Host Serine Proteases TMPRSS2 and TMPRSS11D Mediate Proteolytic Activation and Trypsin-Independent Infection in Group A Rotaviruses
Proteolytic cleavage of the viral VP4 protein is essential for virion maturation and infectivity in group A rotaviruses (RVAs). In cell culture, RVAs are propagated in culture medium supplemented with the exogenous protease trypsin, which cleaves VP4 and induces the maturation of progeny RVA virions...
Saved in:
Published in | Journal of virology Vol. 95; no. 11 |
---|---|
Main Authors | , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
American Society for Microbiology
10.05.2021
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Proteolytic cleavage of the viral VP4 protein is essential for virion maturation and infectivity in group A rotaviruses (RVAs). In cell culture, RVAs are propagated in culture medium supplemented with the exogenous protease trypsin, which cleaves VP4 and induces the maturation of progeny RVA virions.
Group A rotaviruses (RVAs) are representative enteric virus species and major causes of diarrhea in humans and animals. The RVA virion is a triple-layered particle, and the outermost layer consists of the glycoprotein VP7 and spike protein VP4. To increase the infectivity of RVA, VP4 is proteolytically cleaved into VP5* and VP8* subunits by trypsin; these subunits form a rigid spike structure on the virion surface. In this study, we investigated the growth of RVAs in cells transduced with type II transmembrane serine proteases (TTSPs), which cleave fusion proteins and promote infection by respiratory viruses, such as influenza viruses, paramyxoviruses, and coronaviruses. We identified TMPRSS2 and TMPRSS11D as host TTSPs that mediate trypsin-independent and multicycle infection by human and animal RVA strains.
In vitro
cleavage assays revealed that recombinant TMPRSS11D cleaved RVA VP4. We also found that TMPRSS2 and TMPRSS11D promote the infectious entry of immature RVA virions, but they could not activate nascent progeny virions in the late phase of infection. This observation differed from the TTSP-mediated activation process of paramyxoviruses, revealing the existence of virus species-specific activation processes in TTSPs. Our study provides new insights into the interaction between RVAs and host factors, and TTSP-transduced cells offer potential advantages for RVA research and development.
IMPORTANCE
Proteolytic cleavage of the viral VP4 protein is essential for virion maturation and infectivity in group A rotaviruses (RVAs). In cell culture, RVAs are propagated in culture medium supplemented with the exogenous protease trypsin, which cleaves VP4 and induces the maturation of progeny RVA virions. In this study, we demonstrated that the host proteases TMPRSS2 and TMPRSS11D mediate the trypsin-independent infection and growth of RVAs. Our data revealed that the proteolytic activation of RVAs by TMPRSS2 and TMPRSS11D occurs at the viral entry step. Because TMPRSS2 and TMPRSS11D gene expression induced similar or higher levels of RVA growth as trypsin-supplemented culture, this approach offers potential advantages for RVA research and development. |
---|---|
AbstractList | Proteolytic cleavage of the viral VP4 protein is essential for virion maturation and infectivity in group A rotaviruses (RVAs). In cell culture, RVAs are propagated in culture medium supplemented with the exogenous protease trypsin, which cleaves VP4 and induces the maturation of progeny RVA virions.
Group A rotaviruses (RVAs) are representative enteric virus species and major causes of diarrhea in humans and animals. The RVA virion is a triple-layered particle, and the outermost layer consists of the glycoprotein VP7 and spike protein VP4. To increase the infectivity of RVA, VP4 is proteolytically cleaved into VP5* and VP8* subunits by trypsin; these subunits form a rigid spike structure on the virion surface. In this study, we investigated the growth of RVAs in cells transduced with type II transmembrane serine proteases (TTSPs), which cleave fusion proteins and promote infection by respiratory viruses, such as influenza viruses, paramyxoviruses, and coronaviruses. We identified TMPRSS2 and TMPRSS11D as host TTSPs that mediate trypsin-independent and multicycle infection by human and animal RVA strains.
In vitro
cleavage assays revealed that recombinant TMPRSS11D cleaved RVA VP4. We also found that TMPRSS2 and TMPRSS11D promote the infectious entry of immature RVA virions, but they could not activate nascent progeny virions in the late phase of infection. This observation differed from the TTSP-mediated activation process of paramyxoviruses, revealing the existence of virus species-specific activation processes in TTSPs. Our study provides new insights into the interaction between RVAs and host factors, and TTSP-transduced cells offer potential advantages for RVA research and development.
IMPORTANCE
Proteolytic cleavage of the viral VP4 protein is essential for virion maturation and infectivity in group A rotaviruses (RVAs). In cell culture, RVAs are propagated in culture medium supplemented with the exogenous protease trypsin, which cleaves VP4 and induces the maturation of progeny RVA virions. In this study, we demonstrated that the host proteases TMPRSS2 and TMPRSS11D mediate the trypsin-independent infection and growth of RVAs. Our data revealed that the proteolytic activation of RVAs by TMPRSS2 and TMPRSS11D occurs at the viral entry step. Because TMPRSS2 and TMPRSS11D gene expression induced similar or higher levels of RVA growth as trypsin-supplemented culture, this approach offers potential advantages for RVA research and development. Group A rotaviruses (RVAs) are representative enteric virus species and major causes of diarrhea in humans and animals. The RVA virion is a triple-layered particle, and the outermost layer consists of the glycoprotein VP7 and spike protein VP4. To increase the infectivity of RVA, VP4 is proteolytically cleaved into VP5* and VP8* subunits by trypsin; and these subunits form a rigid spike structure on the virion surface. In this study, we investigated the growth of RVAs in cells transduced with type II transmembrane serine proteases (TTSPs), which cleave fusion proteins and promote infection by respiratory viruses, such as influenza viruses, paramyxoviruses, and coronaviruses. We identified TMPRSS2 and TMPRSS11D as host TTSPs that mediate trypsin-independent and multi-cycle infection by human and animal RVA strains. In vitro cleavage assays revealed that recombinant TMPRSS11D cleaved RVA VP4. We also found that TMPRSS2 and TMPRSS11D promote the infectious entry of immature RVA virions, but they could not activate nascent progeny virions in the late phase of infection. This observation differed from the TTSP-mediated activation process of paramyxoviruses, revealing the existence of virus species-specific activation processes in TTSPs. Our study provides new insights into the interaction between RVAs and host factors, and TTSP-transduced cells offer potential advantages for RVA research and development.ImportanceProteolytic cleavage of the viral VP4 protein is essential for virion maturation and infectivity in group A rotaviruses (RVAs). In cell culture, RVAs are propagated in culture medium supplemented with the exogenous protease trypsin, which cleaves VP4 and induces the maturation of progeny RVA virions. In this study, we demonstrated that the host proteases TMPRSS2 and TMPRSS11D mediate the trypsin-independent infection and growth of RVA. Our data revealed that the proteolytic activation of RVAs by TMPRSS2 and TMPRSS11D occurs at the viral entry step. Because TMPRSS2 and TMPRSS11D gene expression induced similar or higher levels of RVA growth as trypsin-supplemented culture, this approach offers potential advantages for RVA research and development.Group A rotaviruses (RVAs) are representative enteric virus species and major causes of diarrhea in humans and animals. The RVA virion is a triple-layered particle, and the outermost layer consists of the glycoprotein VP7 and spike protein VP4. To increase the infectivity of RVA, VP4 is proteolytically cleaved into VP5* and VP8* subunits by trypsin; and these subunits form a rigid spike structure on the virion surface. In this study, we investigated the growth of RVAs in cells transduced with type II transmembrane serine proteases (TTSPs), which cleave fusion proteins and promote infection by respiratory viruses, such as influenza viruses, paramyxoviruses, and coronaviruses. We identified TMPRSS2 and TMPRSS11D as host TTSPs that mediate trypsin-independent and multi-cycle infection by human and animal RVA strains. In vitro cleavage assays revealed that recombinant TMPRSS11D cleaved RVA VP4. We also found that TMPRSS2 and TMPRSS11D promote the infectious entry of immature RVA virions, but they could not activate nascent progeny virions in the late phase of infection. This observation differed from the TTSP-mediated activation process of paramyxoviruses, revealing the existence of virus species-specific activation processes in TTSPs. Our study provides new insights into the interaction between RVAs and host factors, and TTSP-transduced cells offer potential advantages for RVA research and development.ImportanceProteolytic cleavage of the viral VP4 protein is essential for virion maturation and infectivity in group A rotaviruses (RVAs). In cell culture, RVAs are propagated in culture medium supplemented with the exogenous protease trypsin, which cleaves VP4 and induces the maturation of progeny RVA virions. In this study, we demonstrated that the host proteases TMPRSS2 and TMPRSS11D mediate the trypsin-independent infection and growth of RVA. Our data revealed that the proteolytic activation of RVAs by TMPRSS2 and TMPRSS11D occurs at the viral entry step. Because TMPRSS2 and TMPRSS11D gene expression induced similar or higher levels of RVA growth as trypsin-supplemented culture, this approach offers potential advantages for RVA research and development. Group A rotaviruses (RVAs) are representative enteric virus species and major causes of diarrhea in humans and animals. The RVA virion is a triple-layered particle, and the outermost layer consists of the glycoprotein VP7 and spike protein VP4. To increase the infectivity of RVA, VP4 is proteolytically cleaved into VP5* and VP8* subunits by trypsin; these subunits form a rigid spike structure on the virion surface. In this study, we investigated the growth of RVAs in cells transduced with type II transmembrane serine proteases (TTSPs), which cleave fusion proteins and promote infection by respiratory viruses, such as influenza viruses, paramyxoviruses, and coronaviruses. We identified TMPRSS2 and TMPRSS11D as host TTSPs that mediate trypsin-independent and multicycle infection by human and animal RVA strains. In vitro cleavage assays revealed that recombinant TMPRSS11D cleaved RVA VP4. We also found that TMPRSS2 and TMPRSS11D promote the infectious entry of immature RVA virions, but they could not activate nascent progeny virions in the late phase of infection. This observation differed from the TTSP-mediated activation process of paramyxoviruses, revealing the existence of virus species-specific activation processes in TTSPs. Our study provides new insights into the interaction between RVAs and host factors, and TTSP-transduced cells offer potential advantages for RVA research and development. IMPORTANCE Proteolytic cleavage of the viral VP4 protein is essential for virion maturation and infectivity in group A rotaviruses (RVAs). In cell culture, RVAs are propagated in culture medium supplemented with the exogenous protease trypsin, which cleaves VP4 and induces the maturation of progeny RVA virions. In this study, we demonstrated that the host proteases TMPRSS2 and TMPRSS11D mediate the trypsin-independent infection and growth of RVAs. Our data revealed that the proteolytic activation of RVAs by TMPRSS2 and TMPRSS11D occurs at the viral entry step. Because TMPRSS2 and TMPRSS11D gene expression induced similar or higher levels of RVA growth as trypsin-supplemented culture, this approach offers potential advantages for RVA research and development. Group A rotaviruses (RVAs) are representative enteric virus species and major causes of diarrhea in humans and animals. The RVA virion is a triple-layered particle, and the outermost layer consists of the glycoprotein VP7 and spike protein VP4. To increase the infectivity of RVA, VP4 is proteolytically cleaved into VP5* and VP8* subunits by trypsin; and these subunits form a rigid spike structure on the virion surface. In this study, we investigated the growth of RVAs in cells transduced with type II transmembrane serine proteases (TTSPs), which cleave fusion proteins and promote infection by respiratory viruses, such as influenza viruses, paramyxoviruses, and coronaviruses. We identified TMPRSS2 and TMPRSS11D as host TTSPs that mediate trypsin-independent and multi-cycle infection by human and animal RVA strains. cleavage assays revealed that recombinant TMPRSS11D cleaved RVA VP4. We also found that TMPRSS2 and TMPRSS11D promote the infectious entry of immature RVA virions, but they could not activate nascent progeny virions in the late phase of infection. This observation differed from the TTSP-mediated activation process of paramyxoviruses, revealing the existence of virus species-specific activation processes in TTSPs. Our study provides new insights into the interaction between RVAs and host factors, and TTSP-transduced cells offer potential advantages for RVA research and development. Proteolytic cleavage of the viral VP4 protein is essential for virion maturation and infectivity in group A rotaviruses (RVAs). In cell culture, RVAs are propagated in culture medium supplemented with the exogenous protease trypsin, which cleaves VP4 and induces the maturation of progeny RVA virions. In this study, we demonstrated that the host proteases TMPRSS2 and TMPRSS11D mediate the trypsin-independent infection and growth of RVA. Our data revealed that the proteolytic activation of RVAs by TMPRSS2 and TMPRSS11D occurs at the viral entry step. Because TMPRSS2 and TMPRSS11D gene expression induced similar or higher levels of RVA growth as trypsin-supplemented culture, this approach offers potential advantages for RVA research and development. |
Author | Tabata, Koshiro Sugiyama, Makoto Wastika, Christida E. Ito, Naoto Kishimoto, Mai Itakura, Yukari Orba, Yasuko Uemura, Kentaro Sawa, Hirofumi Sasaki, Michihito |
Author_xml | – sequence: 1 givenname: Michihito orcidid: 0000-0003-1607-2175 surname: Sasaki fullname: Sasaki, Michihito organization: Division of Molecular Pathobiology, Research Center for Zoonosis Control, Hokkaido University, Sapporo, Japan – sequence: 2 givenname: Yukari surname: Itakura fullname: Itakura, Yukari organization: Division of Molecular Pathobiology, Research Center for Zoonosis Control, Hokkaido University, Sapporo, Japan – sequence: 3 givenname: Mai surname: Kishimoto fullname: Kishimoto, Mai organization: Division of Molecular Pathobiology, Research Center for Zoonosis Control, Hokkaido University, Sapporo, Japan – sequence: 4 givenname: Koshiro surname: Tabata fullname: Tabata, Koshiro organization: Division of Molecular Pathobiology, Research Center for Zoonosis Control, Hokkaido University, Sapporo, Japan – sequence: 5 givenname: Kentaro surname: Uemura fullname: Uemura, Kentaro organization: Division of Molecular Pathobiology, Research Center for Zoonosis Control, Hokkaido University, Sapporo, Japan, Drug Discovery and Disease Research Laboratory, Shionogi & Co., Ltd., Osaka, Japan, Laboratory of Biomolecular Science, Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo, Japan – sequence: 6 givenname: Naoto surname: Ito fullname: Ito, Naoto organization: Laboratory of Zoonotic Diseases, Faculty of Applied Biological Sciences, Gifu University, Gifu, Japan – sequence: 7 givenname: Makoto surname: Sugiyama fullname: Sugiyama, Makoto organization: Laboratory of Zoonotic Diseases, Faculty of Applied Biological Sciences, Gifu University, Gifu, Japan – sequence: 8 givenname: Christida E. surname: Wastika fullname: Wastika, Christida E. organization: Division of Molecular Pathobiology, Research Center for Zoonosis Control, Hokkaido University, Sapporo, Japan – sequence: 9 givenname: Yasuko surname: Orba fullname: Orba, Yasuko organization: Division of Molecular Pathobiology, Research Center for Zoonosis Control, Hokkaido University, Sapporo, Japan – sequence: 10 givenname: Hirofumi surname: Sawa fullname: Sawa, Hirofumi organization: Division of Molecular Pathobiology, Research Center for Zoonosis Control, Hokkaido University, Sapporo, Japan, Global Institution for Collaborative Research and Education (GI-CoRE), Hokkaido University, Sapporo, Japan, Global Virus Network, Baltimore, Maryland, USA |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/33762412$$D View this record in MEDLINE/PubMed |
BookMark | eNp1kc1vEzEQxS1URNPAjTPyESS2-GN3470gRYW2Qa2omoK4WRPvBFxt7K3tjZRz_3HcJEWA4OIZyT-_eZ53RA6cd0jIS86OORfq3aevs2PGZKMKwZ-QEWe5qypeHpARY0IUlVTfDslRjLeM8bKsy2fkUMpJLUouRuT-3MdE5xisQ3oVfEKIGOnN5dX1fC4ouHbfc_6BXmJrIe05322SNXRqkl1Dst7t4LDpo3XFzLXYYz5cojO3RLMlrKNnwQ89ndJrn2Btw5CnPSdPl9BFfLGvY_Ll9OPNyXlx8flsdjK9KKASKhWN5IIJMAuBuCj5BGTT1iAXDNQSVSMRWhBC4AQro7gytcCStwpVPYESaiXH5P1Otx8WK2xN9hag032wKwgb7cHqP2-c_aG_-7VWXDZ1njAmr_cCwd8NGJNe2Wiw68ChH6IWFatkpeTkAX2zQyGuhL71Q3D5a5oz_RCazqHpbWha8My--t3XL0OPKWVA7AATfIwBl9rYtN15tmm7_6m-_evRo-4_8Z_rT7Qy |
CitedBy_id | crossref_primary_10_3233_CBM_230145 crossref_primary_10_2222_jsv_72_79 crossref_primary_10_3389_fimmu_2023_1041149 crossref_primary_10_3390_v14071356 crossref_primary_10_3390_v15102032 crossref_primary_10_1007_s00439_022_02435_y crossref_primary_10_1128_jvi_01455_22 crossref_primary_10_1016_j_virusres_2021_198500 crossref_primary_10_1080_13543784_2023_2284385 crossref_primary_10_1002_jcb_30528 crossref_primary_10_1165_rcmb_2022_0256OC |
Cites_doi | 10.1128/JVI.03677-13 10.1128/JVI.70.9.5832-5839.1996 10.1099/vir.0.033886-0 10.1016/j.cyto.2005.07.002 10.1128/JVI.01490-13 10.1128/JVI.72.6.5323-5327.1998 10.1016/s1286-4579(01)01475-7 10.1371/journal.pone.0183392 10.1016/j.coviro.2017.03.018 10.1128/JVI.06429-11 10.1099/jgv.0.001274 10.1016/0166-0934(83)90020-4 10.1093/cid/cix369 10.1016/j.jviromet.2008.09.025 10.1128/JVI.00464-11 10.1371/journal.ppat.1003774 10.1016/j.pupt.2015.07.001 10.1128/JVI.00140-10 10.1016/j.vaccine.2010.11.028 10.1016/j.virusres.2009.05.005 10.1016/j.isci.2020.101212 10.1128/JVI.03799-13 10.1038/nrmicro2673 10.3390/v9050114 10.1128/JVI.75.13.6052-6061.2001 10.1002/1096-9896(2000)9999:9999<::AID-PATH743>3.0.CO;2-T 10.1128/JVI.02690-09 10.1007/BF01378633 10.1128/JVI.00676-08 10.1385/1-59259-078-0:33 10.1128/JVI.00731-10 10.1016/j.biologicals.2014.07.003 10.1016/j.virusres.2014.06.016 10.1146/annurev-cellbio-092910-154247 10.1371/journal.pone.0174827 10.1128/JVI.02062-10 10.1128/JVI.01542-10 10.1371/journal.pone.0035876 10.1128/JVI.02207-18 10.1093/jb/mvr131 10.1016/j.vaccine.2011.04.087 10.1128/JVI.72.10.8150-8157.1998 10.1128/JVI.03372-12 10.1128/JVI.01815-18 10.1128/JVI.01890-13 10.1128/JVI.01427-14 10.1016/j.biochi.2017.07.016 10.1128/JVI.00625-10 10.1016/j.biologicals.2011.06.001 10.1007/s00705-011-1006-z |
ContentType | Journal Article |
Copyright | Copyright © 2021 Sasaki et al. Copyright © 2021 Sasaki et al. 2021 Sasaki et al. |
Copyright_xml | – notice: Copyright © 2021 Sasaki et al. – notice: Copyright © 2021 Sasaki et al. 2021 Sasaki et al. |
DBID | AAYXX CITATION NPM 7X8 5PM |
DOI | 10.1128/JVI.00398-21 |
DatabaseName | CrossRef PubMed MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic CrossRef PubMed |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 1098-5514 |
Editor | López, Susana |
Editor_xml | – sequence: 1 givenname: Susana surname: López fullname: López, Susana |
ExternalDocumentID | PMC8139689 00398-21 33762412 10_1128_JVI_00398_21 |
Genre | Journal Article |
GrantInformation_xml | – fundername: Japan Agency for Medical Research and Development (AMED) grantid: JP20wm0125008 funderid: https://doi.org/10.13039/100009619 – fundername: Uehara Memorial Foundation (上原記念生命科学財団) funderid: https://doi.org/10.13039/100008732 – fundername: Ministry of Education, Culture, Sports, Science and Technology (MEXT) grantid: 16H06429; 16H06431; 16K21723 funderid: https://doi.org/10.13039/501100001700 – fundername: MEXT | JST | Science and Technology Research Partnership for Sustainable Development (SATREPS) grantid: JP20jm0110019 funderid: https://doi.org/10.13039/501100009037 – fundername: MEXT | Japan Society for the Promotion of Science (JSPS) grantid: 16H05805 funderid: https://doi.org/10.13039/501100001691 – fundername: ; – fundername: ; grantid: 16H06429; 16H06431; 16K21723 – fundername: ; grantid: 16H05805 – fundername: ; grantid: JP20wm0125008 – fundername: ; grantid: JP20jm0110019 |
GroupedDBID | --- -~X 0R~ 18M 29L 2WC 39C 4.4 53G 5GY 5RE 5VS 85S AAFWJ AAGFI AAYXX ABPPZ ACGFO ACNCT ADBBV AENEX AGVNZ ALMA_UNASSIGNED_HOLDINGS AOIJS BAWUL BTFSW CITATION CS3 DIK E3Z EBS F5P FRP GX1 H13 HYE HZ~ IH2 KQ8 N9A O9- OK1 P2P RHI RNS RPM RSF TR2 UPT W2D W8F WH7 WOQ YQT ~02 ~KM NPM - 02 0R ABFLS ABPTK ADACO BXI HZ KM RHF UCJ X ZA5 7X8 5PM |
ID | FETCH-LOGICAL-a528t-931202acb2eeb417a39d6a3b0a8fe893eada222e7e5c818c62e41d8e867a4a683 |
ISSN | 0022-538X 1098-5514 |
IngestDate | Thu Aug 21 17:50:47 EDT 2025 Fri Jul 11 10:28:14 EDT 2025 Tue Dec 28 13:59:15 EST 2021 Thu Apr 03 07:01:53 EDT 2025 Thu Apr 24 22:58:58 EDT 2025 Tue Jul 01 01:32:37 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 11 |
Keywords | viral entry proteolytic activation type II transmembrane serine proteases group A rotavirus VP4 |
Language | English |
License | Copyright © 2021 Sasaki et al. This is an open-access article distributed under the terms of the Creative Commons Attribution 4.0 International license. https://creativecommons.org/licenses/by/4.0 This is an open-access article distributed under the terms of the Creative Commons Attribution 4.0 International license. |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-a528t-931202acb2eeb417a39d6a3b0a8fe893eada222e7e5c818c62e41d8e867a4a683 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 Citation Sasaki M, Itakura Y, Kishimoto M, Tabata K, Uemura K, Ito N, Sugiyama M, Wastika CE, Orba Y, Sawa H. 2021. Host serine proteases TMPRSS2 and TMPRSS11D mediate proteolytic activation and trypsin-independent infection in group A rotaviruses. J Virol 95:e00398-21. https://doi.org/10.1128/JVI.00398-21. |
ORCID | 0000-0003-1607-2175 |
OpenAccessLink | https://pubmed.ncbi.nlm.nih.gov/PMC8139689 |
PMID | 33762412 |
PQID | 2505358379 |
PQPubID | 23479 |
PageCount | 15 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_8139689 proquest_miscellaneous_2505358379 asm2_journals_10_1128_JVI_00398_21 pubmed_primary_33762412 crossref_citationtrail_10_1128_JVI_00398_21 crossref_primary_10_1128_JVI_00398_21 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20210510 |
PublicationDateYYYYMMDD | 2021-05-10 |
PublicationDate_xml | – month: 5 year: 2021 text: 20210510 day: 10 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: 1752 N St., N.W., Washington, DC |
PublicationTitle | Journal of virology |
PublicationTitleAbbrev | J Virol |
PublicationTitleAlternate | J Virol |
PublicationYear | 2021 |
Publisher | American Society for Microbiology |
Publisher_xml | – name: American Society for Microbiology |
References | e_1_3_2_26_2 e_1_3_2_49_2 e_1_3_2_28_2 e_1_3_2_41_2 e_1_3_2_20_2 e_1_3_2_43_2 e_1_3_2_22_2 e_1_3_2_45_2 e_1_3_2_24_2 e_1_3_2_47_2 e_1_3_2_9_2 e_1_3_2_16_2 e_1_3_2_37_2 e_1_3_2_7_2 e_1_3_2_18_2 e_1_3_2_39_2 e_1_3_2_10_2 e_1_3_2_31_2 e_1_3_2_52_2 e_1_3_2_5_2 e_1_3_2_12_2 e_1_3_2_33_2 e_1_3_2_3_2 e_1_3_2_14_2 e_1_3_2_35_2 e_1_3_2_50_2 Estes MK (e_1_3_2_25_2) 2013 e_1_3_2_27_2 e_1_3_2_48_2 e_1_3_2_29_2 e_1_3_2_40_2 e_1_3_2_21_2 e_1_3_2_42_2 e_1_3_2_23_2 e_1_3_2_44_2 e_1_3_2_46_2 e_1_3_2_15_2 e_1_3_2_38_2 e_1_3_2_8_2 e_1_3_2_17_2 e_1_3_2_6_2 e_1_3_2_19_2 e_1_3_2_30_2 e_1_3_2_53_2 e_1_3_2_32_2 e_1_3_2_51_2 e_1_3_2_11_2 e_1_3_2_34_2 e_1_3_2_4_2 e_1_3_2_13_2 e_1_3_2_36_2 e_1_3_2_2_2 Kato, M, Hashimoto, T, Shimomura, T, Kataoka, H, Ohi, H, Kitamura, N (B29) 2012; 151 Bertram, S, Heurich, A, Lavender, H, Gierer, S, Danisch, S, Perin, P, Lucas, JM, Nelson, PS, Pöhlmann, S, Soilleux, EJ (B13) 2012; 7 Shirato, K, Matsuyama, S, Ujike, M, Taguchi, F (B5) 2011; 85 Matthijnssens, J, Ciarlet, M, McDonald, SM, Attoui, H, Bányai, K, Brister, JR, Buesa, J, Esona, MD, Estes, MK, Gentsch, JR, Iturriza-Gómara, M, Johne, R, Kirkwood, CD, Martella, V, Mertens, PP, Nakagomi, O, Parreño, V, Rahman, M, Ruggeri, FM, Saif, LJ, Santos, N, Steyer, A, Taniguchi, K, Patton, JT, Desselberger, U, Van Ranst, M (B37) 2011; 156 Estes, MK, Greenberg, HB (B24) 2013; vol 2 Abe, M, Ito, N, Morikawa, S, Takasu, M, Murase, T, Kawashima, T, Kawai, Y, Kohara, J, Sugiyama, M (B47) 2009; 144 Yamaya, M, Shimotai, Y, Hatachi, Y, Lusamba Kalonji, N, Tando, Y, Kitajima, Y, Matsuo, K, Kubo, H, Nagatomi, R, Hongo, S, Homma, M, Nishimura, H (B28) 2015; 33 Patton, JT, Chizhikov, V, Taraporewala, Z, Chen, D (B52) 2000 Matsuyama, S, Nagata, N, Shirato, K, Kawase, M, Takeda, M, Taguchi, F (B4) 2010; 84 Desselberger, U (B25) 2014; 190 Shen, LW, Mao, HJ, Wu, YL, Tanaka, Y, Zhang, W (B15) 2017; 142 Tarnow, C, Engels, G, Arendt, A, Schwalm, F, Sediri, H, Preuss, A, Nelson, PS, Garten, W, Klenk, HD, Gabriel, G, Böttcher-Friebertshäuser, E (B18) 2014; 88 Nygaard, RM, Golden, JW, Schiff, LA (B7) 2012; 86 Shirogane, Y, Takeda, M, Iwasaki, M, Ishiguro, N, Takeuchi, H, Nakatsu, Y, Tahara, M, Kikuta, H, Yanagi, Y (B2) 2008; 82 Szabo, R, Bugge, TH (B1) 2011; 27 Lambertz, RLO, Gerhauser, I, Nehlmeier, I, Leist, SR, Kollmus, H, Pöhlmann, S, Schughart, K (B20) 2019; 100 Komoto, S, Wakuda, M, Ide, T, Niimi, G, Maeno, Y, Higo-Moriguchi, K, Taniguchi, K (B31) 2011; 92 Victoria, JG, Wang, C, Jones, MS, Jaing, C, McLoughlin, K, Gardner, S, Delwart, EL (B40) 2010; 84 Lundgren, O, Svensson, L (B45) 2001; 3 Abe, M, Tahara, M, Sakai, K, Yamaguchi, H, Kanou, K, Shirato, K, Kawase, M, Noda, M, Kimura, H, Matsuyama, S, Fukuhara, H, Mizuta, K, Maenaka, K, Ami, Y, Esumi, M, Kato, A, Takeda, M (B8) 2013; 87 B38 Minamoto, N, Sugimoto, O, Yokota, M, Tomita, M, Goto, H, Sugiyama, M, Kinjo, T (B49) 1993; 131 Straus, MR, Whittaker, GR (B33) 2017; 12 Gilbert, JM, Greenberg, HB (B34) 1998; 72 Baylis, SA, Finsterbusch, T, Bannert, N, Blümel, J, Mankertz, A (B42) 2011; 29 Gutiérrez, M, Isa, P, Sánchez-San Martin, C, Pérez-Vargas, J, Espinosa, R, Arias, CF, López, S (B35) 2010; 84 Shi, W, Fan, W, Bai, J, Tang, Y, Wang, L, Jiang, Y, Tang, L, Liu, M, Cui, W, Xu, Y, Li, Y (B12) 2017; 9 Jonesteller, CL, Burnett, E, Yen, C, Tate, JE, Parashar, UD (B22) 2017; 65 Iwata-Yoshikawa, N, Okamura, T, Shimizu, Y, Hasegawa, H, Takeda, M, Nagata, N (B19) 2019; 93 Arias, CF, Romero, P, Alvarez, V, López, S (B27) 1996; 70 Trask, SD, McDonald, SM, Patton, JT (B23) 2012; 10 Crawford, SE, Mukherjee, SK, Estes, MK, Lawton, JA, Shaw, AL, Ramig, RF, Prasad, BV (B30) 2001; 75 Rojas, M, Arias, CF, López, S (B36) 2010; 84 Kozasa, T, Aoki, H, Nakajima, N, Fukusho, A, Ishimaru, M, Nakamura, S (B44) 2011; 39 McClenahan, SD, Krause, PR, Uhlenhaut, C (B41) 2011; 29 Sakai, K, Ami, Y, Tahara, M, Kubota, T, Anraku, M, Abe, M, Nakajima, N, Sekizuka, T, Shirato, K, Suzaki, Y, Ainai, A, Nakatsu, Y, Kanou, K, Nakamura, K, Suzuki, T, Komase, K, Nobusawa, E, Maenaka, K, Kuroda, M, Hasegawa, H, Kawaoka, Y, Tashiro, M, Takeda, M (B17) 2014; 88 Petricciani, J, Sheets, R, Griffiths, E, Knezevic, I (B43) 2014; 42 Zmora, P, Blazejewska, P, Moldenhauer, AS, Welsch, K, Nehlmeier, I, Wu, Q, Schneider, H, Pöhlmann, S, Bertram, S (B11) 2014; 88 Hatesuer, B, Bertram, S, Mehnert, N, Bahgat, MM, Nelson, PS, Pöhlmann, S, Pöhlman, S, Schughart, K (B16) 2013; 9 Overbergh, L, Kyama, CM, Valckx, D, Debrock, S, Mwenda, JM, Mathieu, C, D'Hooghe, T (B50) 2005; 31 Vaarala, MH, Porvari, KS, Kellokumpu, S, Kyllönen, AP, Vihko, PT (B46) 2001; 193 Shulla, A, Heald-Sargent, T, Subramanya, G, Zhao, J, Perlman, S, Gallagher, T (B6) 2011; 85 Miyoshi, H, Blömer, U, Takahashi, M, Gage, FH, Verma, IM (B48) 1998; 72 Böttcher-Friebertshäuser, E, Freuer, C, Sielaff, F, Schmidt, S, Eickmann, M, Uhlendorff, J, Steinmetzer, T, Klenk, HD, Garten, W (B3) 2010; 84 Jothikumar, N, Kang, G, Hill, VR (B51) 2009; 155 Jaimes, JA, Millet, JK, Whittaker, GR (B32) 2020; 23 Komoto, S, Fukuda, S, Kugita, M, Hatazawa, R, Koyama, C, Katayama, K, Murata, T, Taniguchi, K (B39) 2019; 93 Offit, PA, Clark, HF, Stroop, WG, Twist, EM, Plotkin, SA (B26) 1983; 7 Clark, A, Black, R, Tate, J, Roose, A, Kotloff, K, Lam, D, Blackwelder, W, Parashar, U, Lanata, C, Kang, G, Troeger, C, Platts-Mills, J, Mokdad, A, Sanderson, C, Lamberti, L, Levine, M, Santosham, M, Steele, D, Network, GRS (B21) 2017; 12 Bertram, S, Dijkman, R, Habjan, M, Heurich, A, Gierer, S, Glowacka, I, Welsch, K, Winkler, M, Schneider, H, Hofmann-Winkler, H, Thiel, V, Pöhlmann, S (B9) 2013; 87 Shirato, K, Kawase, M, Matsuyama, S (B10) 2013; 87 Laporte, M, Naesens, L (B14) 2017; 24 |
References_xml | – ident: e_1_3_2_18_2 doi: 10.1128/JVI.03677-13 – ident: e_1_3_2_28_2 doi: 10.1128/JVI.70.9.5832-5839.1996 – ident: e_1_3_2_32_2 doi: 10.1099/vir.0.033886-0 – ident: e_1_3_2_51_2 doi: 10.1016/j.cyto.2005.07.002 – ident: e_1_3_2_9_2 doi: 10.1128/JVI.01490-13 – ident: e_1_3_2_35_2 doi: 10.1128/JVI.72.6.5323-5327.1998 – ident: e_1_3_2_46_2 doi: 10.1016/s1286-4579(01)01475-7 – ident: e_1_3_2_22_2 doi: 10.1371/journal.pone.0183392 – ident: e_1_3_2_15_2 doi: 10.1016/j.coviro.2017.03.018 – ident: e_1_3_2_8_2 doi: 10.1128/JVI.06429-11 – ident: e_1_3_2_21_2 doi: 10.1099/jgv.0.001274 – ident: e_1_3_2_27_2 doi: 10.1016/0166-0934(83)90020-4 – ident: e_1_3_2_23_2 doi: 10.1093/cid/cix369 – ident: e_1_3_2_52_2 doi: 10.1016/j.jviromet.2008.09.025 – ident: e_1_3_2_6_2 doi: 10.1128/JVI.00464-11 – ident: e_1_3_2_39_2 – ident: e_1_3_2_17_2 doi: 10.1371/journal.ppat.1003774 – ident: e_1_3_2_29_2 doi: 10.1016/j.pupt.2015.07.001 – ident: e_1_3_2_4_2 doi: 10.1128/JVI.00140-10 – ident: e_1_3_2_43_2 doi: 10.1016/j.vaccine.2010.11.028 – ident: e_1_3_2_48_2 doi: 10.1016/j.virusres.2009.05.005 – ident: e_1_3_2_33_2 doi: 10.1016/j.isci.2020.101212 – ident: e_1_3_2_19_2 doi: 10.1128/JVI.03799-13 – ident: e_1_3_2_24_2 doi: 10.1038/nrmicro2673 – ident: e_1_3_2_13_2 doi: 10.3390/v9050114 – ident: e_1_3_2_31_2 doi: 10.1128/JVI.75.13.6052-6061.2001 – ident: e_1_3_2_47_2 doi: 10.1002/1096-9896(2000)9999:9999<::AID-PATH743>3.0.CO;2-T – ident: e_1_3_2_41_2 doi: 10.1128/JVI.02690-09 – ident: e_1_3_2_50_2 doi: 10.1007/BF01378633 – ident: e_1_3_2_3_2 doi: 10.1128/JVI.00676-08 – ident: e_1_3_2_53_2 doi: 10.1385/1-59259-078-0:33 – ident: e_1_3_2_36_2 doi: 10.1128/JVI.00731-10 – ident: e_1_3_2_44_2 doi: 10.1016/j.biologicals.2014.07.003 – ident: e_1_3_2_26_2 doi: 10.1016/j.virusres.2014.06.016 – ident: e_1_3_2_2_2 doi: 10.1146/annurev-cellbio-092910-154247 – ident: e_1_3_2_34_2 doi: 10.1371/journal.pone.0174827 – ident: e_1_3_2_7_2 doi: 10.1128/JVI.02062-10 – ident: e_1_3_2_5_2 doi: 10.1128/JVI.01542-10 – ident: e_1_3_2_14_2 doi: 10.1371/journal.pone.0035876 – ident: e_1_3_2_40_2 doi: 10.1128/JVI.02207-18 – ident: e_1_3_2_30_2 doi: 10.1093/jb/mvr131 – ident: e_1_3_2_42_2 doi: 10.1016/j.vaccine.2011.04.087 – ident: e_1_3_2_49_2 doi: 10.1128/JVI.72.10.8150-8157.1998 – start-page: 1347 volume-title: Fields virology year: 2013 ident: e_1_3_2_25_2 – ident: e_1_3_2_10_2 doi: 10.1128/JVI.03372-12 – ident: e_1_3_2_20_2 doi: 10.1128/JVI.01815-18 – ident: e_1_3_2_11_2 doi: 10.1128/JVI.01890-13 – ident: e_1_3_2_12_2 doi: 10.1128/JVI.01427-14 – ident: e_1_3_2_16_2 doi: 10.1016/j.biochi.2017.07.016 – ident: e_1_3_2_37_2 doi: 10.1128/JVI.00625-10 – ident: e_1_3_2_45_2 doi: 10.1016/j.biologicals.2011.06.001 – ident: e_1_3_2_38_2 doi: 10.1007/s00705-011-1006-z – volume: 29 start-page: 690 year: 2011 end-page: 697 ident: B42 article-title: Analysis of porcine circovirus type 1 detected in Rotarix vaccine publication-title: Vaccine doi: 10.1016/j.vaccine.2010.11.028 – volume: 87 start-page: 11930 year: 2013 end-page: 11935 ident: B8 article-title: TMPRSS2 is an activating protease for respiratory parainfluenza viruses publication-title: J Virol doi: 10.1128/JVI.01490-13 – volume: 39 start-page: 242 year: 2011 end-page: 248 ident: B44 article-title: Methods to select suitable fetal bovine serum for use in quality control assays for the detection of adventitious viruses from biological products publication-title: Biologicals doi: 10.1016/j.biologicals.2011.06.001 – volume: 155 start-page: 126 year: 2009 end-page: 131 ident: B51 article-title: Broadly reactive TaqMan assay for real-time RT-PCR detection of rotavirus in clinical and environmental samples publication-title: J Virol Methods doi: 10.1016/j.jviromet.2008.09.025 – volume: 75 start-page: 6052 year: 2001 end-page: 6061 ident: B30 article-title: Trypsin cleavage stabilizes the rotavirus VP4 spike publication-title: J Virol doi: 10.1128/JVI.75.13.6052-6061.2001 – volume: 88 start-page: 4744 year: 2014 end-page: 4751 ident: B18 article-title: TMPRSS2 is a host factor that is essential for pneumotropism and pathogenicity of H7N9 influenza A virus in mice publication-title: J Virol doi: 10.1128/JVI.03799-13 – volume: 84 start-page: 6033 year: 2010 end-page: 6040 ident: B40 article-title: Viral nucleic acids in live-attenuated vaccines: detection of minority variants and an adventitious virus publication-title: J Virol doi: 10.1128/JVI.02690-09 – volume: 144 start-page: 250 year: 2009 end-page: 257 ident: B47 article-title: Molecular epidemiology of rotaviruses among healthy calves in Japan: isolation of a novel bovine rotavirus bearing new P and G genotypes publication-title: Virus Res doi: 10.1016/j.virusres.2009.05.005 – volume: 3 start-page: 1145 year: 2001 end-page: 1156 ident: B45 article-title: Pathogenesis of rotavirus diarrhea publication-title: Microbes Infect doi: 10.1016/s1286-4579(01)01475-7 – volume: 24 start-page: 16 year: 2017 end-page: 24 ident: B14 article-title: Airway proteases: an emerging drug target for influenza and other respiratory virus infections publication-title: Curr Opin Virol doi: 10.1016/j.coviro.2017.03.018 – volume: 156 start-page: 1397 year: 2011 end-page: 1413 ident: B37 article-title: Uniformity of rotavirus strain nomenclature proposed by the Rotavirus Classification Working Group (RCWG) publication-title: Arch Virol doi: 10.1007/s00705-011-1006-z – volume: 9 start-page: 114 year: 2017 ident: B12 article-title: TMPRSS2 and MSPL facilitate trypsin-independent porcine epidemic diarrhea virus replication in Vero cells publication-title: Viruses doi: 10.3390/v9050114 – volume: 82 start-page: 8942 year: 2008 end-page: 8946 ident: B2 article-title: Efficient multiplication of human metapneumovirus in Vero cells expressing the transmembrane serine protease TMPRSS2 publication-title: J Virol doi: 10.1128/JVI.00676-08 – volume: 84 start-page: 12658 year: 2010 end-page: 12664 ident: B4 article-title: Efficient activation of the severe acute respiratory syndrome coronavirus spike protein by the transmembrane protease TMPRSS2 publication-title: J Virol doi: 10.1128/JVI.01542-10 – volume: 85 start-page: 7872 year: 2011 end-page: 7880 ident: B5 article-title: Role of proteases in the release of porcine epidemic diarrhea virus from infected cells publication-title: J Virol doi: 10.1128/JVI.00464-11 – volume: 85 start-page: 873 year: 2011 end-page: 882 ident: B6 article-title: A transmembrane serine protease is linked to the severe acute respiratory syndrome coronavirus receptor and activates virus entry publication-title: J Virol doi: 10.1128/JVI.02062-10 – volume: 190 start-page: 75 year: 2014 end-page: 96 ident: B25 article-title: Rotaviruses publication-title: Virus Res doi: 10.1016/j.virusres.2014.06.016 – volume: 23 start-page: 101212 year: 2020 ident: B32 article-title: Proteolytic cleavage of the SARS-CoV-2 spike protein and the role of the novel S1/S2 site publication-title: iScience doi: 10.1016/j.isci.2020.101212 – volume: 88 start-page: 12087 year: 2014 end-page: 12097 ident: B11 article-title: DESC1 and MSPL activate influenza A viruses and emerging coronaviruses for host cell entry publication-title: J Virol doi: 10.1128/JVI.01427-14 – volume: 93 year: 2019 ident: B39 article-title: Generation of infectious recombinant human rotaviruses from just 11 cloned cDNAs encoding the rotavirus genome publication-title: J Virol doi: 10.1128/JVI.02207-18 – volume: 100 start-page: 1073 year: 2019 end-page: 1078 ident: B20 article-title: Tmprss2 knock-out mice are resistant to H10 influenza A virus pathogenesis publication-title: J Gen Virol doi: 10.1099/jgv.0.001274 – volume: 10 start-page: 165 year: 2012 end-page: 177 ident: B23 article-title: Structural insights into the coupling of virion assembly and rotavirus replication publication-title: Nat Rev Microbiol doi: 10.1038/nrmicro2673 – volume: 87 start-page: 12552 year: 2013 end-page: 12561 ident: B10 article-title: Middle East respiratory syndrome coronavirus infection mediated by the transmembrane serine protease TMPRSS2 publication-title: J Virol doi: 10.1128/JVI.01890-13 – volume: 29 start-page: 4745 year: 2011 end-page: 4753 ident: B41 article-title: Molecular and infectivity studies of porcine circovirus in vaccines publication-title: Vaccine doi: 10.1016/j.vaccine.2011.04.087 – volume: 9 year: 2013 ident: B16 article-title: Tmprss2 is essential for influenza H1N1 virus pathogenesis in mice publication-title: PLoS Pathog doi: 10.1371/journal.ppat.1003774 – volume: 84 start-page: 5605 year: 2010 end-page: 5614 ident: B3 article-title: Cleavage of influenza virus hemagglutinin by airway proteases TMPRSS2 and HAT differs in subcellular localization and susceptibility to protease inhibitors publication-title: J Virol doi: 10.1128/JVI.00140-10 – volume: 72 start-page: 5323 year: 1998 end-page: 5327 ident: B34 article-title: Cleavage of rhesus rotavirus VP4 after arginine 247 is essential for rotavirus-like particle-induced fusion from without publication-title: J Virol doi: 10.1128/JVI.72.6.5323-5327.1998 – volume: 31 start-page: 454 year: 2005 end-page: 458 ident: B50 article-title: Validation of real-time RT-PCR assays for mRNA quantification in baboons publication-title: Cytokine doi: 10.1016/j.cyto.2005.07.002 – volume: 86 start-page: 1238 year: 2012 end-page: 1243 ident: B7 article-title: Impact of host proteases on reovirus infection in the respiratory tract publication-title: J Virol doi: 10.1128/JVI.06429-11 – volume: 87 start-page: 6150 year: 2013 end-page: 6160 ident: B9 article-title: TMPRSS2 activates the human coronavirus 229E for cathepsin-independent host cell entry and is expressed in viral target cells in the respiratory epithelium publication-title: J Virol doi: 10.1128/JVI.03372-12 – volume: 7 year: 2012 ident: B13 article-title: Influenza and SARS-coronavirus activating proteases TMPRSS2 and HAT are expressed at multiple sites in human respiratory and gastrointestinal tracts publication-title: PLoS One doi: 10.1371/journal.pone.0035876 – volume: 92 start-page: 2914 year: 2011 end-page: 2921 ident: B31 article-title: Modification of the trypsin cleavage site of rotavirus VP4 to a furin-sensitive form does not enhance replication efficiency publication-title: J Gen Virol doi: 10.1099/vir.0.033886-0 – volume: 88 start-page: 5608 year: 2014 end-page: 5616 ident: B17 article-title: The host protease TMPRSS2 plays a major role in in vivo replication of emerging H7N9 and seasonal influenza viruses publication-title: J Virol doi: 10.1128/JVI.03677-13 – volume: 72 start-page: 8150 year: 1998 end-page: 8157 ident: B48 article-title: Development of a self-inactivating lentivirus vector publication-title: J Virol doi: 10.1128/JVI.72.10.8150-8157.1998 – volume: 42 start-page: 223 year: 2014 end-page: 236 ident: B43 article-title: Adventitious agents in viral vaccines: lessons learned from 4 case studies publication-title: Biologicals doi: 10.1016/j.biologicals.2014.07.003 – volume: 12 year: 2017 ident: B21 article-title: Estimating global, regional and national rotavirus deaths in children aged <5 years: current approaches, new analyses and proposed improvements publication-title: PLoS One doi: 10.1371/journal.pone.0183392 – volume: 93 year: 2019 ident: B19 article-title: TMPRSS2 contributes to virus spread and immunopathology in the airways of murine models after coronavirus infection publication-title: J Virol doi: 10.1128/JVI.01815-18 – volume: vol 2 start-page: 1347 year: 2013 end-page: 1401 ident: B24 article-title: Rotaviruses publication-title: Fields virology ;6th ed ;Lippincott Williams & Wilkins ;Philadelphia, PA – volume: 12 year: 2017 ident: B33 article-title: A peptide-based approach to evaluate the adaptability of influenza A virus to humans based on its hemagglutinin proteolytic cleavage site publication-title: PLoS One doi: 10.1371/journal.pone.0174827 – volume: 27 start-page: 213 year: 2011 end-page: 235 ident: B1 article-title: Membrane-anchored serine proteases in vertebrate cell and developmental biology publication-title: Annu Rev Cell Dev Biol doi: 10.1146/annurev-cellbio-092910-154247 – volume: 65 start-page: 840 year: 2017 end-page: 850 ident: B22 article-title: Effectiveness of rotavirus vaccination: a systematic review of the first decade of global postlicensure data, 2006–2016 publication-title: Clin Infect Dis doi: 10.1093/cid/cix369 – ident: B38 article-title: Rotavirus Classification Working Group (RCWG) . 2019 . List of accepted genotypes , https://rega.kuleuven.be/cev/viralmetagenomics/virus-classification/rcwg . Accessed 2 March 2021 . – volume: 193 start-page: 134 year: 2001 end-page: 140 ident: B46 article-title: Expression of transmembrane serine protease TMPRSS2 in mouse and human tissues publication-title: J Pathol doi: 10.1002/1096-9896(2000)9999:9999<::AID-PATH743>3.0.CO;2-T – volume: 70 start-page: 5832 year: 1996 end-page: 5839 ident: B27 article-title: Trypsin activation pathway of rotavirus infectivity publication-title: J Virol doi: 10.1128/JVI.70.9.5832-5839.1996 – volume: 131 start-page: 293 year: 1993 end-page: 305 ident: B49 article-title: Antigenic analysis of avian rotavirus VP6 using monoclonal antibodies publication-title: Arch Virol doi: 10.1007/BF01378633 – volume: 33 start-page: 66 year: 2015 end-page: 74 ident: B28 article-title: The serine protease inhibitor camostat inhibits influenza virus replication and cytokine production in primary cultures of human tracheal epithelial cells publication-title: Pulm Pharmacol Ther doi: 10.1016/j.pupt.2015.07.001 – start-page: 33 year: 2000 end-page: 66 ident: B52 article-title: Virus Replication publication-title: Rotaviruses methods and protocols. ;Humana Press ;Totowa, NJ – volume: 84 start-page: 9161 year: 2010 end-page: 9169 ident: B35 article-title: Different rotavirus strains enter MA104 cells through different endocytic pathways: the role of clathrin-mediated endocytosis publication-title: J Virol doi: 10.1128/JVI.00731-10 – volume: 142 start-page: 1 year: 2017 end-page: 10 ident: B15 article-title: TMPRSS2: a potential target for treatment of influenza virus and coronavirus infections publication-title: Biochimie doi: 10.1016/j.biochi.2017.07.016 – volume: 151 start-page: 179 year: 2012 end-page: 187 ident: B29 article-title: Hepatocyte growth factor activator inhibitor type 1 inhibits protease activity and proteolytic activation of human airway trypsin-like protease publication-title: J Biochem doi: 10.1093/jb/mvr131 – volume: 84 start-page: 10457 year: 2010 end-page: 10466 ident: B36 article-title: Protein kinase R is responsible for the phosphorylation of eIF2alpha in rotavirus infection publication-title: J Virol doi: 10.1128/JVI.00625-10 – volume: 7 start-page: 29 year: 1983 end-page: 40 ident: B26 article-title: The cultivation of human rotavirus, strain 'Wa', to high titer in cell culture and characterization of the viral structural polypeptides publication-title: J Virol Methods doi: 10.1016/0166-0934(83)90020-4 |
SSID | ssj0014464 |
Score | 2.4285414 |
Snippet | Proteolytic cleavage of the viral VP4 protein is essential for virion maturation and infectivity in group A rotaviruses (RVAs). In cell culture, RVAs are... Group A rotaviruses (RVAs) are representative enteric virus species and major causes of diarrhea in humans and animals. The RVA virion is a triple-layered... |
SourceID | pubmedcentral proquest asm2 pubmed crossref |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source |
SubjectTerms | Virus-Cell Interactions |
Title | Host Serine Proteases TMPRSS2 and TMPRSS11D Mediate Proteolytic Activation and Trypsin-Independent Infection in Group A Rotaviruses |
URI | https://www.ncbi.nlm.nih.gov/pubmed/33762412 https://journals.asm.org/doi/10.1128/JVI.00398-21 https://www.proquest.com/docview/2505358379 https://pubmed.ncbi.nlm.nih.gov/PMC8139689 |
Volume | 95 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1ba9swFBZZx2AvY_dmN7SxPQV3lezYymPYhaSlozTp6J6M7MjEtLNLbA-y1_2J_dydI9mys7TQ7SUY-2CSfJ_ORToXQt5G4DTwYB8WEl-4jqdi6YAXkjhyMRKo_5QvsMD56Is_OfUOzoZnvd7vTtZSVUZ78c8r60r-B1W4B7hilew_IGtfCjfgGvCFT0AYPm-E8SQvSlzt6CkeY8MFMEnFYH50fDKbcX0sYK4Z-6hPZMCvNHL5xRobtY7jZriZEV6tL4s0c6Z2NG4J-sMka-mESLNzNR6c5KX8ka6qok5A3HZusXquu18_k4U0A7Ix9zRdgh6xpCzleaWnHQ2-VecQurdpAcUSmZSbmiJ7fy4jaXzewxz31vPuzgVnjm562nKtOZLq5qcepW3_qa7expDZ1UOIwWoZVY2dUNHf6-pyM7Cz4Sy72kZwrHs4-Drdw8JkYBRrbaHNUGwe3SK3OQQgOlifHtrzKQiivaYPPX6vpqSCi_fdF4Odl8V3vunzbAUyf-fjdhyc-X1yrwaPjg3NHpCeyh6SO2ZW6foR-YVko4Zs1JKN1mSjwB9qyUZrstEO2WhLNiO8TTZqyUbTjGqy0THtkO0xOf38af5h4tQTPBw55KJ0Ri4D4GUccaUijwXSHS186Ub7UiQKPGVQYxIcVBWoYQyeY-xz5bGFUMIPpCd94T4hO1meqV1ChwmYFp5EYDFiL4FXscBVgiUeCC8SP-6TN_hXh_XyLEId3XIRAh6hxiPkrE8GDRBhXPfAx1EsF9dIv7PSl6b3yzVyrxtMQ1DOeOImM5VXRYjxhTsUbjDqk6cGY_smF0w7uM-8T4IN9K0ANn7ffJKlS90AXkDY5ovRs5v85Ofkbrv2XpCdclWpl-BHl9ErTek_Iz7KjA |
linkProvider | Flying Publisher |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Host+Serine+Proteases+TMPRSS2+and+TMPRSS11D+Mediate+Proteolytic+Activation+and+Trypsin-Independent+Infection+in+Group+A+Rotaviruses&rft.jtitle=Journal+of+virology&rft.au=Sasaki%2C+Michihito&rft.au=Itakura%2C+Yukari&rft.au=Kishimoto%2C+Mai&rft.au=Tabata%2C+Koshiro&rft.date=2021-05-10&rft.pub=American+Society+for+Microbiology&rft.issn=0022-538X&rft.eissn=1098-5514&rft.volume=95&rft.issue=11&rft_id=info:doi/10.1128%2FJVI.00398-21&rft.externalDocID=00398-21 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0022-538X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0022-538X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0022-538X&client=summon |