: e_1_3_2_2_2
  doi: 10.1146/annurev-cellbio-092910-154247
– ident: e_1_3_2_34_2
  doi: 10.1371/journal.pone.0174827
– ident: e_1_3_2_7_2
  doi: 10.1128/JVI.02062-10
– ident: e_1_3_2_5_2
  doi: 10.1128/JVI.01542-10
– ident: e_1_3_2_14_2
  doi: 10.1371/journal.pone.0035876
– ident: e_1_3_2_40_2
  doi: 10.1128/JVI.02207-18
– ident: e_1_3_2_30_2
  doi: 10.1093/jb/mvr131
– ident: e_1_3_2_42_2
  doi: 10.1016/j.vaccine.2011.04.087
– ident: e_1_3_2_49_2
  doi: 10.1128/JVI.72.10.8150-8157.1998
– start-page: 1347
  volume-title: Fields virology
  year: 2013
  ident: e_1_3_2_25_2
– ident: e_1_3_2_10_2
  doi: 10.1128/JVI.03372-12
– ident: e_1_3_2_20_2
  doi: 10.1128/JVI.01815-18
– ident: e_1_3_2_11_2
  doi: 10.1128/JVI.01890-13
– ident: e_1_3_2_12_2
  doi: 10.1128/JVI.01427-14
– ident: e_1_3_2_16_2
  doi: 10.1016/j.biochi.2017.07.016
– ident: e_1_3_2_37_2
  doi: 10.1128/JVI.00625-10
– ident: e_1_3_2_45_2
  doi: 10.1016/j.biologicals.2011.06.001
– ident: e_1_3_2_38_2
  doi: 10.1007/s00705-011-1006-z
– volume: 29
  start-page: 690
  year: 2011
  end-page: 697
  ident: B42
  article-title: Analysis of porcine circovirus type 1 detected in Rotarix vaccine
  publication-title: Vaccine
  doi: 10.1016/j.vaccine.2010.11.028
– volume: 87
  start-page: 11930
  year: 2013
  end-page: 11935
  ident: B8
  article-title: TMPRSS2 is an activating protease for respiratory parainfluenza viruses
  publication-title: J Virol
  doi: 10.1128/JVI.01490-13
– volume: 39
  start-page: 242
  year: 2011
  end-page: 248
  ident: B44
  article-title: Methods to select suitable fetal bovine serum for use in quality control assays for the detection of adventitious viruses from biological products
  publication-title: Biologicals
  doi: 10.1016/j.biologicals.2011.06.001
– volume: 155
  start-page: 126
  year: 2009
  end-page: 131
  ident: B51
  article-title: Broadly reactive TaqMan assay for real-time RT-PCR detection of rotavirus in clinical and environmental samples
  publication-title: J Virol Methods
  doi: 10.1016/j.jviromet.2008.09.025
– volume: 75
  start-page: 6052
  year: 2001
  end-page: 6061
  ident: B30
  article-title: Trypsin cleavage stabilizes the rotavirus VP4 spike
  publication-title: J Virol
  doi: 10.1128/JVI.75.13.6052-6061.2001
– volume: 88
  start-page: 4744
  year: 2014
  end-page: 4751
  ident: B18
  article-title: TMPRSS2 is a host factor that is essential for pneumotropism and pathogenicity of H7N9 influenza A virus in mice
  publication-title: J Virol
  doi: 10.1128/JVI.03799-13
– volume: 84
  start-page: 6033
  year: 2010
  end-page: 6040
  ident: B40
  article-title: Viral nucleic acids in live-attenuated vaccines: detection of minority variants and an adventitious virus
  publication-title: J Virol
  doi: 10.1128/JVI.02690-09
– volume: 144
  start-page: 250
  year: 2009
  end-page: 257
  ident: B47
  article-title: Molecular epidemiology of rotaviruses among healthy calves in Japan: isolation of a novel bovine rotavirus bearing new P and G genotypes
  publication-title: Virus Res
  doi: 10.1016/j.virusres.2009.05.005
– volume: 3
  start-page: 1145
  year: 2001
  end-page: 1156
  ident: B45
  article-title: Pathogenesis of rotavirus diarrhea
  publication-title: Microbes Infect
  doi: 10.1016/s1286-4579(01)01475-7
– volume: 24
  start-page: 16
  year: 2017
  end-page: 24
  ident: B14
  article-title: Airway proteases: an emerging drug target for influenza and other respiratory virus infections
  publication-title: Curr Opin Virol
  doi: 10.1016/j.coviro.2017.03.018
– volume: 156
  start-page: 1397
  year: 2011
  end-page: 1413
  ident: B37
  article-title: Uniformity of rotavirus strain nomenclature proposed by the Rotavirus Classification Working Group (RCWG)
  publication-title: Arch Virol
  doi: 10.1007/s00705-011-1006-z
– volume: 9
  start-page: 114
  year: 2017
  ident: B12
  article-title: TMPRSS2 and MSPL facilitate trypsin-independent porcine epidemic diarrhea virus replication in Vero cells
  publication-title: Viruses
  doi: 10.3390/v9050114
– volume: 82
  start-page: 8942
  year: 2008
  end-page: 8946
  ident: B2
  article-title: Efficient multiplication of human metapneumovirus in Vero cells expressing the transmembrane serine protease TMPRSS2
  publication-title: J Virol
  doi: 10.1128/JVI.00676-08
– volume: 84
  start-page: 12658
  year: 2010
  end-page: 12664
  ident: B4
  article-title: Efficient activation of the severe acute respiratory syndrome coronavirus spike protein by the transmembrane protease TMPRSS2
  publication-title: J Virol
  doi: 10.1128/JVI.01542-10
– volume: 85
  start-page: 7872
  year: 2011
  end-page: 7880
  ident: B5
  article-title: Role of proteases in the release of porcine epidemic diarrhea virus from infected cells
  publication-title: J Virol
  doi: 10.1128/JVI.00464-11
– volume: 85
  start-page: 873
  year: 2011
  end-page: 882
  ident: B6
  article-title: A transmembrane serine protease is linked to the severe acute respiratory syndrome coronavirus receptor and activates virus entry
  publication-title: J Virol
  doi: 10.1128/JVI.02062-10
– volume: 190
  start-page: 75
  year: 2014
  end-page: 96
  ident: B25
  article-title: Rotaviruses
  publication-title: Virus Res
  doi: 10.1016/j.virusres.2014.06.016
– volume: 23
  start-page: 101212
  year: 2020
  ident: B32
  article-title: Proteolytic cleavage of the SARS-CoV-2 spike protein and the role of the novel S1/S2 site
  publication-title: iScience
  doi: 10.1016/j.isci.2020.101212
– volume: 88
  start-page: 12087
  year: 2014
  end-page: 12097
  ident: B11
  article-title: DESC1 and MSPL activate influenza A viruses and emerging coronaviruses for host cell entry
  publication-title: J Virol
  doi: 10.1128/JVI.01427-14
– volume: 93
  year: 2019
  ident: B39
  article-title: Generation of infectious recombinant human rotaviruses from just 11 cloned cDNAs encoding the rotavirus genome
  publication-title: J Virol
  doi: 10.1128/JVI.02207-18
– volume: 100
  start-page: 1073
  year: 2019
  end-page: 1078
  ident: B20
  article-title: Tmprss2 knock-out mice are resistant to H10 influenza A virus pathogenesis
  publication-title: J Gen Virol
  doi: 10.1099/jgv.0.001274
– volume: 10
  start-page: 165
  year: 2012
  end-page: 177
  ident: B23
  article-title: Structural insights into the coupling of virion assembly and rotavirus replication
  publication-title: Nat Rev Microbiol
  doi: 10.1038/nrmicro2673
– volume: 87
  start-page: 12552
  year: 2013
  end-page: 12561
  ident: B10
  article-title: Middle East respiratory syndrome coronavirus infection mediated by the transmembrane serine protease TMPRSS2
  publication-title: J Virol
  doi: 10.1128/JVI.01890-13
– volume: 29
  start-page: 4745
  year: 2011
  end-page: 4753
  ident: B41
  article-title: Molecular and infectivity studies of porcine circovirus in vaccines
  publication-title: Vaccine
  doi: 10.1016/j.vaccine.2011.04.087
– volume: 9
  year: 2013
  ident: B16
  article-title: Tmprss2 is essential for influenza H1N1 virus pathogenesis in mice
  publication-title: PLoS Pathog
  doi: 10.1371/journal.ppat.1003774
– volume: 84
  start-page: 5605
  year: 2010
  end-page: 5614
  ident: B3
  article-title: Cleavage of influenza virus hemagglutinin by airway proteases TMPRSS2 and HAT differs in subcellular localization and susceptibility to protease inhibitors
  publication-title: J Virol
  doi: 10.1128/JVI.00140-10
– volume: 72
  start-page: 5323
  year: 1998
  end-page: 5327
  ident: B34
  article-title: Cleavage of rhesus rotavirus VP4 after arginine 247 is essential for rotavirus-like particle-induced fusion from without
  publication-title: J Virol
  doi: 10.1128/JVI.72.6.5323-5327.1998
– volume: 31
  start-page: 454
  year: 2005
  end-page: 458
  ident: B50
  article-title: Validation of real-time RT-PCR assays for mRNA quantification in baboons
  publication-title: Cytokine
  doi: 10.1016/j.cyto.2005.07.002
– volume: 86
  start-page: 1238
  year: 2012
  end-page: 1243
  ident: B7
  article-title: Impact of host proteases on reovirus infection in the respiratory tract
  publication-title: J Virol
  doi: 10.1128/JVI.06429-11
– volume: 87
  start-page: 6150
  year: 2013
  end-page: 6160
  ident: B9
  article-title: TMPRSS2 activates the human coronavirus 229E for cathepsin-independent host cell entry and is expressed in viral target cells in the respiratory epithelium
  publication-title: J Virol
  doi: 10.1128/JVI.03372-12
– volume: 7
  year: 2012
  ident: B13
  article-title: Influenza and SARS-coronavirus activating proteases TMPRSS2 and HAT are expressed at multiple sites in human respiratory and gastrointestinal tracts
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0035876
– volume: 92
  start-page: 2914
  year: 2011
  end-page: 2921
  ident: B31
  article-title: Modification of the trypsin cleavage site of rotavirus VP4 to a furin-sensitive form does not enhance replication efficiency
  publication-title: J Gen Virol
  doi: 10.1099/vir.0.033886-0
– volume: 88
  start-page: 5608
  year: 2014
  end-page: 5616
  ident: B17
  article-title: The host protease TMPRSS2 plays a major role in in vivo replication of emerging H7N9 and seasonal influenza viruses
  publication-title: J Virol
  doi: 10.1128/JVI.03677-13
– volume: 72
  start-page: 8150
  year: 1998
  end-page: 8157
  ident: B48
  article-title: Development of a self-inactivating lentivirus vector
  publication-title: J Virol
  doi: 10.1128/JVI.72.10.8150-8157.1998
– volume: 42
  start-page: 223
  year: 2014
  end-page: 236
  ident: B43
  article-title: Adventitious agents in viral vaccines: lessons learned from 4 case studies
  publication-title: Biologicals
  doi: 10.1016/j.biologicals.2014.07.003
– volume: 12
  year: 2017
  ident: B21
  article-title: Estimating global, regional and national rotavirus deaths in children aged <5 years: current approaches, new analyses and proposed improvements
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0183392
– volume: 93
  year: 2019
  ident: B19
  article-title: TMPRSS2 contributes to virus spread and immunopathology in the airways of murine models after coronavirus infection
  publication-title: J Virol
  doi: 10.1128/JVI.01815-18
– volume: vol 2
  start-page: 1347
  year: 2013
  end-page: 1401
  ident: B24
  article-title: Rotaviruses
  publication-title: Fields virology ;6th ed ;Lippincott Williams & Wilkins ;Philadelphia, PA
– volume: 12
  year: 2017
  ident: B33
  article-title: A peptide-based approach to evaluate the adaptability of influenza A virus to humans based on its hemagglutinin proteolytic cleavage site
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0174827
– volume: 27
  start-page: 213
  year: 2011
  end-page: 235
  ident: B1
  article-title: Membrane-anchored serine proteases in vertebrate cell and developmental biology
  publication-title: Annu Rev Cell Dev Biol
  doi: 10.1146/annurev-cellbio-092910-154247
– volume: 65
  start-page: 840
  year: 2017
  end-page: 850
  ident: B22
  article-title: Effectiveness of rotavirus vaccination: a systematic review of the first decade of global postlicensure data, 2006–2016
  publication-title: Clin Infect Dis
  doi: 10.1093/cid/cix369
– ident: B38
  article-title: Rotavirus Classification Working Group (RCWG) . 2019 . List of accepted genotypes , https://rega.kuleuven.be/cev/viralmetagenomics/virus-classification/rcwg . Accessed 2 March 2021 .
– volume: 193
  start-page: 134
  year: 2001
  end-page: 140
  ident: B46
  article-title: Expression of transmembrane serine protease TMPRSS2 in mouse and human tissues
  publication-title: J Pathol
  doi: 10.1002/1096-9896(2000)9999:9999<::AID-PATH743>3.0.CO;2-T
– volume: 70
  start-page: 5832
  year: 1996
  end-page: 5839
  ident: B27
  article-title: Trypsin activation pathway of rotavirus infectivity
  publication-title: J Virol
  doi: 10.1128/JVI.70.9.5832-5839.1996
– volume: 131
  start-page: 293
  year: 1993
  end-page: 305
  ident: B49
  article-title: Antigenic analysis of avian rotavirus VP6 using monoclonal antibodies
  publication-title: Arch Virol
  doi: 10.1007/BF01378633
– volume: 33
  start-page: 66
  year: 2015
  end-page: 74
  ident: B28
  article-title: The serine protease inhibitor camostat inhibits influenza virus replication and cytokine production in primary cultures of human tracheal epithelial cells
  publication-title: Pulm Pharmacol Ther
  doi: 10.1016/j.pupt.2015.07.001
– start-page: 33
  year: 2000
  end-page: 66
  ident: B52
  article-title: Virus Replication
  publication-title: Rotaviruses methods and protocols. ;Humana Press ;Totowa, NJ
– volume: 84
  start-page: 9161
  year: 2010
  end-page: 9169
  ident: B35
  article-title: Different rotavirus strains enter MA104 cells through different endocytic pathways: the role of clathrin-mediated endocytosis
  publication-title: J Virol
  doi: 10.1128/JVI.00731-10
– volume: 142
  start-page: 1
  year: 2017
  end-page: 10
  ident: B15
  article-title: TMPRSS2: a potential target for treatment of influenza virus and coronavirus infections
  publication-title: Biochimie
  doi: 10.1016/j.biochi.2017.07.016
– volume: 151
  start-page: 179
  year: 2012
  end-page: 187
  ident: B29
  article-title: Hepatocyte growth factor activator inhibitor type 1 inhibits protease activity and proteolytic activation of human airway trypsin-like protease
  publication-title: J Biochem
  doi: 10.1093/jb/mvr131
– volume: 84
  start-page: 10457
  year: 2010
  end-page: 10466
  ident: B36
  article-title: Protein kinase R is responsible for the phosphorylation of eIF2alpha in rotavirus infection
  publication-title: J Virol
  doi: 10.1128/JVI.00625-10
– volume: 7
  start-page: 29
  year: 1983
  end-page: 40
  ident: B26
  article-title: The cultivation of human rotavirus, strain 'Wa', to high titer in cell culture and characterization of the viral structural polypeptides
  publication-title: J Virol Methods
  doi: 10.1016/0166-0934(83)90020-4
SSID ssj0014464
Score 2.4285414
Snippet Proteolytic cleavage of the viral VP4 protein is essential for virion maturation and infectivity in group A rotaviruses (RVAs). In cell culture, RVAs are...
Group A rotaviruses (RVAs) are representative enteric virus species and major causes of diarrhea in humans and animals. The RVA virion is a triple-layered...
SourceID pubmedcentral
proquest
asm2
pubmed
crossref
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
SubjectTerms Virus-Cell Interactions
Title Host Serine Proteases TMPRSS2 and TMPRSS11D Mediate Proteolytic Activation and Trypsin-Independent Infection in Group A Rotaviruses
URI https://www.ncbi.nlm.nih.gov/pubmed/33762412
https://journals.asm.org/doi/10.1128/JVI.00398-21
https://www.proquest.com/docview/2505358379
https://pubmed.ncbi.nlm.nih.gov/PMC8139689
Volume 95
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1ba9swFBZZx2AvY_dmN7SxPQV3lezYymPYhaSlozTp6J6M7MjEtLNLbA-y1_2J_dydI9mys7TQ7SUY-2CSfJ_ORToXQt5G4DTwYB8WEl-4jqdi6YAXkjhyMRKo_5QvsMD56Is_OfUOzoZnvd7vTtZSVUZ78c8r60r-B1W4B7hilew_IGtfCjfgGvCFT0AYPm-E8SQvSlzt6CkeY8MFMEnFYH50fDKbcX0sYK4Z-6hPZMCvNHL5xRobtY7jZriZEV6tL4s0c6Z2NG4J-sMka-mESLNzNR6c5KX8ka6qok5A3HZusXquu18_k4U0A7Ix9zRdgh6xpCzleaWnHQ2-VecQurdpAcUSmZSbmiJ7fy4jaXzewxz31vPuzgVnjm562nKtOZLq5qcepW3_qa7expDZ1UOIwWoZVY2dUNHf6-pyM7Cz4Sy72kZwrHs4-Drdw8JkYBRrbaHNUGwe3SK3OQQgOlifHtrzKQiivaYPPX6vpqSCi_fdF4Odl8V3vunzbAUyf-fjdhyc-X1yrwaPjg3NHpCeyh6SO2ZW6foR-YVko4Zs1JKN1mSjwB9qyUZrstEO2WhLNiO8TTZqyUbTjGqy0THtkO0xOf38af5h4tQTPBw55KJ0Ri4D4GUccaUijwXSHS186Ub7UiQKPGVQYxIcVBWoYQyeY-xz5bGFUMIPpCd94T4hO1meqV1ChwmYFp5EYDFiL4FXscBVgiUeCC8SP-6TN_hXh_XyLEId3XIRAh6hxiPkrE8GDRBhXPfAx1EsF9dIv7PSl6b3yzVyrxtMQ1DOeOImM5VXRYjxhTsUbjDqk6cGY_smF0w7uM-8T4IN9K0ANn7ffJKlS90AXkDY5ovRs5v85Ofkbrv2XpCdclWpl-BHl9ErTek_Iz7KjA
linkProvider Flying Publisher
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Host+Serine+Proteases+TMPRSS2+and+TMPRSS11D+Mediate+Proteolytic+Activation+and+Trypsin-Independent+Infection+in+Group+A+Rotaviruses&rft.jtitle=Journal+of+virology&rft.au=Sasaki%2C+Michihito&rft.au=Itakura%2C+Yukari&rft.au=Kishimoto%2C+Mai&rft.au=Tabata%2C+Koshiro&rft.date=2021-05-10&rft.pub=American+Society+for+Microbiology&rft.issn=0022-538X&rft.eissn=1098-5514&rft.volume=95&rft.issue=11&rft_id=info:doi/10.1128%2FJVI.00398-21&rft.externalDocID=00398-21
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0022-538X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0022-538X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0022-538X&client=summon