Characterization of MxiE- and H-NS-Dependent Expression of ipaH7.8 , ospC1 , yccE , and yfdF in Shigella flexneri

The expression of horizontally acquired genes, including virulence genes, is subject to complex regulation involving xenogeneic silencing proteins, and counter-silencing mechanisms. The pathogenic properties of Shigella flexneri mainly rely on the acquisition of the type 3 secretion system (T3SS) an...

Full description

Saved in:
Bibliographic Details
Published inmSphere Vol. 7; no. 6; p. e0048522
Main Authors Hall, Chelsea P., Jadeja, Niti B., Sebeck, Natalie, Agaisse, Hervé
Format Journal Article
LanguageEnglish
Published United States American Society for Microbiology 21.12.2022
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The expression of horizontally acquired genes, including virulence genes, is subject to complex regulation involving xenogeneic silencing proteins, and counter-silencing mechanisms. The pathogenic properties of Shigella flexneri mainly rely on the acquisition of the type 3 secretion system (T3SS) and cognate effector proteins, whose expression is repressed by the xenogeneic silencing protein H-NS. Shigella flexneri uses a type 3 secretion system (T3SS) apparatus to inject virulence effector proteins into the host cell cytosol. Upon host cell contact, MxiE, an S. flexneri AraC-like transcriptional regulator, is required for the expression of a subset of T3SS effector genes encoded on the large virulence plasmid. Here, we defined the MxiE regulon using RNA-seq. We identified virulence plasmid- and chromosome-encoded genes that are activated in response to type 3 secretion in a MxiE-dependent manner. Bioinformatic analysis revealed that similar to previously known MxiE-dependent genes, chromosome-encoded genes yccE and yfdF contain a regulatory element known as the MxiE box, which is required for their MxiE-dependent expression. The significant AT enrichment of MxiE-dependent genes suggested the involvement of H-NS. Using a dominant negative H-NS system, we demonstrate that H-NS silences the expression of MxiE-dependent genes located on the virulence plasmid ( ipaH7 .8 and ospC1 ) and the chromosome ( yccE and yfdF ). Furthermore, we show that MxiE is no longer required for the expression of ipaH7.8 , ospC1, yccE , and yfdF when H-NS silencing is relieved. Finally, we show that the H-NS anti-silencer VirB is not required for ipaH7.8 and yccE expression upon MxiE/IpgC overexpression. Based on these genetic studies, we propose a model of MxiE-dependent gene regulation in which MxiE counteracts H-NS-mediated silencing. IMPORTANCE The expression of horizontally acquired genes, including virulence genes, is subject to complex regulation involving xenogeneic silencing proteins, and counter-silencing mechanisms. The pathogenic properties of Shigella flexneri mainly rely on the acquisition of the type 3 secretion system (T3SS) and cognate effector proteins, whose expression is repressed by the xenogeneic silencing protein H-NS. Based on previous studies, releasing H-NS-mediated silencing mainly relies on two mechanisms involving (i) a temperature shift leading to the release of H-NS at the virF promoter, and (ii) the virulence factor VirB, which dislodges H-NS upon binding to specific motifs upstream of virulence genes, including those encoding the T3SS. In this study, we provide genetic evidence supporting the notion that, in addition to VirB, the AraC family member MxiE also contributes to releasing H-NS-mediated silencing in S. flexneri .
AbstractList Shigella flexneri uses a type 3 secretion system (T3SS) apparatus to inject virulence effector proteins into the host cell cytosol. Upon host cell contact, MxiE, an S. flexneri AraC-like transcriptional regulator, is required for the expression of a subset of T3SS effector genes encoded on the large virulence plasmid. Here, we defined the MxiE regulon using RNA-seq. We identified virulence plasmid- and chromosome-encoded genes that are activated in response to type 3 secretion in a MxiE-dependent manner. Bioinformatic analysis revealed that similar to previously known MxiE-dependent genes, chromosome-encoded genes and contain a regulatory element known as the MxiE box, which is required for their MxiE-dependent expression. The significant AT enrichment of MxiE-dependent genes suggested the involvement of H-NS. Using a dominant negative H-NS system, we demonstrate that H-NS silences the expression of MxiE-dependent genes located on the virulence plasmid ( .8 and ) and the chromosome ( and ). Furthermore, we show that MxiE is no longer required for the expression of , , and when H-NS silencing is relieved. Finally, we show that the H-NS anti-silencer VirB is not required for and expression upon MxiE/IpgC overexpression. Based on these genetic studies, we propose a model of MxiE-dependent gene regulation in which MxiE counteracts H-NS-mediated silencing. The expression of horizontally acquired genes, including virulence genes, is subject to complex regulation involving xenogeneic silencing proteins, and counter-silencing mechanisms. The pathogenic properties of Shigella flexneri mainly rely on the acquisition of the type 3 secretion system (T3SS) and cognate effector proteins, whose expression is repressed by the xenogeneic silencing protein H-NS. Based on previous studies, releasing H-NS-mediated silencing mainly relies on two mechanisms involving (i) a temperature shift leading to the release of H-NS at the promoter, and (ii) the virulence factor VirB, which dislodges H-NS upon binding to specific motifs upstream of virulence genes, including those encoding the T3SS. In this study, we provide genetic evidence supporting the notion that, in addition to VirB, the AraC family member MxiE also contributes to releasing H-NS-mediated silencing in S. flexneri.
Shigella flexneri uses a type 3 secretion system (T3SS) apparatus to inject virulence effector proteins into the host cell cytosol. Upon host cell contact, MxiE, an S. flexneri AraC-like transcriptional regulator, is required for the expression of a subset of T3SS effector genes encoded on the large virulence plasmid. Here, we defined the MxiE regulon using RNA-seq. We identified virulence plasmid- and chromosome-encoded genes that are activated in response to type 3 secretion in a MxiE-dependent manner. Bioinformatic analysis revealed that similar to previously known MxiE-dependent genes, chromosome-encoded genes yccE and yfdF contain a regulatory element known as the MxiE box, which is required for their MxiE-dependent expression. The significant AT enrichment of MxiE-dependent genes suggested the involvement of H-NS. Using a dominant negative H-NS system, we demonstrate that H-NS silences the expression of MxiE-dependent genes located on the virulence plasmid (ipaH7.8 and ospC1) and the chromosome (yccE and yfdF). Furthermore, we show that MxiE is no longer required for the expression of ipaH7.8, ospC1, yccE, and yfdF when H-NS silencing is relieved. Finally, we show that the H-NS anti-silencer VirB is not required for ipaH7.8 and yccE expression upon MxiE/IpgC overexpression. Based on these genetic studies, we propose a model of MxiE-dependent gene regulation in which MxiE counteracts H-NS-mediated silencing. IMPORTANCE The expression of horizontally acquired genes, including virulence genes, is subject to complex regulation involving xenogeneic silencing proteins, and counter-silencing mechanisms. The pathogenic properties of Shigella flexneri mainly rely on the acquisition of the type 3 secretion system (T3SS) and cognate effector proteins, whose expression is repressed by the xenogeneic silencing protein H-NS. Based on previous studies, releasing H-NS-mediated silencing mainly relies on two mechanisms involving (i) a temperature shift leading to the release of H-NS at the virF promoter, and (ii) the virulence factor VirB, which dislodges H-NS upon binding to specific motifs upstream of virulence genes, including those encoding the T3SS. In this study, we provide genetic evidence supporting the notion that, in addition to VirB, the AraC family member MxiE also contributes to releasing H-NS-mediated silencing in S. flexneri.Shigella flexneri uses a type 3 secretion system (T3SS) apparatus to inject virulence effector proteins into the host cell cytosol. Upon host cell contact, MxiE, an S. flexneri AraC-like transcriptional regulator, is required for the expression of a subset of T3SS effector genes encoded on the large virulence plasmid. Here, we defined the MxiE regulon using RNA-seq. We identified virulence plasmid- and chromosome-encoded genes that are activated in response to type 3 secretion in a MxiE-dependent manner. Bioinformatic analysis revealed that similar to previously known MxiE-dependent genes, chromosome-encoded genes yccE and yfdF contain a regulatory element known as the MxiE box, which is required for their MxiE-dependent expression. The significant AT enrichment of MxiE-dependent genes suggested the involvement of H-NS. Using a dominant negative H-NS system, we demonstrate that H-NS silences the expression of MxiE-dependent genes located on the virulence plasmid (ipaH7.8 and ospC1) and the chromosome (yccE and yfdF). Furthermore, we show that MxiE is no longer required for the expression of ipaH7.8, ospC1, yccE, and yfdF when H-NS silencing is relieved. Finally, we show that the H-NS anti-silencer VirB is not required for ipaH7.8 and yccE expression upon MxiE/IpgC overexpression. Based on these genetic studies, we propose a model of MxiE-dependent gene regulation in which MxiE counteracts H-NS-mediated silencing. IMPORTANCE The expression of horizontally acquired genes, including virulence genes, is subject to complex regulation involving xenogeneic silencing proteins, and counter-silencing mechanisms. The pathogenic properties of Shigella flexneri mainly rely on the acquisition of the type 3 secretion system (T3SS) and cognate effector proteins, whose expression is repressed by the xenogeneic silencing protein H-NS. Based on previous studies, releasing H-NS-mediated silencing mainly relies on two mechanisms involving (i) a temperature shift leading to the release of H-NS at the virF promoter, and (ii) the virulence factor VirB, which dislodges H-NS upon binding to specific motifs upstream of virulence genes, including those encoding the T3SS. In this study, we provide genetic evidence supporting the notion that, in addition to VirB, the AraC family member MxiE also contributes to releasing H-NS-mediated silencing in S. flexneri.
Shigella flexneri uses a type 3 secretion system (T3SS) apparatus to inject virulence effector proteins into the host cell cytosol. Upon host cell contact, MxiE, an S. flexneri AraC-like transcriptional regulator, is required for the expression of a subset of T3SS effector genes encoded on the large virulence plasmid. Here, we defined the MxiE regulon using RNA-seq. We identified virulence plasmid- and chromosome-encoded genes that are activated in response to type 3 secretion in a MxiE-dependent manner. Bioinformatic analysis revealed that similar to previously known MxiE-dependent genes, chromosome-encoded genes yccE and yfdF contain a regulatory element known as the MxiE box, which is required for their MxiE-dependent expression. The significant AT enrichment of MxiE-dependent genes suggested the involvement of H-NS. Using a dominant negative H-NS system, we demonstrate that H-NS silences the expression of MxiE-dependent genes located on the virulence plasmid ( ipaH7 .8 and ospC1 ) and the chromosome ( yccE and yfdF ). Furthermore, we show that MxiE is no longer required for the expression of ipaH7.8 , ospC1, yccE , and yfdF when H-NS silencing is relieved. Finally, we show that the H-NS anti-silencer VirB is not required for ipaH7.8 and yccE expression upon MxiE/IpgC overexpression. Based on these genetic studies, we propose a model of MxiE-dependent gene regulation in which MxiE counteracts H-NS-mediated silencing. IMPORTANCE The expression of horizontally acquired genes, including virulence genes, is subject to complex regulation involving xenogeneic silencing proteins, and counter-silencing mechanisms. The pathogenic properties of Shigella flexneri mainly rely on the acquisition of the type 3 secretion system (T3SS) and cognate effector proteins, whose expression is repressed by the xenogeneic silencing protein H-NS. Based on previous studies, releasing H-NS-mediated silencing mainly relies on two mechanisms involving (i) a temperature shift leading to the release of H-NS at the virF promoter, and (ii) the virulence factor VirB, which dislodges H-NS upon binding to specific motifs upstream of virulence genes, including those encoding the T3SS. In this study, we provide genetic evidence supporting the notion that, in addition to VirB, the AraC family member MxiE also contributes to releasing H-NS-mediated silencing in S. flexneri .
Shigella flexneri uses a type 3 secretion system (T3SS) apparatus to inject virulence effector proteins into the host cell cytosol. Upon host cell contact, MxiE, an S. flexneri AraC-like transcriptional regulator, is required for the expression of a subset of T3SS effector genes encoded on the large virulence plasmid. Here, we defined the MxiE regulon using RNA-seq. We identified virulence plasmid- and chromosome-encoded genes that are activated in response to type 3 secretion in a MxiE-dependent manner. Bioinformatic analysis revealed that similar to previously known MxiE-dependent genes, chromosome-encoded genes yccE and yfdF contain a regulatory element known as the MxiE box, which is required for their MxiE-dependent expression. The significant AT enrichment of MxiE-dependent genes suggested the involvement of H-NS. Using a dominant negative H-NS system, we demonstrate that H-NS silences the expression of MxiE-dependent genes located on the virulence plasmid (ipaH7.8 and ospC1) and the chromosome (yccE and yfdF). Furthermore, we show that MxiE is no longer required for the expression of ipaH7.8, ospC1, yccE, and yfdF when H-NS silencing is relieved. Finally, we show that the H-NS anti-silencer VirB is not required for ipaH7.8 and yccE expression upon MxiE/IpgC overexpression. Based on these genetic studies, we propose a model of MxiE-dependent gene regulation in which MxiE counteracts H-NS-mediated silencing. IMPORTANCE The expression of horizontally acquired genes, including virulence genes, is subject to complex regulation involving xenogeneic silencing proteins, and counter-silencing mechanisms. The pathogenic properties of Shigella flexneri mainly rely on the acquisition of the type 3 secretion system (T3SS) and cognate effector proteins, whose expression is repressed by the xenogeneic silencing protein H-NS. Based on previous studies, releasing H-NS-mediated silencing mainly relies on two mechanisms involving (i) a temperature shift leading to the release of H-NS at the virF promoter, and (ii) the virulence factor VirB, which dislodges H-NS upon binding to specific motifs upstream of virulence genes, including those encoding the T3SS. In this study, we provide genetic evidence supporting the notion that, in addition to VirB, the AraC family member MxiE also contributes to releasing H-NS-mediated silencing in S. flexneri.
ABSTRACT Shigella flexneri uses a type 3 secretion system (T3SS) apparatus to inject virulence effector proteins into the host cell cytosol. Upon host cell contact, MxiE, an S. flexneri AraC-like transcriptional regulator, is required for the expression of a subset of T3SS effector genes encoded on the large virulence plasmid. Here, we defined the MxiE regulon using RNA-seq. We identified virulence plasmid- and chromosome-encoded genes that are activated in response to type 3 secretion in a MxiE-dependent manner. Bioinformatic analysis revealed that similar to previously known MxiE-dependent genes, chromosome-encoded genes yccE and yfdF contain a regulatory element known as the MxiE box, which is required for their MxiE-dependent expression. The significant AT enrichment of MxiE-dependent genes suggested the involvement of H-NS. Using a dominant negative H-NS system, we demonstrate that H-NS silences the expression of MxiE-dependent genes located on the virulence plasmid (ipaH7.8 and ospC1) and the chromosome (yccE and yfdF). Furthermore, we show that MxiE is no longer required for the expression of ipaH7.8, ospC1, yccE, and yfdF when H-NS silencing is relieved. Finally, we show that the H-NS anti-silencer VirB is not required for ipaH7.8 and yccE expression upon MxiE/IpgC overexpression. Based on these genetic studies, we propose a model of MxiE-dependent gene regulation in which MxiE counteracts H-NS-mediated silencing. IMPORTANCE The expression of horizontally acquired genes, including virulence genes, is subject to complex regulation involving xenogeneic silencing proteins, and counter-silencing mechanisms. The pathogenic properties of Shigella flexneri mainly rely on the acquisition of the type 3 secretion system (T3SS) and cognate effector proteins, whose expression is repressed by the xenogeneic silencing protein H-NS. Based on previous studies, releasing H-NS-mediated silencing mainly relies on two mechanisms involving (i) a temperature shift leading to the release of H-NS at the virF promoter, and (ii) the virulence factor VirB, which dislodges H-NS upon binding to specific motifs upstream of virulence genes, including those encoding the T3SS. In this study, we provide genetic evidence supporting the notion that, in addition to VirB, the AraC family member MxiE also contributes to releasing H-NS-mediated silencing in S. flexneri.
ABSTRACTShigella flexneri uses a type 3 secretion system (T3SS) apparatus to inject virulence effector proteins into the host cell cytosol. Upon host cell contact, MxiE, an S. flexneri AraC-like transcriptional regulator, is required for the expression of a subset of T3SS effector genes encoded on the large virulence plasmid. Here, we defined the MxiE regulon using RNA-seq. We identified virulence plasmid- and chromosome-encoded genes that are activated in response to type 3 secretion in a MxiE-dependent manner. Bioinformatic analysis revealed that similar to previously known MxiE-dependent genes, chromosome-encoded genes yccE and yfdF contain a regulatory element known as the MxiE box, which is required for their MxiE-dependent expression. The significant AT enrichment of MxiE-dependent genes suggested the involvement of H-NS. Using a dominant negative H-NS system, we demonstrate that H-NS silences the expression of MxiE-dependent genes located on the virulence plasmid (ipaH7.8 and ospC1) and the chromosome (yccE and yfdF). Furthermore, we show that MxiE is no longer required for the expression of ipaH7.8, ospC1, yccE, and yfdF when H-NS silencing is relieved. Finally, we show that the H-NS anti-silencer VirB is not required for ipaH7.8 and yccE expression upon MxiE/IpgC overexpression. Based on these genetic studies, we propose a model of MxiE-dependent gene regulation in which MxiE counteracts H-NS-mediated silencing.IMPORTANCE The expression of horizontally acquired genes, including virulence genes, is subject to complex regulation involving xenogeneic silencing proteins, and counter-silencing mechanisms. The pathogenic properties of Shigella flexneri mainly rely on the acquisition of the type 3 secretion system (T3SS) and cognate effector proteins, whose expression is repressed by the xenogeneic silencing protein H-NS. Based on previous studies, releasing H-NS-mediated silencing mainly relies on two mechanisms involving (i) a temperature shift leading to the release of H-NS at the virF promoter, and (ii) the virulence factor VirB, which dislodges H-NS upon binding to specific motifs upstream of virulence genes, including those encoding the T3SS. In this study, we provide genetic evidence supporting the notion that, in addition to VirB, the AraC family member MxiE also contributes to releasing H-NS-mediated silencing in S. flexneri.
The expression of horizontally acquired genes, including virulence genes, is subject to complex regulation involving xenogeneic silencing proteins, and counter-silencing mechanisms. The pathogenic properties of Shigella flexneri mainly rely on the acquisition of the type 3 secretion system (T3SS) and cognate effector proteins, whose expression is repressed by the xenogeneic silencing protein H-NS. Shigella flexneri uses a type 3 secretion system (T3SS) apparatus to inject virulence effector proteins into the host cell cytosol. Upon host cell contact, MxiE, an S. flexneri AraC-like transcriptional regulator, is required for the expression of a subset of T3SS effector genes encoded on the large virulence plasmid. Here, we defined the MxiE regulon using RNA-seq. We identified virulence plasmid- and chromosome-encoded genes that are activated in response to type 3 secretion in a MxiE-dependent manner. Bioinformatic analysis revealed that similar to previously known MxiE-dependent genes, chromosome-encoded genes yccE and yfdF contain a regulatory element known as the MxiE box, which is required for their MxiE-dependent expression. The significant AT enrichment of MxiE-dependent genes suggested the involvement of H-NS. Using a dominant negative H-NS system, we demonstrate that H-NS silences the expression of MxiE-dependent genes located on the virulence plasmid ( ipaH7 .8 and ospC1 ) and the chromosome ( yccE and yfdF ). Furthermore, we show that MxiE is no longer required for the expression of ipaH7.8 , ospC1, yccE , and yfdF when H-NS silencing is relieved. Finally, we show that the H-NS anti-silencer VirB is not required for ipaH7.8 and yccE expression upon MxiE/IpgC overexpression. Based on these genetic studies, we propose a model of MxiE-dependent gene regulation in which MxiE counteracts H-NS-mediated silencing. IMPORTANCE The expression of horizontally acquired genes, including virulence genes, is subject to complex regulation involving xenogeneic silencing proteins, and counter-silencing mechanisms. The pathogenic properties of Shigella flexneri mainly rely on the acquisition of the type 3 secretion system (T3SS) and cognate effector proteins, whose expression is repressed by the xenogeneic silencing protein H-NS. Based on previous studies, releasing H-NS-mediated silencing mainly relies on two mechanisms involving (i) a temperature shift leading to the release of H-NS at the virF promoter, and (ii) the virulence factor VirB, which dislodges H-NS upon binding to specific motifs upstream of virulence genes, including those encoding the T3SS. In this study, we provide genetic evidence supporting the notion that, in addition to VirB, the AraC family member MxiE also contributes to releasing H-NS-mediated silencing in S. flexneri .
Author Sebeck, Natalie
Jadeja, Niti B.
Hall, Chelsea P.
Agaisse, Hervé
Author_xml – sequence: 1
  givenname: Chelsea P.
  surname: Hall
  fullname: Hall, Chelsea P.
  organization: Department of Microbiology, Immunology, and Cancer Biology, University of Virginia School of Medicine, Charlottesville, Virginia, USA
– sequence: 2
  givenname: Niti B.
  surname: Jadeja
  fullname: Jadeja, Niti B.
  organization: Department of Microbiology, Immunology, and Cancer Biology, University of Virginia School of Medicine, Charlottesville, Virginia, USA
– sequence: 3
  givenname: Natalie
  surname: Sebeck
  fullname: Sebeck, Natalie
  organization: Department of Microbiology, Immunology, and Cancer Biology, University of Virginia School of Medicine, Charlottesville, Virginia, USA
– sequence: 4
  givenname: Hervé
  orcidid: 0000-0002-3350-0218
  surname: Agaisse
  fullname: Agaisse, Hervé
  organization: Department of Microbiology, Immunology, and Cancer Biology, University of Virginia School of Medicine, Charlottesville, Virginia, USA
BackLink https://www.ncbi.nlm.nih.gov/pubmed/36346241$$D View this record in MEDLINE/PubMed
BookMark eNp9kk1vEzEQhleoiJbSOye0EhcObPDHru29IFUhJZUKHNq7NfHOJo429tbeoIRfj_NRaCvBaSz7mcf26H2dnTjvMMveUjKilKlPq9gvMOCIkFJVBWMvsjPGZV1UpGQnj9an2UWMS0IIFUwIKV5lp1zwUrCSnmX34wUEMAMG-wsG613u2_zbxk6KHFyTT4vvt8UX7NE16IZ8sukDxnjEbA9TOVL5x9zHfkxT3RozSWXXuW2bq9y6_HZh59h1kLcdbly65k32soUu4sWxnmd3V5O78bS4-fH1enx5U0DF1FAIWpYGeYOVIoQjigpQoJAghFIGBFEl4IxX9YxxSrCEsuEGGEvn0CjDz7Prg7bxsNR9sCsIW-3B6v2GD3MNYbCmQ12nC5USdGZUU3LBgKmmNSBBSaOkFMn1-eDq17MVNiaNIkD3RPr0xNmFnvufupairqlKgg9HQfD3a4yDXtlodmNx6NdRM8lLKqSsaULfP0OXfh1cmlSiqloxSSuWqOJAQVyxvwQlehcNfYyG3kdDsx3_7vEP_jz9IQgJEAfABB9jwFYbO-wDkT5ku_-ZybPGB_c_W34DCbrXyw
CitedBy_id crossref_primary_10_1093_nar_gkaf182
crossref_primary_10_3390_microorganisms11071709
crossref_primary_10_1111_mmi_15344
crossref_primary_10_1128_mbio_01519_23
crossref_primary_10_1080_21505594_2023_2280838
crossref_primary_10_1128_spectrum_02713_23
Cites_doi 10.1016/s0014-5793(03)00524-6
10.1128/IAI.69.10.6303-6309.2001
10.1128/CMR.00032-07
10.1046/j.1365-2958.2000.02179.x
10.1046/j.1365-2958.2003.03515.x
10.1128/mBio.00378-13
10.1128/JB.00313-09
10.1002/j.1460-2075.1994.tb06863.x
10.1046/j.1365-2958.2003.03347.x
10.1093/molbev/msab120
10.1128/msphere.00115-22
10.1007/BF02818608
10.1111/j.1365-2958.1991.tb00762.x
10.1111/mmi.13932
10.1111/j.1365-2958.2004.04421.x
10.1038/nbt.3519
10.1093/bioinformatics/btr064
10.1093/nar/gkz239
10.1128/iai.43.1.195-201.1984
10.1371/journal.pone.0240617
10.1128/JB.00212-13
10.1128/jb.88.5.1503-1518.1964
10.1093/bioinformatics/btt656
10.1128/IAI.03138-14
10.1128/jb.175.19.6142-6149.1993
10.1128/iai.35.3.852-860.1982
10.1006/mpat.1993.1047
10.1093/emboj/20.8.1850
10.1038/nrmicro.2016.10
10.1128/JB.00072-20
10.1111/j.1365-2958.2007.05620.x
10.1093/emboj/17.23.7033
10.1046/j.1365-2958.2003.03848.x
10.1128/IAI.00861-18
10.1093/nar/gkz1089
10.1073/pnas.86.10.3867
10.1126/science.1128794
10.1128/JB.186.3.699-705.2004
10.1146/annurev-micro-092412-155725
10.1093/nar/gkw257
10.1371/journal.pone.0032862
10.1099/mic.0.2007/015610-0
10.1073/pnas.85.8.2820
10.1093/infdis/159.6.1126
10.1046/j.1365-2958.2000.01772.x
10.1093/bioinformatics/btu170
10.1093/nar/gkt748
10.1093/nar/gkm712
10.1186/gb-2009-10-3-r25
10.1128/JB.184.24.6751-6759.2002
10.1074/jbc.M111429200
10.1128/JB.184.16.4409-4419.2002
10.1093/nar/gkp335
10.1099/mic.0.27639-0
10.1093/nar/gkl040
10.1111/j.1365-2958.1995.tb02301.x
10.1007/BF00290685
10.1016/0092-8674(94)90260-7
10.1128/JB.01813-06
10.1046/j.1365-2958.2002.02836.x
10.1038/ng.2369
10.1016/j.ymeth.2019.03.017
10.1128/mmbr.61.4.393-410.1997
10.1016/0022-2836(76)90119-4
10.1093/bioinformatics/btw069
10.1056/NEJMra041837
10.1016/s0923-2508(97)83619-4
10.1002/j.1460-2075.1995.tb07243.x
10.1128/iai.65.10.4005-4010.1997
10.1038/nmeth804
10.1371/journal.ppat.1005570
10.1038/s41467-019-09808-4
10.1128/JB.01824-07
10.1073/pnas.180094797
10.3390/genes7120112
10.1111/j.1365-2958.1989.tb00210.x
10.1111/j.1365-2958.2005.04645.x
10.1128/JB.188.3.1196-1198.2006
10.1371/journal.ppat.0020081
ContentType Journal Article
Copyright Copyright © 2022 Hall et al.
Copyright © 2022 Hall et al. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright © 2022 Hall et al. 2022 Hall et al.
Copyright_xml – notice: Copyright © 2022 Hall et al.
– notice: Copyright © 2022 Hall et al. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: Copyright © 2022 Hall et al. 2022 Hall et al.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7X7
7XB
8FE
8FH
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
LK8
M0S
M7P
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
7X8
5PM
DOA
DOI 10.1128/msphere.00485-22
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
ProQuest SciTech Collection
ProQuest Natural Science Journals
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Natural Science Collection
ProQuest One Community College
ProQuest Central Korea
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Biological Sciences
ProQuest Health & Medical Collection
Biological Science Database
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Publicly Available Content Database
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Natural Science Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Biological Science Collection
ProQuest Central (New)
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest SciTech Collection
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList MEDLINE
MEDLINE - Academic



Publicly Available Content Database
CrossRef
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 4
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 2379-5042
Editor D'Orazio, Sarah E. F.
Editor_xml – sequence: 1
  givenname: Sarah E. F.
  surname: D'Orazio
  fullname: D'Orazio, Sarah E. F.
ExternalDocumentID oai_doaj_org_article_95288861bc8d4362a28dfca7a87c8776
PMC9769918
00485-22
36346241
10_1128_msphere_00485_22
Genre Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NIH HHS
  grantid: 5T32AI055432
– fundername: HHS | NIH | National Institute of Allergy and Infectious Diseases (NIAID)
  grantid: R01AI073904
– fundername: HHS | NIH | National Institute of Allergy and Infectious Diseases (NIAID)
  grantid: R01AI073904
  funderid: https://doi.org/10.13039/100000060
– fundername: NIH
  grantid: 5T32AI055432
– fundername: ;
  grantid: R01AI073904
– fundername: ;
  grantid: 5T32AI055432
GroupedDBID 0R~
53G
5VS
7X7
8FE
8FH
8FI
8FJ
AAFWJ
AAGFI
AAUOK
AAYXX
ABUWG
ADBBV
AFKRA
AFPKN
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AOIJS
BBNVY
BCNDV
BENPR
BHPHI
BPHCQ
BVXVI
CCPQU
CITATION
DIK
EBS
FRP
FYUFA
GROUPED_DOAJ
H13
HCIFZ
HMCUK
HYE
KQ8
LK8
M48
M7P
M~E
O9-
OK1
PGMZT
PHGZM
PHGZT
PIMPY
PQQKQ
PROAC
R9-
RHI
RPM
RSF
UKHRP
3V.
CGR
CUY
CVF
ECM
EIF
NPM
RHF
BBAFP
PQEST
PQUKI
7XB
8FK
AZQEC
DWQXO
GNUQQ
K9.
PKEHL
PQGLB
PRINS
7X8
PUEGO
5PM
ID FETCH-LOGICAL-a528t-6144ce3de58003ee65ae6e67a6688ca6084aeb359b2310e4a4d3ca22a66ad8c3
IEDL.DBID M48
ISSN 2379-5042
IngestDate Wed Aug 27 00:42:13 EDT 2025
Thu Aug 21 18:40:17 EDT 2025
Sun Aug 24 03:58:57 EDT 2025
Sat Aug 23 13:29:45 EDT 2025
Wed Dec 21 20:55:14 EST 2022
Thu Jan 02 22:53:42 EST 2025
Tue Jul 01 02:17:04 EDT 2025
Thu Apr 24 22:59:18 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 6
Keywords anti-silencing
T3SS
MxiE
H-NS
Shigella
silencing
Language English
License This is an open-access article distributed under the terms of the Creative Commons Attribution 4.0 International license. https://creativecommons.org/licenses/by/4.0
This is an open-access article distributed under the terms of the Creative Commons Attribution 4.0 International license.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a528t-6144ce3de58003ee65ae6e67a6688ca6084aeb359b2310e4a4d3ca22a66ad8c3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
The authors declare no conflict of interest.
ORCID 0000-0002-3350-0218
OpenAccessLink https://www.proquest.com/docview/2759827152?pq-origsite=%requestingapplication%
PMID 36346241
PQID 2759827152
PQPubID 2045592
PageCount 16
ParticipantIDs doaj_primary_oai_doaj_org_article_95288861bc8d4362a28dfca7a87c8776
pubmedcentral_primary_oai_pubmedcentral_nih_gov_9769918
proquest_miscellaneous_2734167791
proquest_journals_2759827152
asm2_journals_10_1128_msphere_00485_22
pubmed_primary_36346241
crossref_citationtrail_10_1128_msphere_00485_22
crossref_primary_10_1128_msphere_00485_22
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-12-21
PublicationDateYYYYMMDD 2022-12-21
PublicationDate_xml – month: 12
  year: 2022
  text: 2022-12-21
  day: 21
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: 1752 N St., N.W., Washington, DC
– name: Washington
PublicationTitle mSphere
PublicationTitleAbbrev mSphere
PublicationTitleAlternate mSphere
PublicationYear 2022
Publisher American Society for Microbiology
Publisher_xml – name: American Society for Microbiology
References e_1_3_2_26_2
e_1_3_2_49_2
e_1_3_2_28_2
e_1_3_2_41_2
e_1_3_2_64_2
e_1_3_2_20_2
e_1_3_2_43_2
e_1_3_2_62_2
e_1_3_2_22_2
e_1_3_2_45_2
e_1_3_2_68_2
e_1_3_2_24_2
e_1_3_2_47_2
e_1_3_2_66_2
e_1_3_2_60_2
e_1_3_2_81_2
e_1_3_2_9_2
e_1_3_2_16_2
e_1_3_2_37_2
e_1_3_2_7_2
e_1_3_2_18_2
e_1_3_2_39_2
e_1_3_2_54_2
e_1_3_2_75_2
e_1_3_2_10_2
e_1_3_2_31_2
e_1_3_2_52_2
e_1_3_2_73_2
e_1_3_2_5_2
e_1_3_2_12_2
e_1_3_2_33_2
e_1_3_2_58_2
e_1_3_2_79_2
e_1_3_2_3_2
e_1_3_2_14_2
e_1_3_2_35_2
e_1_3_2_56_2
e_1_3_2_77_2
e_1_3_2_50_2
e_1_3_2_71_2
e_1_3_2_27_2
e_1_3_2_48_2
e_1_3_2_29_2
e_1_3_2_40_2
e_1_3_2_65_2
e_1_3_2_21_2
e_1_3_2_42_2
e_1_3_2_63_2
e_1_3_2_23_2
e_1_3_2_44_2
e_1_3_2_69_2
e_1_3_2_25_2
e_1_3_2_46_2
e_1_3_2_67_2
e_1_3_2_61_2
e_1_3_2_80_2
e_1_3_2_15_2
e_1_3_2_38_2
e_1_3_2_8_2
e_1_3_2_17_2
e_1_3_2_59_2
e_1_3_2_6_2
e_1_3_2_19_2
e_1_3_2_30_2
e_1_3_2_53_2
e_1_3_2_76_2
e_1_3_2_32_2
e_1_3_2_51_2
e_1_3_2_74_2
e_1_3_2_11_2
e_1_3_2_34_2
e_1_3_2_57_2
e_1_3_2_4_2
e_1_3_2_13_2
e_1_3_2_36_2
e_1_3_2_55_2
e_1_3_2_78_2
e_1_3_2_2_2
e_1_3_2_72_2
e_1_3_2_70_2
Silue, N, Campbell-Valois, FX (B47) 2022; 7
Parsot, C, Ageron, E, Penno, C, Mavris, M, Jamoussi, K, d'Hauteville, H, Sansonetti, P, Demers, B (B32) 2005; 56
Kane, CD, Schuch, R, Day, WA, Maurelli, AT (B38) 2002; 184
Dragoi, AM, Agaisse, H (B64) 2015; 83
Maurelli, AT, Blackmon, B, Curtiss, R (B18) 1984; 43
Maurelli, AT, Sansonetti, PJ (B10) 1988; 85
Lan, R, Lumb, B, Ryan, D, Reeves, PR (B48) 2001; 69
Tamura, KSG, Kumar, S (B80) 2021; 38
Mavris, M, Sansonetti, PJ, Parsot, C (B42) 2002; 184
Gao, F, Zhang, CT (B78) 2006; 34
Freese, NH, Norris, DC, Loraine, AE (B77) 2016; 32
Basta, DW, Pew, KL, Immak, JA, Park, HS, Picker, MA, Wigley, AF, Hensley, CT, Pearson, JS, Hartland, EL, Wing, HJ (B13) 2013; 195
Labrec, EH, Schneider, H, Magnani, TJ, Formal, SB (B65) 1964; 88
Picker, MA, Wing, HJ (B11) 2016; 7
Lang, B, Blot, N, Bouffartigues, E, Buckle, M, Geertz, M, Gualerzi, CO, Mavathur, R, Muskhelishvili, G, Pon, CL, Rimsky, S, Stella, S, Babu, MM, Travers, A (B55) 2007; 35
Navarre, WW, Porwollik, S, Wang, Y, McClelland, M, Rosen, H, Libby, SJ, Fang, FC (B50) 2006; 313
Wing, HJ, Yan, AW, Goldman, SR, Goldberg, MB (B27) 2004; 186
Penno, C, Parsot, C (B44) 2006; 188
B70
Bailey, TL, Boden, M, Buske, FA, Frith, M, Grant, CE, Clementi, L, Ren, J, Li, WW, Noble, WS (B75) 2009; 37
Watarai, M, Tobe, T, Yoshikawa, M, Sasakawa, C (B37) 1995; 14
Falconi, M, Colonna, B, Prosseda, G, Micheli, G, Gualerzi, CO (B16) 1998; 17
Jost, BH, Adler, B (B22) 1993; 14
Tobe, T, Nagai, S, Okada, N, Adler, B, Yoshikawa, M, Sasakawa, C (B30) 1991; 5
Sansonetti, PJ, Kopecko, DJ, Formal, SB (B9) 1982; 35
Parsot, C, Menard, R, Gounon, P, Sansonetti, PJ (B46) 1995; 16
Sansonetti, PJ (B3) 1998; 43
Beloin, C, Dorman, CJ (B14) 2003; 47
Adler, B, Sasakawa, C, Tobe, T, Makino, S, Komatsu, K, Yoshikawa, M (B29) 1989; 3
Langmead, B, Trapnell, C, Pop, M, Salzberg, SL (B71) 2009; 10
Prosseda, G, Fradiani, PA, Di Lorenzo, M, Falconi, M, Micheli, G, Casalino, M, Nicoletti, M, Colonna, B (B20) 1998; 149
Mavris, M, Page, AL, Tournebize, R, Demers, B, Sansonetti, P, Parsot, C (B40) 2002; 43
Gall, TL, Mavris, M, Martino, MC, Bernardini, ML, Denamur, E, Parsot, C (B12) 2005; 151
Prosseda, G, Falconi, M, Giangrossi, M, Gualerzi, CO, Micheli, G, Colonna, B (B19) 2004; 51
Menard, R, Sansonetti, P, Parsot, C, Vasselon, T (B33) 1994; 79
Yamada, H, Yoshida, T, Tanaka, K, Sasakawa, C, Mizuno, T (B68) 1991; 230
Köseoğlu, VK, Hall, CP, Rodríguez-López, EM, Agaisse, H (B66) 2019; 87
The, HC, Thanh, DP, Holt, KE, Thomson, NR, Baker, S (B49) 2016; 14
Veenendaal, AK, Hodgkinson, JL, Schwarzer, L, Stabat, D, Zenk, SF, Blocker, AJ (B36) 2007; 63
Castellanos, MI, Harrison, DJ, Smith, JM, Labahn, SK, Levy, KM, Wing, HJ (B15) 2009; 191
Bernardini, ML, Mounier, J, d'Hauteville, H, Coquis-Rondon, M, Sansonetti, PJ (B21) 1989; 86
Darwin, KH, Miller, VL (B57) 2001; 20
Kazi, MI, Conrado, AR, Mey, AR, Payne, SM, Davies, BW (B62) 2016; 12
Banos, RC, Pons, JI, Madrid, C, Juarez, A (B52) 2008; 154
Casadaban, MJ (B67) 1976; 104
Enninga, J, Mounier, J, Sansonetti, P, Tran Van Nhieu, G (B34) 2005; 2
McKenna, JA, Wing, HJ (B28) 2020; 202
Galan, JE, Lara-Tejero, M, Marlovits, TC, Wagner, S (B5) 2014; 68
Romero-Gonzalez, LE, Perez-Morales, D, Cortes-Avalos, D, Vazquez-Guerrero, E, Paredes-Hernandez, DA, Estrada-de Los Santos, P, Villa-Tanaca, L, De la Cruz, MA, Bustamante, VH, Ibarra, JA (B59) 2020; 15
Bray, NL, Pimentel, H, Melsted, P, Pachter, L (B72) 2016; 34
van Kessel, JC, Ulrich, LE, Zhulin, IB, Bassler, BL (B60) 2013; 4
Musher, DM, Musher, BL (B1) 2004; 351
McKenna, S, Beloin, C, Dorman, CJ (B25) 2003; 545
Bahrani, FK, Sansonetti, PJ, Parsot, C (B45) 1997; 65
Ramirez, F, Ryan, DP, Gruning, B, Bhardwaj, V, Kilpert, F, Richter, AS, Heyne, S, Dundar, F, Manke, T (B76) 2016; 44
Darwin, KH, Miller, VL (B58) 2000; 35
DuPont, HL, Levine, MM, Hornick, RB, Formal, SB (B2) 1989; 159
Bongrand, C, Sansonetti, PJ, Parsot, C (B41) 2012; 7
Gao, X, Zou, T, Mu, Z, Qin, B, Yang, J, Waltersperger, S, Wang, M, Cui, S, Jin, Q (B23) 2013; 41
Silue, N, Marcantonio, E, Campbell-Valois, FX (B43) 2020; 176
Holt, KE, Baker, S, Weill, FX, Holmes, EC, Kitchen, A, Yu, J, Sangal, V, Brown, DJ, Coia, JE, Kim, DW, Choi, SY, Kim, SH, da Silveira, WD, Pickard, DJ, Farrar, JJ, Parkhill, J, Dougan, G, Thomson, NR (B54) 2012; 44
Lucchini, S, Rowley, G, Goldberg, MD, Hurd, D, Harrison, M, Hinton, JC (B51) 2006; 2
Gallegos, MT, Schleif, R, Bairoch, A, Hofmann, K, Ramos, JL (B31) 1997; 61
Williamson, HS, Free, A (B53) 2005; 55
Bolger, AM, Lohse, M, Usadel, B (B69) 2014; 30
Schroeder, GN, Hilbi, H (B6) 2008; 21
Liao, Y, Smyth, GK, Shi, W (B73) 2014; 30
Chaparian, RR, Tran, MLN, Miller Conrad, LC, Rusch, DB, van Kessel, JC (B61) 2020; 48
Turner, EC, Dorman, CJ (B26) 2007; 189
Letunic, I, Bork, P (B79) 2019; 47
Pupo, GM, Lan, R, Reeves, PR (B8) 2000; 97
Grant, CE, Bailey, TL, Noble, WS (B74) 2011; 27
Beloin, C, McKenna, S, Dorman, CJ (B24) 2002; 277
Weatherspoon-Griffin, N, Picker, MA, Pew, KL, Park, HS, Ginete, DR, Karney, MM, Usufzy, P, Castellanos, MI, Duhart, JC, Harrison, DJ, Socea, JN, Karabachev, AD, Hensley, CT, Howerton, AJ, Ojeda-Daulo, R, Immak, JA, Wing, HJ (B63) 2018; 108
Buchrieser, C, Glaser, P, Rusniok, C, Nedjari, H, D'Hauteville, H, Kunst, F, Sansonetti, P, Parsot, C (B7) 2000; 38
Menard, R, Sansonetti, P, Parsot, C (B35) 1994; 13
Tobe, T, Yoshikawa, M, Mizuno, T, Sasakawa, C (B17) 1993; 175
Yum, LK, Byndloss, MX, Feldman, SH, Agaisse, H (B4) 2019; 10
Deighan, P, Beloin, C, Dorman, CJ (B56) 2003; 48
Pilonieta, MC, Munson, GP (B39) 2008; 190
References_xml – ident: e_1_3_2_26_2
  doi: 10.1016/s0014-5793(03)00524-6
– ident: e_1_3_2_49_2
  doi: 10.1128/IAI.69.10.6303-6309.2001
– ident: e_1_3_2_7_2
  doi: 10.1128/CMR.00032-07
– ident: e_1_3_2_8_2
  doi: 10.1046/j.1365-2958.2000.02179.x
– ident: e_1_3_2_57_2
  doi: 10.1046/j.1365-2958.2003.03515.x
– ident: e_1_3_2_61_2
  doi: 10.1128/mBio.00378-13
– ident: e_1_3_2_16_2
  doi: 10.1128/JB.00313-09
– ident: e_1_3_2_36_2
  doi: 10.1002/j.1460-2075.1994.tb06863.x
– ident: e_1_3_2_15_2
  doi: 10.1046/j.1365-2958.2003.03347.x
– ident: e_1_3_2_81_2
  doi: 10.1093/molbev/msab120
– ident: e_1_3_2_48_2
  doi: 10.1128/msphere.00115-22
– ident: e_1_3_2_4_2
  doi: 10.1007/BF02818608
– ident: e_1_3_2_31_2
  doi: 10.1111/j.1365-2958.1991.tb00762.x
– ident: e_1_3_2_64_2
  doi: 10.1111/mmi.13932
– ident: e_1_3_2_54_2
  doi: 10.1111/j.1365-2958.2004.04421.x
– ident: e_1_3_2_73_2
  doi: 10.1038/nbt.3519
– ident: e_1_3_2_75_2
  doi: 10.1093/bioinformatics/btr064
– ident: e_1_3_2_80_2
  doi: 10.1093/nar/gkz239
– ident: e_1_3_2_19_2
  doi: 10.1128/iai.43.1.195-201.1984
– ident: e_1_3_2_60_2
  doi: 10.1371/journal.pone.0240617
– ident: e_1_3_2_14_2
  doi: 10.1128/JB.00212-13
– ident: e_1_3_2_66_2
  doi: 10.1128/jb.88.5.1503-1518.1964
– ident: e_1_3_2_74_2
  doi: 10.1093/bioinformatics/btt656
– ident: e_1_3_2_65_2
  doi: 10.1128/IAI.03138-14
– ident: e_1_3_2_18_2
  doi: 10.1128/jb.175.19.6142-6149.1993
– ident: e_1_3_2_10_2
  doi: 10.1128/iai.35.3.852-860.1982
– ident: e_1_3_2_23_2
  doi: 10.1006/mpat.1993.1047
– ident: e_1_3_2_71_2
– ident: e_1_3_2_58_2
  doi: 10.1093/emboj/20.8.1850
– ident: e_1_3_2_50_2
  doi: 10.1038/nrmicro.2016.10
– ident: e_1_3_2_29_2
  doi: 10.1128/JB.00072-20
– ident: e_1_3_2_37_2
  doi: 10.1111/j.1365-2958.2007.05620.x
– ident: e_1_3_2_17_2
  doi: 10.1093/emboj/17.23.7033
– ident: e_1_3_2_20_2
  doi: 10.1046/j.1365-2958.2003.03848.x
– ident: e_1_3_2_67_2
  doi: 10.1128/IAI.00861-18
– ident: e_1_3_2_62_2
  doi: 10.1093/nar/gkz1089
– ident: e_1_3_2_22_2
  doi: 10.1073/pnas.86.10.3867
– ident: e_1_3_2_51_2
  doi: 10.1126/science.1128794
– ident: e_1_3_2_28_2
  doi: 10.1128/JB.186.3.699-705.2004
– ident: e_1_3_2_6_2
  doi: 10.1146/annurev-micro-092412-155725
– ident: e_1_3_2_77_2
  doi: 10.1093/nar/gkw257
– ident: e_1_3_2_42_2
  doi: 10.1371/journal.pone.0032862
– ident: e_1_3_2_53_2
  doi: 10.1099/mic.0.2007/015610-0
– ident: e_1_3_2_11_2
  doi: 10.1073/pnas.85.8.2820
– ident: e_1_3_2_3_2
  doi: 10.1093/infdis/159.6.1126
– ident: e_1_3_2_59_2
  doi: 10.1046/j.1365-2958.2000.01772.x
– ident: e_1_3_2_70_2
  doi: 10.1093/bioinformatics/btu170
– ident: e_1_3_2_24_2
  doi: 10.1093/nar/gkt748
– ident: e_1_3_2_56_2
  doi: 10.1093/nar/gkm712
– ident: e_1_3_2_72_2
  doi: 10.1186/gb-2009-10-3-r25
– ident: e_1_3_2_43_2
  doi: 10.1128/JB.184.24.6751-6759.2002
– ident: e_1_3_2_25_2
  doi: 10.1074/jbc.M111429200
– ident: e_1_3_2_39_2
  doi: 10.1128/JB.184.16.4409-4419.2002
– ident: e_1_3_2_76_2
  doi: 10.1093/nar/gkp335
– ident: e_1_3_2_13_2
  doi: 10.1099/mic.0.27639-0
– ident: e_1_3_2_79_2
  doi: 10.1093/nar/gkl040
– ident: e_1_3_2_47_2
  doi: 10.1111/j.1365-2958.1995.tb02301.x
– ident: e_1_3_2_69_2
  doi: 10.1007/BF00290685
– ident: e_1_3_2_34_2
  doi: 10.1016/0092-8674(94)90260-7
– ident: e_1_3_2_27_2
  doi: 10.1128/JB.01813-06
– ident: e_1_3_2_41_2
  doi: 10.1046/j.1365-2958.2002.02836.x
– ident: e_1_3_2_55_2
  doi: 10.1038/ng.2369
– ident: e_1_3_2_44_2
  doi: 10.1016/j.ymeth.2019.03.017
– ident: e_1_3_2_32_2
  doi: 10.1128/mmbr.61.4.393-410.1997
– ident: e_1_3_2_68_2
  doi: 10.1016/0022-2836(76)90119-4
– ident: e_1_3_2_78_2
  doi: 10.1093/bioinformatics/btw069
– ident: e_1_3_2_2_2
  doi: 10.1056/NEJMra041837
– ident: e_1_3_2_21_2
  doi: 10.1016/s0923-2508(97)83619-4
– ident: e_1_3_2_38_2
  doi: 10.1002/j.1460-2075.1995.tb07243.x
– ident: e_1_3_2_46_2
  doi: 10.1128/iai.65.10.4005-4010.1997
– ident: e_1_3_2_35_2
  doi: 10.1038/nmeth804
– ident: e_1_3_2_63_2
  doi: 10.1371/journal.ppat.1005570
– ident: e_1_3_2_5_2
  doi: 10.1038/s41467-019-09808-4
– ident: e_1_3_2_40_2
  doi: 10.1128/JB.01824-07
– ident: e_1_3_2_9_2
  doi: 10.1073/pnas.180094797
– ident: e_1_3_2_12_2
  doi: 10.3390/genes7120112
– ident: e_1_3_2_30_2
  doi: 10.1111/j.1365-2958.1989.tb00210.x
– ident: e_1_3_2_33_2
  doi: 10.1111/j.1365-2958.2005.04645.x
– ident: e_1_3_2_45_2
  doi: 10.1128/JB.188.3.1196-1198.2006
– ident: e_1_3_2_52_2
  doi: 10.1371/journal.ppat.0020081
– volume: 175
  start-page: 6142
  year: 1993
  end-page: 6149
  ident: B17
  article-title: Transcriptional control of the invasion regulatory gene virB of Shigella flexneri: activation by virF and repression by H-NS
  publication-title: J Bacteriol
  doi: 10.1128/jb.175.19.6142-6149.1993
– volume: 313
  start-page: 236
  year: 2006
  end-page: 238
  ident: B50
  article-title: Selective silencing of foreign DNA with low GC content by the H-NS protein in Salmonella
  publication-title: Science
  doi: 10.1126/science.1128794
– volume: 68
  start-page: 415
  year: 2014
  end-page: 438
  ident: B5
  article-title: Bacterial type III secretion systems: specialized nanomachines for protein delivery into target cells
  publication-title: Annu Rev Microbiol
  doi: 10.1146/annurev-micro-092412-155725
– volume: 12
  year: 2016
  ident: B62
  article-title: ToxR antagonizes H-NS regulation of horizontally acquired genes to drive host colonization
  publication-title: PLoS Pathog
  doi: 10.1371/journal.ppat.1005570
– volume: 30
  start-page: 923
  year: 2014
  end-page: 930
  ident: B73
  article-title: featureCounts: an efficient general purpose program for assigning sequence reads to genomic features
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btt656
– volume: 55
  start-page: 808
  year: 2005
  end-page: 827
  ident: B53
  article-title: A truncated H-NS-like protein from enteropathogenic Escherichia coli acts as an H-NS antagonist
  publication-title: Mol Microbiol
  doi: 10.1111/j.1365-2958.2004.04421.x
– volume: 69
  start-page: 6303
  year: 2001
  end-page: 6309
  ident: B48
  article-title: Molecular evolution of large virulence plasmid in Shigella clones and enteroinvasive Escherichia coli
  publication-title: Infect Immun
  doi: 10.1128/IAI.69.10.6303-6309.2001
– volume: 79
  start-page: 515
  year: 1994
  end-page: 525
  ident: B33
  article-title: Extracellular association and cytoplasmic partitioning of the IpaB and IpaC invasins of S. flexneri
  publication-title: Cell
  doi: 10.1016/0092-8674(94)90260-7
– volume: 230
  start-page: 332
  year: 1991
  end-page: 336
  ident: B68
  article-title: Molecular analysis of the Escherichia coli hns gene encoding a DNA-binding protein, which preferentially recognizes curved DNA sequences
  publication-title: Mol Gen Genet
  doi: 10.1007/BF00290685
– volume: 10
  start-page: R25
  year: 2009
  ident: B71
  article-title: Ultrafast and memory-efficient alignment of short DNA sequences to the human genome
  publication-title: Genome Biol
  doi: 10.1186/gb-2009-10-3-r25
– volume: 545
  start-page: 183
  year: 2003
  end-page: 187
  ident: B25
  article-title: In vitro DNA-binding properties of VirB, the Shigella flexneri virulence regulatory protein
  publication-title: FEBS Lett
  doi: 10.1016/s0014-5793(03)00524-6
– volume: 87
  year: 2019
  ident: B66
  article-title: The autotransporter IcsA promotes Shigella flexneri biofilm formation in the presence of bile salts
  publication-title: Infect Immun
  doi: 10.1128/IAI.00861-18
– volume: 34
  start-page: 525
  year: 2016
  end-page: 527
  ident: B72
  article-title: Near-optimal probabilistic RNA-seq quantification
  publication-title: Nat Biotechnol
  doi: 10.1038/nbt.3519
– volume: 43
  start-page: 195
  year: 1984
  end-page: 201
  ident: B18
  article-title: Temperature-dependent expression of virulence genes in Shigella species
  publication-title: Infect Immun
  doi: 10.1128/iai.43.1.195-201.1984
– volume: 37
  start-page: W202
  year: 2009
  ident: B75
  article-title: MEME SUITE: tools for motif discovery and searching
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gkp335
– volume: 151
  start-page: 951
  year: 2005
  end-page: 962
  ident: B12
  article-title: Analysis of virulence plasmid gene expression defines three classes of effectors in the type III secretion system of Shigella flexneri
  publication-title: Microbiology (Reading)
  doi: 10.1099/mic.0.27639-0
– volume: 191
  start-page: 4047
  year: 2009
  end-page: 4050
  ident: B15
  article-title: VirB alleviates H-NS repression of the icsP promoter in Shigella flexneri from sites more than one kilobase upstream of the transcription start site
  publication-title: J Bacteriol
  doi: 10.1128/JB.00313-09
– volume: 202
  year: 2020
  ident: B28
  article-title: The antiactivator of type III secretion, OspD1, is transcriptionally regulated by VirB and H-NS from remote sequences in Shigella flexneri
  publication-title: J Bacteriol
  doi: 10.1128/JB.00072-20
– volume: 186
  start-page: 699
  year: 2004
  end-page: 705
  ident: B27
  article-title: Regulation of IcsP, the outer membrane protease of the Shigella actin tail assembly protein IcsA, by virulence plasmid regulators VirF and VirB
  publication-title: J Bacteriol
  doi: 10.1128/JB.186.3.699-705.2004
– volume: 34
  start-page: W686
  year: 2006
  ident: B78
  article-title: GC-Profile: a web-based tool for visualizing and analyzing the variation of GC content in genomic sequences
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gkl040
– volume: 195
  start-page: 2562
  year: 2013
  end-page: 2572
  ident: B13
  article-title: Characterization of the ospZ promoter in Shigella flexneri and its regulation by VirB and H-NS
  publication-title: J Bacteriol
  doi: 10.1128/JB.00212-13
– volume: 17
  start-page: 7033
  year: 1998
  end-page: 7043
  ident: B16
  article-title: Thermoregulation of Shigella and Escherichia coli EIEC pathogenicity. A temperature-dependent structural transition of DNA modulates accessibility of virF promoter to transcriptional repressor H-NS
  publication-title: EMBO J
  doi: 10.1093/emboj/17.23.7033
– volume: 188
  start-page: 1196
  year: 2006
  end-page: 1198
  ident: B44
  article-title: Transcriptional slippage in mxiE controls transcription and translation of the downstream mxiD gene, which encodes a component of the Shigella flexneri type III secretion apparatus
  publication-title: J Bacteriol
  doi: 10.1128/JB.188.3.1196-1198.2006
– volume: 47
  start-page: W256
  year: 2019
  end-page: W259
  ident: B79
  article-title: Interactive Tree Of Life (iTOL) v4: recent updates and new developments
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gkz239
– volume: 65
  start-page: 4005
  year: 1997
  end-page: 4010
  ident: B45
  article-title: Secretion of Ipa proteins by Shigella flexneri: inducer molecules and kinetics of activation
  publication-title: Infect Immun
  doi: 10.1128/iai.65.10.4005-4010.1997
– volume: 7
  year: 2022
  ident: B47
  article-title: icaR and icaT are ancient chromosome genes encoding substrates of the type iii secretion apparatus in Shigella flexneri
  publication-title: mSphere
  doi: 10.1128/msphere.00115-22
– volume: 48
  start-page: 171
  year: 2020
  end-page: 183
  ident: B61
  article-title: Global H-NS counter-silencing by LuxR activates quorum sensing gene expression
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gkz1089
– volume: 48
  start-page: 1401
  year: 2003
  end-page: 1416
  ident: B56
  article-title: Three-way interactions among the Sfh, StpA and H-NS nucleoid-structuring proteins of Shigella flexneri 2a strain 2457T
  publication-title: Mol Microbiol
  doi: 10.1046/j.1365-2958.2003.03515.x
– volume: 4
  year: 2013
  ident: B60
  article-title: Analysis of activator and repressor functions reveals the requirements for transcriptional control by LuxR, the master regulator of quorum sensing in Vibrio harveyi
  publication-title: mBio
  doi: 10.1128/mBio.00378-13
– volume: 14
  start-page: 2461
  year: 1995
  end-page: 2470
  ident: B37
  article-title: Contact of Shigella with host cells triggers release of Ipa invasins and is an essential function of invasiveness
  publication-title: EMBO J
  doi: 10.1002/j.1460-2075.1995.tb07243.x
– volume: 277
  start-page: 15333
  year: 2002
  end-page: 15344
  ident: B24
  article-title: Molecular dissection of VirB, a key regulator of the virulence cascade of Shigella flexneri
  publication-title: J Biol Chem
  doi: 10.1074/jbc.M111429200
– volume: 35
  start-page: 852
  year: 1982
  end-page: 860
  ident: B9
  article-title: Involvement of a plasmid in the invasive ability of Shigella flexneri
  publication-title: Infect Immun
  doi: 10.1128/iai.35.3.852-860.1982
– volume: 14
  start-page: 235
  year: 2016
  end-page: 250
  ident: B49
  article-title: The genomic signatures of Shigella evolution, adaptation and geographical spread
  publication-title: Nat Rev Microbiol
  doi: 10.1038/nrmicro.2016.10
– volume: 20
  start-page: 1850
  year: 2001
  end-page: 1862
  ident: B57
  article-title: Type III secretion chaperone-dependent regulation: activation of virulence genes by SicA and InvF in Salmonella typhimurium
  publication-title: EMBO J
  doi: 10.1093/emboj/20.8.1850
– volume: 86
  start-page: 3867
  year: 1989
  end-page: 3871
  ident: B21
  article-title: Identification of icsA, a plasmid locus of Shigella flexneri that governs bacterial intra- and intercellular spread through interaction with F-actin
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.86.10.3867
– volume: 88
  start-page: 1503
  year: 1964
  end-page: 1518
  ident: B65
  article-title: Epithelial cell penetration as an essential step in the pathogenesis of bacillary dysentery
  publication-title: J Bacteriol
  doi: 10.1128/jb.88.5.1503-1518.1964
– volume: 159
  start-page: 1126
  year: 1989
  end-page: 1128
  ident: B2
  article-title: Inoculum size in shigellosis and implications for expected mode of transmission
  publication-title: J Infect Dis
  doi: 10.1093/infdis/159.6.1126
– volume: 32
  start-page: 2089
  year: 2016
  end-page: 2095
  ident: B77
  article-title: Integrated genome browser: visual analytics platform for genomics
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btw069
– volume: 21
  start-page: 134
  year: 2008
  end-page: 156
  ident: B6
  article-title: Molecular pathogenesis of Shigella spp.: controlling host cell signaling, invasion, and death by type III secretion
  publication-title: Clin Microbiol Rev
  doi: 10.1128/CMR.00032-07
– volume: 85
  start-page: 2820
  year: 1988
  end-page: 2824
  ident: B10
  article-title: Identification of a chromosomal gene controlling temperature-regulated expression of Shigella virulence
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.85.8.2820
– volume: 7
  start-page: 112
  year: 2016
  ident: B11
  article-title: H-NS, its family members and their regulation of virulence genes in Shigella species
  publication-title: Genes (Basel)
  doi: 10.3390/genes7120112
– volume: 43
  start-page: 239
  year: 1998
  end-page: 246
  ident: B3
  article-title: Molecular and cellular mechanisms of invasion of the intestinal barrier by enteric pathogens. The paradigm of Shigella
  publication-title: Folia Microbiol (Praha)
  doi: 10.1007/BF02818608
– volume: 97
  start-page: 10567
  year: 2000
  end-page: 10572
  ident: B8
  article-title: Multiple independent origins of Shigella clones of Escherichia coli and convergent evolution of many of their characteristics
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.180094797
– volume: 5
  start-page: 887
  year: 1991
  end-page: 893
  ident: B30
  article-title: Temperature-regulated expression of invasion genes in Shigella flexneri is controlled through the transcriptional activation of the virB gene on the large plasmid
  publication-title: Mol Microbiol
  doi: 10.1111/j.1365-2958.1991.tb00762.x
– volume: 176
  start-page: 71
  year: 2020
  end-page: 81
  ident: B43
  article-title: RNA-seq analysis of the T3SA regulon in Shigella flexneri reveals two new chromosomal genes upregulated in the on-state
  publication-title: Methods
  doi: 10.1016/j.ymeth.2019.03.017
– volume: 108
  start-page: 505
  year: 2018
  end-page: 518
  ident: B63
  article-title: Insights into transcriptional silencing and anti-silencing in Shigella flexneri: a detailed molecular analysis of the icsP virulence locus
  publication-title: Mol Microbiol
  doi: 10.1111/mmi.13932
– volume: 2
  start-page: 959
  year: 2005
  end-page: 965
  ident: B34
  article-title: Secretion of type III effectors into host cells in real time
  publication-title: Nat Methods
  doi: 10.1038/nmeth804
– volume: 30
  start-page: 2114
  year: 2014
  end-page: 2120
  ident: B69
  article-title: Trimmomatic: a flexible trimmer for Illumina sequence data
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btu170
– volume: 3
  start-page: 627
  year: 1989
  end-page: 635
  ident: B29
  article-title: A dual transcriptional activation system for the 230 kb plasmid genes coding for virulence-associated antigens of Shigella flexneri
  publication-title: Mol Microbiol
  doi: 10.1111/j.1365-2958.1989.tb00210.x
– volume: 104
  start-page: 541
  year: 1976
  end-page: 555
  ident: B67
  article-title: Transposition and fusion of the lac genes to selected promoters in Escherichia coli using bacteriophage lambda and Mu
  publication-title: J Mol Biol
  doi: 10.1016/0022-2836(76)90119-4
– volume: 2
  year: 2006
  ident: B51
  article-title: H-NS mediates the silencing of laterally acquired genes in bacteria
  publication-title: PLoS Pathog
  doi: 10.1371/journal.ppat.0020081
– volume: 351
  start-page: 2417
  year: 2004
  end-page: 2427
  ident: B1
  article-title: Contagious acute gastrointestinal infections
  publication-title: N Engl J Med
  doi: 10.1056/NEJMra041837
– volume: 51
  start-page: 523
  year: 2004
  end-page: 537
  ident: B19
  article-title: The virF promoter in Shigella: more than just a curved DNA stretch
  publication-title: Mol Microbiol
  doi: 10.1046/j.1365-2958.2003.03848.x
– volume: 7
  year: 2012
  ident: B41
  article-title: Characterization of the promoter, MxiE box and 5' UTR of genes controlled by the activity of the type III secretion apparatus in Shigella flexneri
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0032862
– volume: 44
  start-page: W160
  year: 2016
  ident: B76
  article-title: deepTools2: a next generation web server for deep-sequencing data analysis
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gkw257
– volume: 184
  start-page: 6751
  year: 2002
  end-page: 6759
  ident: B42
  article-title: Identification of the cis-acting site involved in activation of promoters regulated by activity of the type III secretion apparatus in Shigella flexneri
  publication-title: J Bacteriol
  doi: 10.1128/JB.184.24.6751-6759.2002
– volume: 83
  start-page: 1695
  year: 2015
  end-page: 1704
  ident: B64
  article-title: The class II phosphatidylinositol 3-phosphate kinase PIK3C2A promotes Shigella flexneri dissemination through formation of vacuole-like protrusions
  publication-title: Infect Immun
  doi: 10.1128/IAI.03138-14
– volume: 41
  start-page: 10529
  year: 2013
  end-page: 10541
  ident: B23
  article-title: Structural insights into VirB-DNA complexes reveal mechanism of transcriptional activation of virulence genes
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gkt748
– volume: 56
  start-page: 1627
  year: 2005
  end-page: 1635
  ident: B32
  article-title: A secreted anti-activator, OspD1, and its chaperone, Spa15, are involved in the control of transcription by the type III secretion apparatus activity in Shigella flexneri
  publication-title: Mol Microbiol
  doi: 10.1111/j.1365-2958.2005.04645.x
– volume: 44
  start-page: 1056
  year: 2012
  end-page: 1059
  ident: B54
  article-title: Shigella sonnei genome sequencing and phylogenetic analysis indicate recent global dissemination from Europe
  publication-title: Nat Genet
  doi: 10.1038/ng.2369
– volume: 149
  start-page: 15
  year: 1998
  end-page: 25
  ident: B20
  article-title: A role for H-NS in the regulation of the virF gene of Shigella and enteroinvasive Escherichia coli
  publication-title: Res Microbiol
  doi: 10.1016/s0923-2508(97)83619-4
– volume: 61
  start-page: 393
  year: 1997
  end-page: 410
  ident: B31
  article-title: Arac/XylS family of transcriptional regulators
  publication-title: Microbiol Mol Biol Rev
  doi: 10.1128/mmbr.61.4.393-410.1997
– volume: 14
  start-page: 481
  year: 1993
  end-page: 488
  ident: B22
  article-title: Site of transcriptional activation of virB on the large plasmid of Shigella flexneri 2a by VirF, a member of the AraC family of transcriptional activators
  publication-title: Microb Pathog
  doi: 10.1006/mpat.1993.1047
– volume: 27
  start-page: 1017
  year: 2011
  end-page: 1018
  ident: B74
  article-title: FIMO: scanning for occurrences of a given motif
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btr064
– ident: B70
  article-title: Andrews . 2010 . FastQC, a quality control tool for high throughput sequence data .
– volume: 35
  start-page: 949
  year: 2000
  end-page: 960
  ident: B58
  article-title: The putative invasion protein chaperone SicA acts together with InvF to activate the expression of Salmonella typhimurium virulence genes
  publication-title: Mol Microbiol
  doi: 10.1046/j.1365-2958.2000.01772.x
– volume: 154
  start-page: 1281
  year: 2008
  end-page: 1289
  ident: B52
  article-title: A global modulatory role for the Yersinia enterocolitica H-NS protein
  publication-title: Microbiology (Reading)
  doi: 10.1099/mic.0.2007/015610-0
– volume: 184
  start-page: 4409
  year: 2002
  end-page: 4419
  ident: B38
  article-title: MxiE regulates intracellular expression of factors secreted by the Shigella flexneri 2a type III secretion system
  publication-title: J Bacteriol
  doi: 10.1128/JB.184.16.4409-4419.2002
– volume: 15
  year: 2020
  ident: B59
  article-title: The Salmonella Typhimurium InvF-SicA complex is necessary for the transcription of sopB in the absence of the repressor H-NS
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0240617
– volume: 63
  start-page: 1719
  year: 2007
  end-page: 1730
  ident: B36
  article-title: The type III secretion system needle tip complex mediates host cell sensing and translocon insertion
  publication-title: Mol Microbiol
  doi: 10.1111/j.1365-2958.2007.05620.x
– volume: 35
  start-page: 6330
  year: 2007
  end-page: 6337
  ident: B55
  article-title: High-affinity DNA binding sites for H-NS provide a molecular basis for selective silencing within proteobacterial genomes
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gkm712
– volume: 47
  start-page: 825
  year: 2003
  end-page: 838
  ident: B14
  article-title: An extended role for the nucleoid structuring protein H-NS in the virulence gene regulatory cascade of Shigella flexneri
  publication-title: Mol Microbiol
  doi: 10.1046/j.1365-2958.2003.03347.x
– volume: 16
  start-page: 291
  year: 1995
  end-page: 300
  ident: B46
  article-title: Enhanced secretion through the Shigella flexneri Mxi-Spa translocon leads to assembly of extracellular proteins into macromolecular structures
  publication-title: Mol Microbiol
  doi: 10.1111/j.1365-2958.1995.tb02301.x
– volume: 38
  start-page: 3022
  year: 2021
  end-page: 3027
  ident: B80
  article-title: MEGA 11: molecular Evolutionary Genetics Analysis Version 11
  publication-title: Mol Biol Evol
  doi: 10.1093/molbev/msab120
– volume: 190
  start-page: 2249
  year: 2008
  end-page: 2251
  ident: B39
  article-title: The chaperone IpgC copurifies with the virulence regulator MxiE
  publication-title: J Bacteriol
  doi: 10.1128/JB.01824-07
– volume: 43
  start-page: 1543
  year: 2002
  end-page: 1553
  ident: B40
  article-title: Regulation of transcription by the activity of the Shigella flexneri type III secretion apparatus
  publication-title: Mol Microbiol
  doi: 10.1046/j.1365-2958.2002.02836.x
– volume: 13
  start-page: 5293
  year: 1994
  end-page: 5302
  ident: B35
  article-title: The secretion of the Shigella flexneri Ipa invasins is activated by epithelial cells and controlled by IpaB and IpaD
  publication-title: EMBO J
  doi: 10.1002/j.1460-2075.1994.tb06863.x
– volume: 38
  start-page: 760
  year: 2000
  end-page: 771
  ident: B7
  article-title: The virulence plasmid pWR100 and the repertoire of proteins secreted by the type III secretion apparatus of Shigella flexneri
  publication-title: Mol Microbiol
  doi: 10.1046/j.1365-2958.2000.02179.x
– volume: 10
  start-page: 1826
  year: 2019
  ident: B4
  article-title: Critical role of bacterial dissemination in an infant rabbit model of bacillary dysentery
  publication-title: Nat Commun
  doi: 10.1038/s41467-019-09808-4
– volume: 189
  start-page: 3403
  year: 2007
  end-page: 3413
  ident: B26
  article-title: H-NS antagonism in Shigella flexneri by VirB, a virulence gene transcription regulator that is closely related to plasmid partition factors
  publication-title: J Bacteriol
  doi: 10.1128/JB.01813-06
SSID ssj0001626676
Score 2.246901
Snippet The expression of horizontally acquired genes, including virulence genes, is subject to complex regulation involving xenogeneic silencing proteins, and...
Shigella flexneri uses a type 3 secretion system (T3SS) apparatus to inject virulence effector proteins into the host cell cytosol. Upon host cell contact,...
ABSTRACTShigella flexneri uses a type 3 secretion system (T3SS) apparatus to inject virulence effector proteins into the host cell cytosol. Upon host cell...
Shigella flexneri uses a type 3 secretion system (T3SS) apparatus to inject virulence effector proteins into the host cell cytosol. Upon host cell contact,...
ABSTRACT Shigella flexneri uses a type 3 secretion system (T3SS) apparatus to inject virulence effector proteins into the host cell cytosol. Upon host cell...
SourceID doaj
pubmedcentral
proquest
asm2
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage e0048522
SubjectTerms anti-silencing
Bacteria
Bacterial Proteins - genetics
Bacterial Proteins - metabolism
Bacteriology
Chromosomes
Cytosol
DNA-Binding Proteins - genetics
Gene expression
Gene regulation
H protein
H-NS
Infections
MxiE
Proteins
Regulatory sequences
Research Article
Secretion
Shigella
Shigella flexneri
Shigella flexneri - genetics
Shigella flexneri - metabolism
silencing
T3SS
Transcription Factors - genetics
Transcription Factors - metabolism
Type III Secretion Systems - genetics
Type III Secretion Systems - metabolism
Variance analysis
Virulence
Virulence factors
SummonAdditionalLinks – databaseName: American Society for Microbiology Open Access
  dbid: AAUOK
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3da9swEBclZbCX0e7TWzs0GINBlMayvvyYZQlho91DW-ibkSV5NbRKaFJI_vudbMVdRil71eks-z6knyzdHUKfeSmh3UrCWQjJSV1JVCVykiqXlzBnWq5DvPPpmZhdsh9X_GoP8W0sTJTgcqCXt81BfufZVJ3cLkOovRsEs-OEwsy7z2nOhj20Pxpd_vr58HMFYLqQ3bHkI6wwA8MIdGc1apL2P4Y0_70w-dcKND1ALyJ0xKNW14doz_mX6FlbTHLzCvlxl3u5Da3E8wqfrusJwdpbPCNn5-R7LHm7wpN1vAHbdKsXeiYHqo_ny8U47eONMZN-w7ap7BTXHp9f17_DRSlc3bi1hzFeo4vp5GI8I7GaAtGcqhUJOz_jMus4YMTMOcG1E05ILYRSRouhYhp21jwvA-RzTDObGU0p0LVVJnuDen7u3TuEU2FyqypeVrlghg61pbLKApCBp1NTJuhLkG2x1WXRbDSoKqISikYJBaUJOtlKvzAxJXmojHHzBMfXjmPRpuN4ou-3oNCuX0ik3TSAWRXRL4scZKOUSEujLIPFXFNlK6OlVtIoKUWCjrbm8PA9VIa0hxKgT4I-dWTwy3DYor2b34c-gA-ElHmaoLet9XRvkokMPIMBRe7Y1c6r7lJ8fd3k_gb0CIhevf9fEX9Az2kI2EgpoekR6q3u7t0xwKhV-TE6zR8ADBod
  priority: 102
  providerName: American Society for Microbiology
– databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3da9swEBcjMNjLWNd9uOuKBmMwiJpatj78uGYJYdC-tIO-GVmSV0OrhCWF5L_vnex6yRjty16tk62PO-l3lu53hHwWlYLnTjGRY0hO6iuma1mwVPuigjXTCYPxzmfncvYz_3ElrrZSfeGdsJYeuB24USE4OGkyrax2Oay2hmtXW6OMVlYrFcm2Yc_bcqbi3xXA6VL155Jcj26XGKbvj1FlBcNcuQOzvOU721Fk7f8X1Pz7xuTWFjR9RV522JF-a9u8R5758Jo8b7NJbvZJGPfky21sJZ3X9GzdTBg1wdEZO79g37uctys6WXdXYKNYszAzdayHdL5cjNMh3Vg7GcZqm9pNaRPoxXXzC29K0frGrwN84w25nE4uxzPWpVNgBsZwxdD1sz5zXgBIzLyXwnjppTJSam2NPNG5AddaFBViPp-b3GXWcA7lxmmbvSWDMA_-PaGptIXTtajqQuaWnxjHVZ0hkoG3c1sl5AuObdmZw7KMngbXZTcJZZyEkvOEjB5Gv7QdJzmmxrh5pMbXvsai5eN4RPYUJ7SXQybt-AD0q-z0q3xKvxJy-KAOf_rDFfIeKsA-CfnUF4Nh4mmLCX5-hzIAEKRSRZqQd6329C3JZAamkUOJ2tGrnabuloTmOpJ_A3wESK8P_kffPpAXHKM5Us54ekgGq993_iNgrFV1FM3pHnLWIys
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Health & Medical Collection
  dbid: 7X7
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3da9swEBdbxmAvY91XvbVDgzEYRE0tWx9-GmuWEAbtSzvIm5EluTW0dlankPz308mKs4ySV9_JlnV30k_SfSD0hRXCPTeCsBRCcmJbEFnyjMTSZoWbMw1TEO98fsFnv9NfczYPB25tcKvczIl-ojaNhjPyERWQak645eb74g-BqlFwuxpKaDxFzyB1Gbh0ibnYnrE4tM5FfztJ5eiuhWB9ewKKywhUzB2o9o7uLEo-d_9jgPN_v8l_FqLpK_QyIEj8oxP5AXpi69foeVdTcv0G1eM-BXMXYYmbEp-vqgnBqjZ4Ri4uyc9Q-XaJJ6vgCOvZqoWaiRM5xE27GMdDvNZ6MvTN1qWZ4qrGlzfVNfhL4fLWrmr3jbfoajq5Gs9IKKpAFKNySWADqG1iLHNQMbGWM2W55UJxLqVW_FSmym2wWVYA8rOpSk2iFaWOrozUyTs0qJvaHiIcc50ZWbKizHiq6akyVJQJ4Bn3dqqLCH2Fsc2DUbS5329QmQch5F4IOaURGm1GP9chMzkUyLjd0-Jb32LRZeXYw3sGAu35IJ-2f9DcX-fBPPPMjY2UPC60NKlb0xWVptRKKCm0FIJH6GijDtv_2apkhD73ZGeecOeiats8AI-DCVyILI7Q-057-p4kPHEGkjqK2NGrna7uUurqxqcAdyDSAXv5YX-3PqIXFKI1YkpofIQGy_sHe-ww1LL45A3lL8LWGyo
  priority: 102
  providerName: ProQuest
Title Characterization of MxiE- and H-NS-Dependent Expression of ipaH7.8 , ospC1 , yccE , and yfdF in Shigella flexneri
URI https://www.ncbi.nlm.nih.gov/pubmed/36346241
https://journals.asm.org/doi/10.1128/msphere.00485-22
https://www.proquest.com/docview/2759827152
https://www.proquest.com/docview/2734167791
https://pubmed.ncbi.nlm.nih.gov/PMC9769918
https://doaj.org/article/95288861bc8d4362a28dfca7a87c8776
Volume 7
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3da9swEBdby2AvY9_11gUNxmAwpbVsffhhjDRzCBvJxtpA3owsya0htdMkheS_38l23GWEwp4E-rKsu5N-J-nuEPrAUgH5RhAWOpMc36ZEZjwivrRRCmumYcrZO4_GfDgJv0_Z9M48upnA5V7VzsWTmixm3fXN5isI_JfaAEaeXC-dBb7tOm5khMKCfAj7knBiOmrAfnXiAtidN9HmREQYsOv23nJPJ7BEq-U13dmuKq_--6Dovy8q_9qiBk_RkwZb4l7NDM_QA1s8R4_qaJObF-im3zpnrm0vcZnh0TqPCVaFwUMyPiffmpi4KxyvmyeyVbV8roaiK_FnXC7nfR_SjdYxJK7lJjMDnBf4_Cq_dI-pcDaz6wI-8xJdDOKL_pA0EReIYlSuiNMOtQ2MZYAjA2s5U5ZbLhTnUmrFT2WoQPtmUepgoQ1VaAKtKIVyZaQOXqGDoizsEcI-15GRGUuziIeanipDRRY4sAO9U5166KOb3mRL8KRSRqhMGjokFR0SSj10siVAohu35S56xuyeFp_aFvPaZcc9dc8cTdt6ztl2lVEuLpNGdpMI5kZK7qdamhA2fEWlybQSSgotheAeOt5yxN3_UOFcIwqARx563xaD7LoLGVXY8tbVAQzBhYh8D72uGagdScADkJ4QSsQOa-0MdbekyK8q_-CAMAH1yzf_MQ9v0WPq7Dp8Sqh_jA5Wi1v7DtDWKu2gh2IqOuiw15v8_AHpWTz-9btTnV10KgH7A7IkKvQ
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtR1db9Mw8DQ6IXhBfFMYYCRAQqrXxUls5wEh1rXq2Foh1kl7ixzb2SptSVk70f4o_iPnJE0pQn3bq892nPPd-c6-D4D3YSKw3QgaBi4kx7MJlSmPqCdtlKDMNKFy8c6DIe-fBt_OwrMt-L2MhXFulUuZWAhqk2t3R95mwqWaE3jcfJn8pK5qlHtdXZbQKMniyC5-ock2_Xx4gPv7gbFed9Tp06qqAFUhkzPqLCBtfWND1JV8a3moLLdcKM6l1IrvyUChhRlGiVN9bKAC42vFGMKVkdrHae_AduCjJdOA7f3u8PuP1aUOmgdc1M-hTLavpi47gN11nBJSV6K3oaZXbO0ULIoF_E_D_ddR86-Tr_cQHlQqK_la0tgj2LLZY7hbFrFcPIGsU-d8LkM6SZ6SwXzcpURlhvTp8IQeVKV2Z6Q7rzxvi27jieqLXdki-XTS8VpkoXW3VQxbpKZHxhk5uRifOwctkl7aeYbfeAqj28D3M2hkeWZfAPG4joxMwySNeKDZnjJMpL5ToHB2ppMmfHS4jSsunMaFgcNkXG1CXGxCzFgT2kvsx7pKhe4qclxuGPGpHjEp04Bs6LvvNrTu5xJ4Fw359XlcyYM4QtxIyb1ES4O0xBSTJtVKKCm0FII3YWdJDqv_WfFAE97VYJQH7pFHZTa_cX1QL-FCRF4TnpfUU6_E5z5yZIAQsUZXa0tdh2TjiyLnOGqtaEnIl5uX9Rbu9UeD4_j4cHj0Cu4zFyriMcq8HWjMrm_sa1TgZsmbim0IxLfMqH8AFoBZDQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLZGEYgXxHUEBhgJkJDqdXES23lACHpRx1iFtCH1LXJsZ6u0JWXtRPvT-Heck6QpRahve_Utjn3O8XfscyHkbZRKKLeSRSG65PguZSoTMfOVi1OQmTbS6O98PBLDH-HXcTTeIb9XvjBoVrmSiaWgtoXBO_IOlxhqTsJx08lqs4jvvcGn6U-GGaTwpXWVTqMikSO3_AXq2-zjYQ_2-h3ng_5pd8jqDANMR1zNGWpDxgXWRYCbAudEpJ1wQmohlDJaHKhQg7YZxSnCIBfq0AZGcw712ioTwLC3yG0ZRD6ymBzL9fUOKApCNg-jXHUuZxgnwO0jz0QMk_W29OySb5yHZdqA_2Hdf002_zoDBw_I_Rq80s8VtT0kOy5_RO5U6SyXj0nebaI_V86dtMjo8WLSZ1Tnlg7Z6IT16qS7c9pf1Da4ZbPJVA_lvmrTYjbt-m26NKbfLrstMzugk5yenE_O0FSLZhdukcM3npDTm1jtp6SVF7l7RqgvTGxVFqVZLELDD7TlMgsQSsHo3KQeeY9rm9T8OEtKVYerpN6EpNyEhHOPdFarn5g6KDrm5rjY0uND02NaBQTZ0vYLbmjTDkN5lwXF1VlSS4YkhrVRSvipUTYEOKG5spnRUitplJTCI3srclj_z5obPPKmqQbJgM89OnfFNbYBhCKkjH2P7FbU08wkEAHwZgg1coOuNqa6WZNPzsvo44BfQadQz7dP6zW5C-yZfDscHb0g9zj6jPiccX-PtOZX1-4lILl5-qrkGUqSG-bRP0QRW90
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Characterization+of+MxiE-+and+H-NS-Dependent+Expression+of+ipaH7.8+%2C+ospC1+%2C+yccE+%2C+and+yfdF+in+Shigella+flexneri&rft.jtitle=mSphere&rft.au=Hall%2C+Chelsea+P.&rft.au=Jadeja%2C+Niti+B.&rft.au=Sebeck%2C+Natalie&rft.au=Agaisse%2C+Herv%C3%A9&rft.date=2022-12-21&rft.issn=2379-5042&rft.eissn=2379-5042&rft.volume=7&rft.issue=6&rft_id=info:doi/10.1128%2Fmsphere.00485-22&rft.externalDBID=n%2Fa&rft.externalDocID=10_1128_msphere_00485_22
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2379-5042&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2379-5042&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2379-5042&client=summon