Characterization of MxiE- and H-NS-Dependent Expression of ipaH7.8 , ospC1 , yccE , and yfdF in Shigella flexneri
The expression of horizontally acquired genes, including virulence genes, is subject to complex regulation involving xenogeneic silencing proteins, and counter-silencing mechanisms. The pathogenic properties of Shigella flexneri mainly rely on the acquisition of the type 3 secretion system (T3SS) an...
Saved in:
Published in | mSphere Vol. 7; no. 6; p. e0048522 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
United States
American Society for Microbiology
21.12.2022
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The expression of horizontally acquired genes, including virulence genes, is subject to complex regulation involving xenogeneic silencing proteins, and counter-silencing mechanisms. The pathogenic properties of
Shigella flexneri
mainly rely on the acquisition of the type 3 secretion system (T3SS) and cognate effector proteins, whose expression is repressed by the xenogeneic silencing protein H-NS.
Shigella flexneri
uses a type 3 secretion system (T3SS) apparatus to inject virulence effector proteins into the host cell cytosol. Upon host cell contact, MxiE, an
S. flexneri
AraC-like transcriptional regulator, is required for the expression of a subset of T3SS effector genes encoded on the large virulence plasmid. Here, we defined the MxiE regulon using RNA-seq. We identified virulence plasmid- and chromosome-encoded genes that are activated in response to type 3 secretion in a MxiE-dependent manner. Bioinformatic analysis revealed that similar to previously known MxiE-dependent genes, chromosome-encoded genes
yccE
and
yfdF
contain a regulatory element known as the MxiE box, which is required for their MxiE-dependent expression. The significant AT enrichment of MxiE-dependent genes suggested the involvement of H-NS. Using a dominant negative H-NS system, we demonstrate that H-NS silences the expression of MxiE-dependent genes located on the virulence plasmid (
ipaH7
.8 and
ospC1
) and the chromosome (
yccE
and
yfdF
). Furthermore, we show that MxiE is no longer required for the expression of
ipaH7.8
,
ospC1, yccE
, and
yfdF
when H-NS silencing is relieved. Finally, we show that the H-NS anti-silencer VirB is not required for
ipaH7.8
and
yccE
expression upon MxiE/IpgC overexpression. Based on these genetic studies, we propose a model of MxiE-dependent gene regulation in which MxiE counteracts H-NS-mediated silencing.
IMPORTANCE
The expression of horizontally acquired genes, including virulence genes, is subject to complex regulation involving xenogeneic silencing proteins, and counter-silencing mechanisms. The pathogenic properties of
Shigella flexneri
mainly rely on the acquisition of the type 3 secretion system (T3SS) and cognate effector proteins, whose expression is repressed by the xenogeneic silencing protein H-NS. Based on previous studies, releasing H-NS-mediated silencing mainly relies on two mechanisms involving (i) a temperature shift leading to the release of H-NS at the
virF
promoter, and (ii) the virulence factor VirB, which dislodges H-NS upon binding to specific motifs upstream of virulence genes, including those encoding the T3SS. In this study, we provide genetic evidence supporting the notion that, in addition to VirB, the AraC family member MxiE also contributes to releasing H-NS-mediated silencing in
S. flexneri
. |
---|---|
AbstractList | Shigella flexneri uses a type 3 secretion system (T3SS) apparatus to inject virulence effector proteins into the host cell cytosol. Upon host cell contact, MxiE, an S. flexneri AraC-like transcriptional regulator, is required for the expression of a subset of T3SS effector genes encoded on the large virulence plasmid. Here, we defined the MxiE regulon using RNA-seq. We identified virulence plasmid- and chromosome-encoded genes that are activated in response to type 3 secretion in a MxiE-dependent manner. Bioinformatic analysis revealed that similar to previously known MxiE-dependent genes, chromosome-encoded genes
and
contain a regulatory element known as the MxiE box, which is required for their MxiE-dependent expression. The significant AT enrichment of MxiE-dependent genes suggested the involvement of H-NS. Using a dominant negative H-NS system, we demonstrate that H-NS silences the expression of MxiE-dependent genes located on the virulence plasmid (
.8 and
) and the chromosome (
and
). Furthermore, we show that MxiE is no longer required for the expression of
,
, and
when H-NS silencing is relieved. Finally, we show that the H-NS anti-silencer VirB is not required for
and
expression upon MxiE/IpgC overexpression. Based on these genetic studies, we propose a model of MxiE-dependent gene regulation in which MxiE counteracts H-NS-mediated silencing.
The expression of horizontally acquired genes, including virulence genes, is subject to complex regulation involving xenogeneic silencing proteins, and counter-silencing mechanisms. The pathogenic properties of Shigella flexneri mainly rely on the acquisition of the type 3 secretion system (T3SS) and cognate effector proteins, whose expression is repressed by the xenogeneic silencing protein H-NS. Based on previous studies, releasing H-NS-mediated silencing mainly relies on two mechanisms involving (i) a temperature shift leading to the release of H-NS at the
promoter, and (ii) the virulence factor VirB, which dislodges H-NS upon binding to specific motifs upstream of virulence genes, including those encoding the T3SS. In this study, we provide genetic evidence supporting the notion that, in addition to VirB, the AraC family member MxiE also contributes to releasing H-NS-mediated silencing in S. flexneri. Shigella flexneri uses a type 3 secretion system (T3SS) apparatus to inject virulence effector proteins into the host cell cytosol. Upon host cell contact, MxiE, an S. flexneri AraC-like transcriptional regulator, is required for the expression of a subset of T3SS effector genes encoded on the large virulence plasmid. Here, we defined the MxiE regulon using RNA-seq. We identified virulence plasmid- and chromosome-encoded genes that are activated in response to type 3 secretion in a MxiE-dependent manner. Bioinformatic analysis revealed that similar to previously known MxiE-dependent genes, chromosome-encoded genes yccE and yfdF contain a regulatory element known as the MxiE box, which is required for their MxiE-dependent expression. The significant AT enrichment of MxiE-dependent genes suggested the involvement of H-NS. Using a dominant negative H-NS system, we demonstrate that H-NS silences the expression of MxiE-dependent genes located on the virulence plasmid (ipaH7.8 and ospC1) and the chromosome (yccE and yfdF). Furthermore, we show that MxiE is no longer required for the expression of ipaH7.8, ospC1, yccE, and yfdF when H-NS silencing is relieved. Finally, we show that the H-NS anti-silencer VirB is not required for ipaH7.8 and yccE expression upon MxiE/IpgC overexpression. Based on these genetic studies, we propose a model of MxiE-dependent gene regulation in which MxiE counteracts H-NS-mediated silencing. IMPORTANCE The expression of horizontally acquired genes, including virulence genes, is subject to complex regulation involving xenogeneic silencing proteins, and counter-silencing mechanisms. The pathogenic properties of Shigella flexneri mainly rely on the acquisition of the type 3 secretion system (T3SS) and cognate effector proteins, whose expression is repressed by the xenogeneic silencing protein H-NS. Based on previous studies, releasing H-NS-mediated silencing mainly relies on two mechanisms involving (i) a temperature shift leading to the release of H-NS at the virF promoter, and (ii) the virulence factor VirB, which dislodges H-NS upon binding to specific motifs upstream of virulence genes, including those encoding the T3SS. In this study, we provide genetic evidence supporting the notion that, in addition to VirB, the AraC family member MxiE also contributes to releasing H-NS-mediated silencing in S. flexneri.Shigella flexneri uses a type 3 secretion system (T3SS) apparatus to inject virulence effector proteins into the host cell cytosol. Upon host cell contact, MxiE, an S. flexneri AraC-like transcriptional regulator, is required for the expression of a subset of T3SS effector genes encoded on the large virulence plasmid. Here, we defined the MxiE regulon using RNA-seq. We identified virulence plasmid- and chromosome-encoded genes that are activated in response to type 3 secretion in a MxiE-dependent manner. Bioinformatic analysis revealed that similar to previously known MxiE-dependent genes, chromosome-encoded genes yccE and yfdF contain a regulatory element known as the MxiE box, which is required for their MxiE-dependent expression. The significant AT enrichment of MxiE-dependent genes suggested the involvement of H-NS. Using a dominant negative H-NS system, we demonstrate that H-NS silences the expression of MxiE-dependent genes located on the virulence plasmid (ipaH7.8 and ospC1) and the chromosome (yccE and yfdF). Furthermore, we show that MxiE is no longer required for the expression of ipaH7.8, ospC1, yccE, and yfdF when H-NS silencing is relieved. Finally, we show that the H-NS anti-silencer VirB is not required for ipaH7.8 and yccE expression upon MxiE/IpgC overexpression. Based on these genetic studies, we propose a model of MxiE-dependent gene regulation in which MxiE counteracts H-NS-mediated silencing. IMPORTANCE The expression of horizontally acquired genes, including virulence genes, is subject to complex regulation involving xenogeneic silencing proteins, and counter-silencing mechanisms. The pathogenic properties of Shigella flexneri mainly rely on the acquisition of the type 3 secretion system (T3SS) and cognate effector proteins, whose expression is repressed by the xenogeneic silencing protein H-NS. Based on previous studies, releasing H-NS-mediated silencing mainly relies on two mechanisms involving (i) a temperature shift leading to the release of H-NS at the virF promoter, and (ii) the virulence factor VirB, which dislodges H-NS upon binding to specific motifs upstream of virulence genes, including those encoding the T3SS. In this study, we provide genetic evidence supporting the notion that, in addition to VirB, the AraC family member MxiE also contributes to releasing H-NS-mediated silencing in S. flexneri. Shigella flexneri uses a type 3 secretion system (T3SS) apparatus to inject virulence effector proteins into the host cell cytosol. Upon host cell contact, MxiE, an S. flexneri AraC-like transcriptional regulator, is required for the expression of a subset of T3SS effector genes encoded on the large virulence plasmid. Here, we defined the MxiE regulon using RNA-seq. We identified virulence plasmid- and chromosome-encoded genes that are activated in response to type 3 secretion in a MxiE-dependent manner. Bioinformatic analysis revealed that similar to previously known MxiE-dependent genes, chromosome-encoded genes yccE and yfdF contain a regulatory element known as the MxiE box, which is required for their MxiE-dependent expression. The significant AT enrichment of MxiE-dependent genes suggested the involvement of H-NS. Using a dominant negative H-NS system, we demonstrate that H-NS silences the expression of MxiE-dependent genes located on the virulence plasmid ( ipaH7 .8 and ospC1 ) and the chromosome ( yccE and yfdF ). Furthermore, we show that MxiE is no longer required for the expression of ipaH7.8 , ospC1, yccE , and yfdF when H-NS silencing is relieved. Finally, we show that the H-NS anti-silencer VirB is not required for ipaH7.8 and yccE expression upon MxiE/IpgC overexpression. Based on these genetic studies, we propose a model of MxiE-dependent gene regulation in which MxiE counteracts H-NS-mediated silencing. IMPORTANCE The expression of horizontally acquired genes, including virulence genes, is subject to complex regulation involving xenogeneic silencing proteins, and counter-silencing mechanisms. The pathogenic properties of Shigella flexneri mainly rely on the acquisition of the type 3 secretion system (T3SS) and cognate effector proteins, whose expression is repressed by the xenogeneic silencing protein H-NS. Based on previous studies, releasing H-NS-mediated silencing mainly relies on two mechanisms involving (i) a temperature shift leading to the release of H-NS at the virF promoter, and (ii) the virulence factor VirB, which dislodges H-NS upon binding to specific motifs upstream of virulence genes, including those encoding the T3SS. In this study, we provide genetic evidence supporting the notion that, in addition to VirB, the AraC family member MxiE also contributes to releasing H-NS-mediated silencing in S. flexneri . Shigella flexneri uses a type 3 secretion system (T3SS) apparatus to inject virulence effector proteins into the host cell cytosol. Upon host cell contact, MxiE, an S. flexneri AraC-like transcriptional regulator, is required for the expression of a subset of T3SS effector genes encoded on the large virulence plasmid. Here, we defined the MxiE regulon using RNA-seq. We identified virulence plasmid- and chromosome-encoded genes that are activated in response to type 3 secretion in a MxiE-dependent manner. Bioinformatic analysis revealed that similar to previously known MxiE-dependent genes, chromosome-encoded genes yccE and yfdF contain a regulatory element known as the MxiE box, which is required for their MxiE-dependent expression. The significant AT enrichment of MxiE-dependent genes suggested the involvement of H-NS. Using a dominant negative H-NS system, we demonstrate that H-NS silences the expression of MxiE-dependent genes located on the virulence plasmid (ipaH7.8 and ospC1) and the chromosome (yccE and yfdF). Furthermore, we show that MxiE is no longer required for the expression of ipaH7.8, ospC1, yccE, and yfdF when H-NS silencing is relieved. Finally, we show that the H-NS anti-silencer VirB is not required for ipaH7.8 and yccE expression upon MxiE/IpgC overexpression. Based on these genetic studies, we propose a model of MxiE-dependent gene regulation in which MxiE counteracts H-NS-mediated silencing. IMPORTANCE The expression of horizontally acquired genes, including virulence genes, is subject to complex regulation involving xenogeneic silencing proteins, and counter-silencing mechanisms. The pathogenic properties of Shigella flexneri mainly rely on the acquisition of the type 3 secretion system (T3SS) and cognate effector proteins, whose expression is repressed by the xenogeneic silencing protein H-NS. Based on previous studies, releasing H-NS-mediated silencing mainly relies on two mechanisms involving (i) a temperature shift leading to the release of H-NS at the virF promoter, and (ii) the virulence factor VirB, which dislodges H-NS upon binding to specific motifs upstream of virulence genes, including those encoding the T3SS. In this study, we provide genetic evidence supporting the notion that, in addition to VirB, the AraC family member MxiE also contributes to releasing H-NS-mediated silencing in S. flexneri. ABSTRACT Shigella flexneri uses a type 3 secretion system (T3SS) apparatus to inject virulence effector proteins into the host cell cytosol. Upon host cell contact, MxiE, an S. flexneri AraC-like transcriptional regulator, is required for the expression of a subset of T3SS effector genes encoded on the large virulence plasmid. Here, we defined the MxiE regulon using RNA-seq. We identified virulence plasmid- and chromosome-encoded genes that are activated in response to type 3 secretion in a MxiE-dependent manner. Bioinformatic analysis revealed that similar to previously known MxiE-dependent genes, chromosome-encoded genes yccE and yfdF contain a regulatory element known as the MxiE box, which is required for their MxiE-dependent expression. The significant AT enrichment of MxiE-dependent genes suggested the involvement of H-NS. Using a dominant negative H-NS system, we demonstrate that H-NS silences the expression of MxiE-dependent genes located on the virulence plasmid (ipaH7.8 and ospC1) and the chromosome (yccE and yfdF). Furthermore, we show that MxiE is no longer required for the expression of ipaH7.8, ospC1, yccE, and yfdF when H-NS silencing is relieved. Finally, we show that the H-NS anti-silencer VirB is not required for ipaH7.8 and yccE expression upon MxiE/IpgC overexpression. Based on these genetic studies, we propose a model of MxiE-dependent gene regulation in which MxiE counteracts H-NS-mediated silencing. IMPORTANCE The expression of horizontally acquired genes, including virulence genes, is subject to complex regulation involving xenogeneic silencing proteins, and counter-silencing mechanisms. The pathogenic properties of Shigella flexneri mainly rely on the acquisition of the type 3 secretion system (T3SS) and cognate effector proteins, whose expression is repressed by the xenogeneic silencing protein H-NS. Based on previous studies, releasing H-NS-mediated silencing mainly relies on two mechanisms involving (i) a temperature shift leading to the release of H-NS at the virF promoter, and (ii) the virulence factor VirB, which dislodges H-NS upon binding to specific motifs upstream of virulence genes, including those encoding the T3SS. In this study, we provide genetic evidence supporting the notion that, in addition to VirB, the AraC family member MxiE also contributes to releasing H-NS-mediated silencing in S. flexneri. ABSTRACTShigella flexneri uses a type 3 secretion system (T3SS) apparatus to inject virulence effector proteins into the host cell cytosol. Upon host cell contact, MxiE, an S. flexneri AraC-like transcriptional regulator, is required for the expression of a subset of T3SS effector genes encoded on the large virulence plasmid. Here, we defined the MxiE regulon using RNA-seq. We identified virulence plasmid- and chromosome-encoded genes that are activated in response to type 3 secretion in a MxiE-dependent manner. Bioinformatic analysis revealed that similar to previously known MxiE-dependent genes, chromosome-encoded genes yccE and yfdF contain a regulatory element known as the MxiE box, which is required for their MxiE-dependent expression. The significant AT enrichment of MxiE-dependent genes suggested the involvement of H-NS. Using a dominant negative H-NS system, we demonstrate that H-NS silences the expression of MxiE-dependent genes located on the virulence plasmid (ipaH7.8 and ospC1) and the chromosome (yccE and yfdF). Furthermore, we show that MxiE is no longer required for the expression of ipaH7.8, ospC1, yccE, and yfdF when H-NS silencing is relieved. Finally, we show that the H-NS anti-silencer VirB is not required for ipaH7.8 and yccE expression upon MxiE/IpgC overexpression. Based on these genetic studies, we propose a model of MxiE-dependent gene regulation in which MxiE counteracts H-NS-mediated silencing.IMPORTANCE The expression of horizontally acquired genes, including virulence genes, is subject to complex regulation involving xenogeneic silencing proteins, and counter-silencing mechanisms. The pathogenic properties of Shigella flexneri mainly rely on the acquisition of the type 3 secretion system (T3SS) and cognate effector proteins, whose expression is repressed by the xenogeneic silencing protein H-NS. Based on previous studies, releasing H-NS-mediated silencing mainly relies on two mechanisms involving (i) a temperature shift leading to the release of H-NS at the virF promoter, and (ii) the virulence factor VirB, which dislodges H-NS upon binding to specific motifs upstream of virulence genes, including those encoding the T3SS. In this study, we provide genetic evidence supporting the notion that, in addition to VirB, the AraC family member MxiE also contributes to releasing H-NS-mediated silencing in S. flexneri. The expression of horizontally acquired genes, including virulence genes, is subject to complex regulation involving xenogeneic silencing proteins, and counter-silencing mechanisms. The pathogenic properties of Shigella flexneri mainly rely on the acquisition of the type 3 secretion system (T3SS) and cognate effector proteins, whose expression is repressed by the xenogeneic silencing protein H-NS. Shigella flexneri uses a type 3 secretion system (T3SS) apparatus to inject virulence effector proteins into the host cell cytosol. Upon host cell contact, MxiE, an S. flexneri AraC-like transcriptional regulator, is required for the expression of a subset of T3SS effector genes encoded on the large virulence plasmid. Here, we defined the MxiE regulon using RNA-seq. We identified virulence plasmid- and chromosome-encoded genes that are activated in response to type 3 secretion in a MxiE-dependent manner. Bioinformatic analysis revealed that similar to previously known MxiE-dependent genes, chromosome-encoded genes yccE and yfdF contain a regulatory element known as the MxiE box, which is required for their MxiE-dependent expression. The significant AT enrichment of MxiE-dependent genes suggested the involvement of H-NS. Using a dominant negative H-NS system, we demonstrate that H-NS silences the expression of MxiE-dependent genes located on the virulence plasmid ( ipaH7 .8 and ospC1 ) and the chromosome ( yccE and yfdF ). Furthermore, we show that MxiE is no longer required for the expression of ipaH7.8 , ospC1, yccE , and yfdF when H-NS silencing is relieved. Finally, we show that the H-NS anti-silencer VirB is not required for ipaH7.8 and yccE expression upon MxiE/IpgC overexpression. Based on these genetic studies, we propose a model of MxiE-dependent gene regulation in which MxiE counteracts H-NS-mediated silencing. IMPORTANCE The expression of horizontally acquired genes, including virulence genes, is subject to complex regulation involving xenogeneic silencing proteins, and counter-silencing mechanisms. The pathogenic properties of Shigella flexneri mainly rely on the acquisition of the type 3 secretion system (T3SS) and cognate effector proteins, whose expression is repressed by the xenogeneic silencing protein H-NS. Based on previous studies, releasing H-NS-mediated silencing mainly relies on two mechanisms involving (i) a temperature shift leading to the release of H-NS at the virF promoter, and (ii) the virulence factor VirB, which dislodges H-NS upon binding to specific motifs upstream of virulence genes, including those encoding the T3SS. In this study, we provide genetic evidence supporting the notion that, in addition to VirB, the AraC family member MxiE also contributes to releasing H-NS-mediated silencing in S. flexneri . |
Author | Sebeck, Natalie Jadeja, Niti B. Hall, Chelsea P. Agaisse, Hervé |
Author_xml | – sequence: 1 givenname: Chelsea P. surname: Hall fullname: Hall, Chelsea P. organization: Department of Microbiology, Immunology, and Cancer Biology, University of Virginia School of Medicine, Charlottesville, Virginia, USA – sequence: 2 givenname: Niti B. surname: Jadeja fullname: Jadeja, Niti B. organization: Department of Microbiology, Immunology, and Cancer Biology, University of Virginia School of Medicine, Charlottesville, Virginia, USA – sequence: 3 givenname: Natalie surname: Sebeck fullname: Sebeck, Natalie organization: Department of Microbiology, Immunology, and Cancer Biology, University of Virginia School of Medicine, Charlottesville, Virginia, USA – sequence: 4 givenname: Hervé orcidid: 0000-0002-3350-0218 surname: Agaisse fullname: Agaisse, Hervé organization: Department of Microbiology, Immunology, and Cancer Biology, University of Virginia School of Medicine, Charlottesville, Virginia, USA |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/36346241$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kk1vEzEQhleoiJbSOye0EhcObPDHru29IFUhJZUKHNq7NfHOJo429tbeoIRfj_NRaCvBaSz7mcf26H2dnTjvMMveUjKilKlPq9gvMOCIkFJVBWMvsjPGZV1UpGQnj9an2UWMS0IIFUwIKV5lp1zwUrCSnmX34wUEMAMG-wsG613u2_zbxk6KHFyTT4vvt8UX7NE16IZ8sukDxnjEbA9TOVL5x9zHfkxT3RozSWXXuW2bq9y6_HZh59h1kLcdbly65k32soUu4sWxnmd3V5O78bS4-fH1enx5U0DF1FAIWpYGeYOVIoQjigpQoJAghFIGBFEl4IxX9YxxSrCEsuEGGEvn0CjDz7Prg7bxsNR9sCsIW-3B6v2GD3MNYbCmQ12nC5USdGZUU3LBgKmmNSBBSaOkFMn1-eDq17MVNiaNIkD3RPr0xNmFnvufupairqlKgg9HQfD3a4yDXtlodmNx6NdRM8lLKqSsaULfP0OXfh1cmlSiqloxSSuWqOJAQVyxvwQlehcNfYyG3kdDsx3_7vEP_jz9IQgJEAfABB9jwFYbO-wDkT5ku_-ZybPGB_c_W34DCbrXyw |
CitedBy_id | crossref_primary_10_1093_nar_gkaf182 crossref_primary_10_3390_microorganisms11071709 crossref_primary_10_1111_mmi_15344 crossref_primary_10_1128_mbio_01519_23 crossref_primary_10_1080_21505594_2023_2280838 crossref_primary_10_1128_spectrum_02713_23 |
Cites_doi | 10.1016/s0014-5793(03)00524-6 10.1128/IAI.69.10.6303-6309.2001 10.1128/CMR.00032-07 10.1046/j.1365-2958.2000.02179.x 10.1046/j.1365-2958.2003.03515.x 10.1128/mBio.00378-13 10.1128/JB.00313-09 10.1002/j.1460-2075.1994.tb06863.x 10.1046/j.1365-2958.2003.03347.x 10.1093/molbev/msab120 10.1128/msphere.00115-22 10.1007/BF02818608 10.1111/j.1365-2958.1991.tb00762.x 10.1111/mmi.13932 10.1111/j.1365-2958.2004.04421.x 10.1038/nbt.3519 10.1093/bioinformatics/btr064 10.1093/nar/gkz239 10.1128/iai.43.1.195-201.1984 10.1371/journal.pone.0240617 10.1128/JB.00212-13 10.1128/jb.88.5.1503-1518.1964 10.1093/bioinformatics/btt656 10.1128/IAI.03138-14 10.1128/jb.175.19.6142-6149.1993 10.1128/iai.35.3.852-860.1982 10.1006/mpat.1993.1047 10.1093/emboj/20.8.1850 10.1038/nrmicro.2016.10 10.1128/JB.00072-20 10.1111/j.1365-2958.2007.05620.x 10.1093/emboj/17.23.7033 10.1046/j.1365-2958.2003.03848.x 10.1128/IAI.00861-18 10.1093/nar/gkz1089 10.1073/pnas.86.10.3867 10.1126/science.1128794 10.1128/JB.186.3.699-705.2004 10.1146/annurev-micro-092412-155725 10.1093/nar/gkw257 10.1371/journal.pone.0032862 10.1099/mic.0.2007/015610-0 10.1073/pnas.85.8.2820 10.1093/infdis/159.6.1126 10.1046/j.1365-2958.2000.01772.x 10.1093/bioinformatics/btu170 10.1093/nar/gkt748 10.1093/nar/gkm712 10.1186/gb-2009-10-3-r25 10.1128/JB.184.24.6751-6759.2002 10.1074/jbc.M111429200 10.1128/JB.184.16.4409-4419.2002 10.1093/nar/gkp335 10.1099/mic.0.27639-0 10.1093/nar/gkl040 10.1111/j.1365-2958.1995.tb02301.x 10.1007/BF00290685 10.1016/0092-8674(94)90260-7 10.1128/JB.01813-06 10.1046/j.1365-2958.2002.02836.x 10.1038/ng.2369 10.1016/j.ymeth.2019.03.017 10.1128/mmbr.61.4.393-410.1997 10.1016/0022-2836(76)90119-4 10.1093/bioinformatics/btw069 10.1056/NEJMra041837 10.1016/s0923-2508(97)83619-4 10.1002/j.1460-2075.1995.tb07243.x 10.1128/iai.65.10.4005-4010.1997 10.1038/nmeth804 10.1371/journal.ppat.1005570 10.1038/s41467-019-09808-4 10.1128/JB.01824-07 10.1073/pnas.180094797 10.3390/genes7120112 10.1111/j.1365-2958.1989.tb00210.x 10.1111/j.1365-2958.2005.04645.x 10.1128/JB.188.3.1196-1198.2006 10.1371/journal.ppat.0020081 |
ContentType | Journal Article |
Copyright | Copyright © 2022 Hall et al. Copyright © 2022 Hall et al. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. Copyright © 2022 Hall et al. 2022 Hall et al. |
Copyright_xml | – notice: Copyright © 2022 Hall et al. – notice: Copyright © 2022 Hall et al. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: Copyright © 2022 Hall et al. 2022 Hall et al. |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7X7 7XB 8FE 8FH 8FI 8FJ 8FK ABUWG AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO FYUFA GHDGH GNUQQ HCIFZ K9. LK8 M0S M7P PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS 7X8 5PM DOA |
DOI | 10.1128/msphere.00485-22 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Health & Medical Collection ProQuest Central (purchase pre-March 2016) ProQuest SciTech Collection ProQuest Natural Science Journals Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection ProQuest Central Natural Science Collection ProQuest One Community College ProQuest Central Korea Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Biological Sciences ProQuest Health & Medical Collection Biological Science Database ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Publicly Available Content Database ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Natural Science Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Biological Science Collection ProQuest Central (New) ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest SciTech Collection ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | MEDLINE MEDLINE - Academic Publicly Available Content Database CrossRef |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 4 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 2379-5042 |
Editor | D'Orazio, Sarah E. F. |
Editor_xml | – sequence: 1 givenname: Sarah E. F. surname: D'Orazio fullname: D'Orazio, Sarah E. F. |
ExternalDocumentID | oai_doaj_org_article_95288861bc8d4362a28dfca7a87c8776 PMC9769918 00485-22 36346241 10_1128_msphere_00485_22 |
Genre | Journal Article Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: NIH HHS grantid: 5T32AI055432 – fundername: HHS | NIH | National Institute of Allergy and Infectious Diseases (NIAID) grantid: R01AI073904 – fundername: HHS | NIH | National Institute of Allergy and Infectious Diseases (NIAID) grantid: R01AI073904 funderid: https://doi.org/10.13039/100000060 – fundername: NIH grantid: 5T32AI055432 – fundername: ; grantid: R01AI073904 – fundername: ; grantid: 5T32AI055432 |
GroupedDBID | 0R~ 53G 5VS 7X7 8FE 8FH 8FI 8FJ AAFWJ AAGFI AAUOK AAYXX ABUWG ADBBV AFKRA AFPKN ALIPV ALMA_UNASSIGNED_HOLDINGS AOIJS BBNVY BCNDV BENPR BHPHI BPHCQ BVXVI CCPQU CITATION DIK EBS FRP FYUFA GROUPED_DOAJ H13 HCIFZ HMCUK HYE KQ8 LK8 M48 M7P M~E O9- OK1 PGMZT PHGZM PHGZT PIMPY PQQKQ PROAC R9- RHI RPM RSF UKHRP 3V. CGR CUY CVF ECM EIF NPM RHF BBAFP PQEST PQUKI 7XB 8FK AZQEC DWQXO GNUQQ K9. PKEHL PQGLB PRINS 7X8 PUEGO 5PM |
ID | FETCH-LOGICAL-a528t-6144ce3de58003ee65ae6e67a6688ca6084aeb359b2310e4a4d3ca22a66ad8c3 |
IEDL.DBID | M48 |
ISSN | 2379-5042 |
IngestDate | Wed Aug 27 00:42:13 EDT 2025 Thu Aug 21 18:40:17 EDT 2025 Sun Aug 24 03:58:57 EDT 2025 Sat Aug 23 13:29:45 EDT 2025 Wed Dec 21 20:55:14 EST 2022 Thu Jan 02 22:53:42 EST 2025 Tue Jul 01 02:17:04 EDT 2025 Thu Apr 24 22:59:18 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6 |
Keywords | anti-silencing T3SS MxiE H-NS Shigella silencing |
Language | English |
License | This is an open-access article distributed under the terms of the Creative Commons Attribution 4.0 International license. https://creativecommons.org/licenses/by/4.0 This is an open-access article distributed under the terms of the Creative Commons Attribution 4.0 International license. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a528t-6144ce3de58003ee65ae6e67a6688ca6084aeb359b2310e4a4d3ca22a66ad8c3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 The authors declare no conflict of interest. |
ORCID | 0000-0002-3350-0218 |
OpenAccessLink | https://www.proquest.com/docview/2759827152?pq-origsite=%requestingapplication% |
PMID | 36346241 |
PQID | 2759827152 |
PQPubID | 2045592 |
PageCount | 16 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_95288861bc8d4362a28dfca7a87c8776 pubmedcentral_primary_oai_pubmedcentral_nih_gov_9769918 proquest_miscellaneous_2734167791 proquest_journals_2759827152 asm2_journals_10_1128_msphere_00485_22 pubmed_primary_36346241 crossref_citationtrail_10_1128_msphere_00485_22 crossref_primary_10_1128_msphere_00485_22 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-12-21 |
PublicationDateYYYYMMDD | 2022-12-21 |
PublicationDate_xml | – month: 12 year: 2022 text: 2022-12-21 day: 21 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: 1752 N St., N.W., Washington, DC – name: Washington |
PublicationTitle | mSphere |
PublicationTitleAbbrev | mSphere |
PublicationTitleAlternate | mSphere |
PublicationYear | 2022 |
Publisher | American Society for Microbiology |
Publisher_xml | – name: American Society for Microbiology |
References | e_1_3_2_26_2 e_1_3_2_49_2 e_1_3_2_28_2 e_1_3_2_41_2 e_1_3_2_64_2 e_1_3_2_20_2 e_1_3_2_43_2 e_1_3_2_62_2 e_1_3_2_22_2 e_1_3_2_45_2 e_1_3_2_68_2 e_1_3_2_24_2 e_1_3_2_47_2 e_1_3_2_66_2 e_1_3_2_60_2 e_1_3_2_81_2 e_1_3_2_9_2 e_1_3_2_16_2 e_1_3_2_37_2 e_1_3_2_7_2 e_1_3_2_18_2 e_1_3_2_39_2 e_1_3_2_54_2 e_1_3_2_75_2 e_1_3_2_10_2 e_1_3_2_31_2 e_1_3_2_52_2 e_1_3_2_73_2 e_1_3_2_5_2 e_1_3_2_12_2 e_1_3_2_33_2 e_1_3_2_58_2 e_1_3_2_79_2 e_1_3_2_3_2 e_1_3_2_14_2 e_1_3_2_35_2 e_1_3_2_56_2 e_1_3_2_77_2 e_1_3_2_50_2 e_1_3_2_71_2 e_1_3_2_27_2 e_1_3_2_48_2 e_1_3_2_29_2 e_1_3_2_40_2 e_1_3_2_65_2 e_1_3_2_21_2 e_1_3_2_42_2 e_1_3_2_63_2 e_1_3_2_23_2 e_1_3_2_44_2 e_1_3_2_69_2 e_1_3_2_25_2 e_1_3_2_46_2 e_1_3_2_67_2 e_1_3_2_61_2 e_1_3_2_80_2 e_1_3_2_15_2 e_1_3_2_38_2 e_1_3_2_8_2 e_1_3_2_17_2 e_1_3_2_59_2 e_1_3_2_6_2 e_1_3_2_19_2 e_1_3_2_30_2 e_1_3_2_53_2 e_1_3_2_76_2 e_1_3_2_32_2 e_1_3_2_51_2 e_1_3_2_74_2 e_1_3_2_11_2 e_1_3_2_34_2 e_1_3_2_57_2 e_1_3_2_4_2 e_1_3_2_13_2 e_1_3_2_36_2 e_1_3_2_55_2 e_1_3_2_78_2 e_1_3_2_2_2 e_1_3_2_72_2 e_1_3_2_70_2 Silue, N, Campbell-Valois, FX (B47) 2022; 7 Parsot, C, Ageron, E, Penno, C, Mavris, M, Jamoussi, K, d'Hauteville, H, Sansonetti, P, Demers, B (B32) 2005; 56 Kane, CD, Schuch, R, Day, WA, Maurelli, AT (B38) 2002; 184 Dragoi, AM, Agaisse, H (B64) 2015; 83 Maurelli, AT, Blackmon, B, Curtiss, R (B18) 1984; 43 Maurelli, AT, Sansonetti, PJ (B10) 1988; 85 Lan, R, Lumb, B, Ryan, D, Reeves, PR (B48) 2001; 69 Tamura, KSG, Kumar, S (B80) 2021; 38 Mavris, M, Sansonetti, PJ, Parsot, C (B42) 2002; 184 Gao, F, Zhang, CT (B78) 2006; 34 Freese, NH, Norris, DC, Loraine, AE (B77) 2016; 32 Basta, DW, Pew, KL, Immak, JA, Park, HS, Picker, MA, Wigley, AF, Hensley, CT, Pearson, JS, Hartland, EL, Wing, HJ (B13) 2013; 195 Labrec, EH, Schneider, H, Magnani, TJ, Formal, SB (B65) 1964; 88 Picker, MA, Wing, HJ (B11) 2016; 7 Lang, B, Blot, N, Bouffartigues, E, Buckle, M, Geertz, M, Gualerzi, CO, Mavathur, R, Muskhelishvili, G, Pon, CL, Rimsky, S, Stella, S, Babu, MM, Travers, A (B55) 2007; 35 Navarre, WW, Porwollik, S, Wang, Y, McClelland, M, Rosen, H, Libby, SJ, Fang, FC (B50) 2006; 313 Wing, HJ, Yan, AW, Goldman, SR, Goldberg, MB (B27) 2004; 186 Penno, C, Parsot, C (B44) 2006; 188 B70 Bailey, TL, Boden, M, Buske, FA, Frith, M, Grant, CE, Clementi, L, Ren, J, Li, WW, Noble, WS (B75) 2009; 37 Watarai, M, Tobe, T, Yoshikawa, M, Sasakawa, C (B37) 1995; 14 Falconi, M, Colonna, B, Prosseda, G, Micheli, G, Gualerzi, CO (B16) 1998; 17 Jost, BH, Adler, B (B22) 1993; 14 Tobe, T, Nagai, S, Okada, N, Adler, B, Yoshikawa, M, Sasakawa, C (B30) 1991; 5 Sansonetti, PJ, Kopecko, DJ, Formal, SB (B9) 1982; 35 Parsot, C, Menard, R, Gounon, P, Sansonetti, PJ (B46) 1995; 16 Sansonetti, PJ (B3) 1998; 43 Beloin, C, Dorman, CJ (B14) 2003; 47 Adler, B, Sasakawa, C, Tobe, T, Makino, S, Komatsu, K, Yoshikawa, M (B29) 1989; 3 Langmead, B, Trapnell, C, Pop, M, Salzberg, SL (B71) 2009; 10 Prosseda, G, Fradiani, PA, Di Lorenzo, M, Falconi, M, Micheli, G, Casalino, M, Nicoletti, M, Colonna, B (B20) 1998; 149 Mavris, M, Page, AL, Tournebize, R, Demers, B, Sansonetti, P, Parsot, C (B40) 2002; 43 Gall, TL, Mavris, M, Martino, MC, Bernardini, ML, Denamur, E, Parsot, C (B12) 2005; 151 Prosseda, G, Falconi, M, Giangrossi, M, Gualerzi, CO, Micheli, G, Colonna, B (B19) 2004; 51 Menard, R, Sansonetti, P, Parsot, C, Vasselon, T (B33) 1994; 79 Yamada, H, Yoshida, T, Tanaka, K, Sasakawa, C, Mizuno, T (B68) 1991; 230 Köseoğlu, VK, Hall, CP, Rodríguez-López, EM, Agaisse, H (B66) 2019; 87 The, HC, Thanh, DP, Holt, KE, Thomson, NR, Baker, S (B49) 2016; 14 Veenendaal, AK, Hodgkinson, JL, Schwarzer, L, Stabat, D, Zenk, SF, Blocker, AJ (B36) 2007; 63 Castellanos, MI, Harrison, DJ, Smith, JM, Labahn, SK, Levy, KM, Wing, HJ (B15) 2009; 191 Bernardini, ML, Mounier, J, d'Hauteville, H, Coquis-Rondon, M, Sansonetti, PJ (B21) 1989; 86 Darwin, KH, Miller, VL (B57) 2001; 20 Kazi, MI, Conrado, AR, Mey, AR, Payne, SM, Davies, BW (B62) 2016; 12 Banos, RC, Pons, JI, Madrid, C, Juarez, A (B52) 2008; 154 Casadaban, MJ (B67) 1976; 104 Enninga, J, Mounier, J, Sansonetti, P, Tran Van Nhieu, G (B34) 2005; 2 McKenna, JA, Wing, HJ (B28) 2020; 202 Galan, JE, Lara-Tejero, M, Marlovits, TC, Wagner, S (B5) 2014; 68 Romero-Gonzalez, LE, Perez-Morales, D, Cortes-Avalos, D, Vazquez-Guerrero, E, Paredes-Hernandez, DA, Estrada-de Los Santos, P, Villa-Tanaca, L, De la Cruz, MA, Bustamante, VH, Ibarra, JA (B59) 2020; 15 Bray, NL, Pimentel, H, Melsted, P, Pachter, L (B72) 2016; 34 van Kessel, JC, Ulrich, LE, Zhulin, IB, Bassler, BL (B60) 2013; 4 Musher, DM, Musher, BL (B1) 2004; 351 McKenna, S, Beloin, C, Dorman, CJ (B25) 2003; 545 Bahrani, FK, Sansonetti, PJ, Parsot, C (B45) 1997; 65 Ramirez, F, Ryan, DP, Gruning, B, Bhardwaj, V, Kilpert, F, Richter, AS, Heyne, S, Dundar, F, Manke, T (B76) 2016; 44 Darwin, KH, Miller, VL (B58) 2000; 35 DuPont, HL, Levine, MM, Hornick, RB, Formal, SB (B2) 1989; 159 Bongrand, C, Sansonetti, PJ, Parsot, C (B41) 2012; 7 Gao, X, Zou, T, Mu, Z, Qin, B, Yang, J, Waltersperger, S, Wang, M, Cui, S, Jin, Q (B23) 2013; 41 Silue, N, Marcantonio, E, Campbell-Valois, FX (B43) 2020; 176 Holt, KE, Baker, S, Weill, FX, Holmes, EC, Kitchen, A, Yu, J, Sangal, V, Brown, DJ, Coia, JE, Kim, DW, Choi, SY, Kim, SH, da Silveira, WD, Pickard, DJ, Farrar, JJ, Parkhill, J, Dougan, G, Thomson, NR (B54) 2012; 44 Lucchini, S, Rowley, G, Goldberg, MD, Hurd, D, Harrison, M, Hinton, JC (B51) 2006; 2 Gallegos, MT, Schleif, R, Bairoch, A, Hofmann, K, Ramos, JL (B31) 1997; 61 Williamson, HS, Free, A (B53) 2005; 55 Bolger, AM, Lohse, M, Usadel, B (B69) 2014; 30 Schroeder, GN, Hilbi, H (B6) 2008; 21 Liao, Y, Smyth, GK, Shi, W (B73) 2014; 30 Chaparian, RR, Tran, MLN, Miller Conrad, LC, Rusch, DB, van Kessel, JC (B61) 2020; 48 Turner, EC, Dorman, CJ (B26) 2007; 189 Letunic, I, Bork, P (B79) 2019; 47 Pupo, GM, Lan, R, Reeves, PR (B8) 2000; 97 Grant, CE, Bailey, TL, Noble, WS (B74) 2011; 27 Beloin, C, McKenna, S, Dorman, CJ (B24) 2002; 277 Weatherspoon-Griffin, N, Picker, MA, Pew, KL, Park, HS, Ginete, DR, Karney, MM, Usufzy, P, Castellanos, MI, Duhart, JC, Harrison, DJ, Socea, JN, Karabachev, AD, Hensley, CT, Howerton, AJ, Ojeda-Daulo, R, Immak, JA, Wing, HJ (B63) 2018; 108 Buchrieser, C, Glaser, P, Rusniok, C, Nedjari, H, D'Hauteville, H, Kunst, F, Sansonetti, P, Parsot, C (B7) 2000; 38 Menard, R, Sansonetti, P, Parsot, C (B35) 1994; 13 Tobe, T, Yoshikawa, M, Mizuno, T, Sasakawa, C (B17) 1993; 175 Yum, LK, Byndloss, MX, Feldman, SH, Agaisse, H (B4) 2019; 10 Deighan, P, Beloin, C, Dorman, CJ (B56) 2003; 48 Pilonieta, MC, Munson, GP (B39) 2008; 190 |
References_xml | – ident: e_1_3_2_26_2 doi: 10.1016/s0014-5793(03)00524-6 – ident: e_1_3_2_49_2 doi: 10.1128/IAI.69.10.6303-6309.2001 – ident: e_1_3_2_7_2 doi: 10.1128/CMR.00032-07 – ident: e_1_3_2_8_2 doi: 10.1046/j.1365-2958.2000.02179.x – ident: e_1_3_2_57_2 doi: 10.1046/j.1365-2958.2003.03515.x – ident: e_1_3_2_61_2 doi: 10.1128/mBio.00378-13 – ident: e_1_3_2_16_2 doi: 10.1128/JB.00313-09 – ident: e_1_3_2_36_2 doi: 10.1002/j.1460-2075.1994.tb06863.x – ident: e_1_3_2_15_2 doi: 10.1046/j.1365-2958.2003.03347.x – ident: e_1_3_2_81_2 doi: 10.1093/molbev/msab120 – ident: e_1_3_2_48_2 doi: 10.1128/msphere.00115-22 – ident: e_1_3_2_4_2 doi: 10.1007/BF02818608 – ident: e_1_3_2_31_2 doi: 10.1111/j.1365-2958.1991.tb00762.x – ident: e_1_3_2_64_2 doi: 10.1111/mmi.13932 – ident: e_1_3_2_54_2 doi: 10.1111/j.1365-2958.2004.04421.x – ident: e_1_3_2_73_2 doi: 10.1038/nbt.3519 – ident: e_1_3_2_75_2 doi: 10.1093/bioinformatics/btr064 – ident: e_1_3_2_80_2 doi: 10.1093/nar/gkz239 – ident: e_1_3_2_19_2 doi: 10.1128/iai.43.1.195-201.1984 – ident: e_1_3_2_60_2 doi: 10.1371/journal.pone.0240617 – ident: e_1_3_2_14_2 doi: 10.1128/JB.00212-13 – ident: e_1_3_2_66_2 doi: 10.1128/jb.88.5.1503-1518.1964 – ident: e_1_3_2_74_2 doi: 10.1093/bioinformatics/btt656 – ident: e_1_3_2_65_2 doi: 10.1128/IAI.03138-14 – ident: e_1_3_2_18_2 doi: 10.1128/jb.175.19.6142-6149.1993 – ident: e_1_3_2_10_2 doi: 10.1128/iai.35.3.852-860.1982 – ident: e_1_3_2_23_2 doi: 10.1006/mpat.1993.1047 – ident: e_1_3_2_71_2 – ident: e_1_3_2_58_2 doi: 10.1093/emboj/20.8.1850 – ident: e_1_3_2_50_2 doi: 10.1038/nrmicro.2016.10 – ident: e_1_3_2_29_2 doi: 10.1128/JB.00072-20 – ident: e_1_3_2_37_2 doi: 10.1111/j.1365-2958.2007.05620.x – ident: e_1_3_2_17_2 doi: 10.1093/emboj/17.23.7033 – ident: e_1_3_2_20_2 doi: 10.1046/j.1365-2958.2003.03848.x – ident: e_1_3_2_67_2 doi: 10.1128/IAI.00861-18 – ident: e_1_3_2_62_2 doi: 10.1093/nar/gkz1089 – ident: e_1_3_2_22_2 doi: 10.1073/pnas.86.10.3867 – ident: e_1_3_2_51_2 doi: 10.1126/science.1128794 – ident: e_1_3_2_28_2 doi: 10.1128/JB.186.3.699-705.2004 – ident: e_1_3_2_6_2 doi: 10.1146/annurev-micro-092412-155725 – ident: e_1_3_2_77_2 doi: 10.1093/nar/gkw257 – ident: e_1_3_2_42_2 doi: 10.1371/journal.pone.0032862 – ident: e_1_3_2_53_2 doi: 10.1099/mic.0.2007/015610-0 – ident: e_1_3_2_11_2 doi: 10.1073/pnas.85.8.2820 – ident: e_1_3_2_3_2 doi: 10.1093/infdis/159.6.1126 – ident: e_1_3_2_59_2 doi: 10.1046/j.1365-2958.2000.01772.x – ident: e_1_3_2_70_2 doi: 10.1093/bioinformatics/btu170 – ident: e_1_3_2_24_2 doi: 10.1093/nar/gkt748 – ident: e_1_3_2_56_2 doi: 10.1093/nar/gkm712 – ident: e_1_3_2_72_2 doi: 10.1186/gb-2009-10-3-r25 – ident: e_1_3_2_43_2 doi: 10.1128/JB.184.24.6751-6759.2002 – ident: e_1_3_2_25_2 doi: 10.1074/jbc.M111429200 – ident: e_1_3_2_39_2 doi: 10.1128/JB.184.16.4409-4419.2002 – ident: e_1_3_2_76_2 doi: 10.1093/nar/gkp335 – ident: e_1_3_2_13_2 doi: 10.1099/mic.0.27639-0 – ident: e_1_3_2_79_2 doi: 10.1093/nar/gkl040 – ident: e_1_3_2_47_2 doi: 10.1111/j.1365-2958.1995.tb02301.x – ident: e_1_3_2_69_2 doi: 10.1007/BF00290685 – ident: e_1_3_2_34_2 doi: 10.1016/0092-8674(94)90260-7 – ident: e_1_3_2_27_2 doi: 10.1128/JB.01813-06 – ident: e_1_3_2_41_2 doi: 10.1046/j.1365-2958.2002.02836.x – ident: e_1_3_2_55_2 doi: 10.1038/ng.2369 – ident: e_1_3_2_44_2 doi: 10.1016/j.ymeth.2019.03.017 – ident: e_1_3_2_32_2 doi: 10.1128/mmbr.61.4.393-410.1997 – ident: e_1_3_2_68_2 doi: 10.1016/0022-2836(76)90119-4 – ident: e_1_3_2_78_2 doi: 10.1093/bioinformatics/btw069 – ident: e_1_3_2_2_2 doi: 10.1056/NEJMra041837 – ident: e_1_3_2_21_2 doi: 10.1016/s0923-2508(97)83619-4 – ident: e_1_3_2_38_2 doi: 10.1002/j.1460-2075.1995.tb07243.x – ident: e_1_3_2_46_2 doi: 10.1128/iai.65.10.4005-4010.1997 – ident: e_1_3_2_35_2 doi: 10.1038/nmeth804 – ident: e_1_3_2_63_2 doi: 10.1371/journal.ppat.1005570 – ident: e_1_3_2_5_2 doi: 10.1038/s41467-019-09808-4 – ident: e_1_3_2_40_2 doi: 10.1128/JB.01824-07 – ident: e_1_3_2_9_2 doi: 10.1073/pnas.180094797 – ident: e_1_3_2_12_2 doi: 10.3390/genes7120112 – ident: e_1_3_2_30_2 doi: 10.1111/j.1365-2958.1989.tb00210.x – ident: e_1_3_2_33_2 doi: 10.1111/j.1365-2958.2005.04645.x – ident: e_1_3_2_45_2 doi: 10.1128/JB.188.3.1196-1198.2006 – ident: e_1_3_2_52_2 doi: 10.1371/journal.ppat.0020081 – volume: 175 start-page: 6142 year: 1993 end-page: 6149 ident: B17 article-title: Transcriptional control of the invasion regulatory gene virB of Shigella flexneri: activation by virF and repression by H-NS publication-title: J Bacteriol doi: 10.1128/jb.175.19.6142-6149.1993 – volume: 313 start-page: 236 year: 2006 end-page: 238 ident: B50 article-title: Selective silencing of foreign DNA with low GC content by the H-NS protein in Salmonella publication-title: Science doi: 10.1126/science.1128794 – volume: 68 start-page: 415 year: 2014 end-page: 438 ident: B5 article-title: Bacterial type III secretion systems: specialized nanomachines for protein delivery into target cells publication-title: Annu Rev Microbiol doi: 10.1146/annurev-micro-092412-155725 – volume: 12 year: 2016 ident: B62 article-title: ToxR antagonizes H-NS regulation of horizontally acquired genes to drive host colonization publication-title: PLoS Pathog doi: 10.1371/journal.ppat.1005570 – volume: 30 start-page: 923 year: 2014 end-page: 930 ident: B73 article-title: featureCounts: an efficient general purpose program for assigning sequence reads to genomic features publication-title: Bioinformatics doi: 10.1093/bioinformatics/btt656 – volume: 55 start-page: 808 year: 2005 end-page: 827 ident: B53 article-title: A truncated H-NS-like protein from enteropathogenic Escherichia coli acts as an H-NS antagonist publication-title: Mol Microbiol doi: 10.1111/j.1365-2958.2004.04421.x – volume: 69 start-page: 6303 year: 2001 end-page: 6309 ident: B48 article-title: Molecular evolution of large virulence plasmid in Shigella clones and enteroinvasive Escherichia coli publication-title: Infect Immun doi: 10.1128/IAI.69.10.6303-6309.2001 – volume: 79 start-page: 515 year: 1994 end-page: 525 ident: B33 article-title: Extracellular association and cytoplasmic partitioning of the IpaB and IpaC invasins of S. flexneri publication-title: Cell doi: 10.1016/0092-8674(94)90260-7 – volume: 230 start-page: 332 year: 1991 end-page: 336 ident: B68 article-title: Molecular analysis of the Escherichia coli hns gene encoding a DNA-binding protein, which preferentially recognizes curved DNA sequences publication-title: Mol Gen Genet doi: 10.1007/BF00290685 – volume: 10 start-page: R25 year: 2009 ident: B71 article-title: Ultrafast and memory-efficient alignment of short DNA sequences to the human genome publication-title: Genome Biol doi: 10.1186/gb-2009-10-3-r25 – volume: 545 start-page: 183 year: 2003 end-page: 187 ident: B25 article-title: In vitro DNA-binding properties of VirB, the Shigella flexneri virulence regulatory protein publication-title: FEBS Lett doi: 10.1016/s0014-5793(03)00524-6 – volume: 87 year: 2019 ident: B66 article-title: The autotransporter IcsA promotes Shigella flexneri biofilm formation in the presence of bile salts publication-title: Infect Immun doi: 10.1128/IAI.00861-18 – volume: 34 start-page: 525 year: 2016 end-page: 527 ident: B72 article-title: Near-optimal probabilistic RNA-seq quantification publication-title: Nat Biotechnol doi: 10.1038/nbt.3519 – volume: 43 start-page: 195 year: 1984 end-page: 201 ident: B18 article-title: Temperature-dependent expression of virulence genes in Shigella species publication-title: Infect Immun doi: 10.1128/iai.43.1.195-201.1984 – volume: 37 start-page: W202 year: 2009 ident: B75 article-title: MEME SUITE: tools for motif discovery and searching publication-title: Nucleic Acids Res doi: 10.1093/nar/gkp335 – volume: 151 start-page: 951 year: 2005 end-page: 962 ident: B12 article-title: Analysis of virulence plasmid gene expression defines three classes of effectors in the type III secretion system of Shigella flexneri publication-title: Microbiology (Reading) doi: 10.1099/mic.0.27639-0 – volume: 191 start-page: 4047 year: 2009 end-page: 4050 ident: B15 article-title: VirB alleviates H-NS repression of the icsP promoter in Shigella flexneri from sites more than one kilobase upstream of the transcription start site publication-title: J Bacteriol doi: 10.1128/JB.00313-09 – volume: 202 year: 2020 ident: B28 article-title: The antiactivator of type III secretion, OspD1, is transcriptionally regulated by VirB and H-NS from remote sequences in Shigella flexneri publication-title: J Bacteriol doi: 10.1128/JB.00072-20 – volume: 186 start-page: 699 year: 2004 end-page: 705 ident: B27 article-title: Regulation of IcsP, the outer membrane protease of the Shigella actin tail assembly protein IcsA, by virulence plasmid regulators VirF and VirB publication-title: J Bacteriol doi: 10.1128/JB.186.3.699-705.2004 – volume: 34 start-page: W686 year: 2006 ident: B78 article-title: GC-Profile: a web-based tool for visualizing and analyzing the variation of GC content in genomic sequences publication-title: Nucleic Acids Res doi: 10.1093/nar/gkl040 – volume: 195 start-page: 2562 year: 2013 end-page: 2572 ident: B13 article-title: Characterization of the ospZ promoter in Shigella flexneri and its regulation by VirB and H-NS publication-title: J Bacteriol doi: 10.1128/JB.00212-13 – volume: 17 start-page: 7033 year: 1998 end-page: 7043 ident: B16 article-title: Thermoregulation of Shigella and Escherichia coli EIEC pathogenicity. A temperature-dependent structural transition of DNA modulates accessibility of virF promoter to transcriptional repressor H-NS publication-title: EMBO J doi: 10.1093/emboj/17.23.7033 – volume: 188 start-page: 1196 year: 2006 end-page: 1198 ident: B44 article-title: Transcriptional slippage in mxiE controls transcription and translation of the downstream mxiD gene, which encodes a component of the Shigella flexneri type III secretion apparatus publication-title: J Bacteriol doi: 10.1128/JB.188.3.1196-1198.2006 – volume: 47 start-page: W256 year: 2019 end-page: W259 ident: B79 article-title: Interactive Tree Of Life (iTOL) v4: recent updates and new developments publication-title: Nucleic Acids Res doi: 10.1093/nar/gkz239 – volume: 65 start-page: 4005 year: 1997 end-page: 4010 ident: B45 article-title: Secretion of Ipa proteins by Shigella flexneri: inducer molecules and kinetics of activation publication-title: Infect Immun doi: 10.1128/iai.65.10.4005-4010.1997 – volume: 7 year: 2022 ident: B47 article-title: icaR and icaT are ancient chromosome genes encoding substrates of the type iii secretion apparatus in Shigella flexneri publication-title: mSphere doi: 10.1128/msphere.00115-22 – volume: 48 start-page: 171 year: 2020 end-page: 183 ident: B61 article-title: Global H-NS counter-silencing by LuxR activates quorum sensing gene expression publication-title: Nucleic Acids Res doi: 10.1093/nar/gkz1089 – volume: 48 start-page: 1401 year: 2003 end-page: 1416 ident: B56 article-title: Three-way interactions among the Sfh, StpA and H-NS nucleoid-structuring proteins of Shigella flexneri 2a strain 2457T publication-title: Mol Microbiol doi: 10.1046/j.1365-2958.2003.03515.x – volume: 4 year: 2013 ident: B60 article-title: Analysis of activator and repressor functions reveals the requirements for transcriptional control by LuxR, the master regulator of quorum sensing in Vibrio harveyi publication-title: mBio doi: 10.1128/mBio.00378-13 – volume: 14 start-page: 2461 year: 1995 end-page: 2470 ident: B37 article-title: Contact of Shigella with host cells triggers release of Ipa invasins and is an essential function of invasiveness publication-title: EMBO J doi: 10.1002/j.1460-2075.1995.tb07243.x – volume: 277 start-page: 15333 year: 2002 end-page: 15344 ident: B24 article-title: Molecular dissection of VirB, a key regulator of the virulence cascade of Shigella flexneri publication-title: J Biol Chem doi: 10.1074/jbc.M111429200 – volume: 35 start-page: 852 year: 1982 end-page: 860 ident: B9 article-title: Involvement of a plasmid in the invasive ability of Shigella flexneri publication-title: Infect Immun doi: 10.1128/iai.35.3.852-860.1982 – volume: 14 start-page: 235 year: 2016 end-page: 250 ident: B49 article-title: The genomic signatures of Shigella evolution, adaptation and geographical spread publication-title: Nat Rev Microbiol doi: 10.1038/nrmicro.2016.10 – volume: 20 start-page: 1850 year: 2001 end-page: 1862 ident: B57 article-title: Type III secretion chaperone-dependent regulation: activation of virulence genes by SicA and InvF in Salmonella typhimurium publication-title: EMBO J doi: 10.1093/emboj/20.8.1850 – volume: 86 start-page: 3867 year: 1989 end-page: 3871 ident: B21 article-title: Identification of icsA, a plasmid locus of Shigella flexneri that governs bacterial intra- and intercellular spread through interaction with F-actin publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.86.10.3867 – volume: 88 start-page: 1503 year: 1964 end-page: 1518 ident: B65 article-title: Epithelial cell penetration as an essential step in the pathogenesis of bacillary dysentery publication-title: J Bacteriol doi: 10.1128/jb.88.5.1503-1518.1964 – volume: 159 start-page: 1126 year: 1989 end-page: 1128 ident: B2 article-title: Inoculum size in shigellosis and implications for expected mode of transmission publication-title: J Infect Dis doi: 10.1093/infdis/159.6.1126 – volume: 32 start-page: 2089 year: 2016 end-page: 2095 ident: B77 article-title: Integrated genome browser: visual analytics platform for genomics publication-title: Bioinformatics doi: 10.1093/bioinformatics/btw069 – volume: 21 start-page: 134 year: 2008 end-page: 156 ident: B6 article-title: Molecular pathogenesis of Shigella spp.: controlling host cell signaling, invasion, and death by type III secretion publication-title: Clin Microbiol Rev doi: 10.1128/CMR.00032-07 – volume: 85 start-page: 2820 year: 1988 end-page: 2824 ident: B10 article-title: Identification of a chromosomal gene controlling temperature-regulated expression of Shigella virulence publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.85.8.2820 – volume: 7 start-page: 112 year: 2016 ident: B11 article-title: H-NS, its family members and their regulation of virulence genes in Shigella species publication-title: Genes (Basel) doi: 10.3390/genes7120112 – volume: 43 start-page: 239 year: 1998 end-page: 246 ident: B3 article-title: Molecular and cellular mechanisms of invasion of the intestinal barrier by enteric pathogens. The paradigm of Shigella publication-title: Folia Microbiol (Praha) doi: 10.1007/BF02818608 – volume: 97 start-page: 10567 year: 2000 end-page: 10572 ident: B8 article-title: Multiple independent origins of Shigella clones of Escherichia coli and convergent evolution of many of their characteristics publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.180094797 – volume: 5 start-page: 887 year: 1991 end-page: 893 ident: B30 article-title: Temperature-regulated expression of invasion genes in Shigella flexneri is controlled through the transcriptional activation of the virB gene on the large plasmid publication-title: Mol Microbiol doi: 10.1111/j.1365-2958.1991.tb00762.x – volume: 176 start-page: 71 year: 2020 end-page: 81 ident: B43 article-title: RNA-seq analysis of the T3SA regulon in Shigella flexneri reveals two new chromosomal genes upregulated in the on-state publication-title: Methods doi: 10.1016/j.ymeth.2019.03.017 – volume: 108 start-page: 505 year: 2018 end-page: 518 ident: B63 article-title: Insights into transcriptional silencing and anti-silencing in Shigella flexneri: a detailed molecular analysis of the icsP virulence locus publication-title: Mol Microbiol doi: 10.1111/mmi.13932 – volume: 2 start-page: 959 year: 2005 end-page: 965 ident: B34 article-title: Secretion of type III effectors into host cells in real time publication-title: Nat Methods doi: 10.1038/nmeth804 – volume: 30 start-page: 2114 year: 2014 end-page: 2120 ident: B69 article-title: Trimmomatic: a flexible trimmer for Illumina sequence data publication-title: Bioinformatics doi: 10.1093/bioinformatics/btu170 – volume: 3 start-page: 627 year: 1989 end-page: 635 ident: B29 article-title: A dual transcriptional activation system for the 230 kb plasmid genes coding for virulence-associated antigens of Shigella flexneri publication-title: Mol Microbiol doi: 10.1111/j.1365-2958.1989.tb00210.x – volume: 104 start-page: 541 year: 1976 end-page: 555 ident: B67 article-title: Transposition and fusion of the lac genes to selected promoters in Escherichia coli using bacteriophage lambda and Mu publication-title: J Mol Biol doi: 10.1016/0022-2836(76)90119-4 – volume: 2 year: 2006 ident: B51 article-title: H-NS mediates the silencing of laterally acquired genes in bacteria publication-title: PLoS Pathog doi: 10.1371/journal.ppat.0020081 – volume: 351 start-page: 2417 year: 2004 end-page: 2427 ident: B1 article-title: Contagious acute gastrointestinal infections publication-title: N Engl J Med doi: 10.1056/NEJMra041837 – volume: 51 start-page: 523 year: 2004 end-page: 537 ident: B19 article-title: The virF promoter in Shigella: more than just a curved DNA stretch publication-title: Mol Microbiol doi: 10.1046/j.1365-2958.2003.03848.x – volume: 7 year: 2012 ident: B41 article-title: Characterization of the promoter, MxiE box and 5' UTR of genes controlled by the activity of the type III secretion apparatus in Shigella flexneri publication-title: PLoS One doi: 10.1371/journal.pone.0032862 – volume: 44 start-page: W160 year: 2016 ident: B76 article-title: deepTools2: a next generation web server for deep-sequencing data analysis publication-title: Nucleic Acids Res doi: 10.1093/nar/gkw257 – volume: 184 start-page: 6751 year: 2002 end-page: 6759 ident: B42 article-title: Identification of the cis-acting site involved in activation of promoters regulated by activity of the type III secretion apparatus in Shigella flexneri publication-title: J Bacteriol doi: 10.1128/JB.184.24.6751-6759.2002 – volume: 83 start-page: 1695 year: 2015 end-page: 1704 ident: B64 article-title: The class II phosphatidylinositol 3-phosphate kinase PIK3C2A promotes Shigella flexneri dissemination through formation of vacuole-like protrusions publication-title: Infect Immun doi: 10.1128/IAI.03138-14 – volume: 41 start-page: 10529 year: 2013 end-page: 10541 ident: B23 article-title: Structural insights into VirB-DNA complexes reveal mechanism of transcriptional activation of virulence genes publication-title: Nucleic Acids Res doi: 10.1093/nar/gkt748 – volume: 56 start-page: 1627 year: 2005 end-page: 1635 ident: B32 article-title: A secreted anti-activator, OspD1, and its chaperone, Spa15, are involved in the control of transcription by the type III secretion apparatus activity in Shigella flexneri publication-title: Mol Microbiol doi: 10.1111/j.1365-2958.2005.04645.x – volume: 44 start-page: 1056 year: 2012 end-page: 1059 ident: B54 article-title: Shigella sonnei genome sequencing and phylogenetic analysis indicate recent global dissemination from Europe publication-title: Nat Genet doi: 10.1038/ng.2369 – volume: 149 start-page: 15 year: 1998 end-page: 25 ident: B20 article-title: A role for H-NS in the regulation of the virF gene of Shigella and enteroinvasive Escherichia coli publication-title: Res Microbiol doi: 10.1016/s0923-2508(97)83619-4 – volume: 61 start-page: 393 year: 1997 end-page: 410 ident: B31 article-title: Arac/XylS family of transcriptional regulators publication-title: Microbiol Mol Biol Rev doi: 10.1128/mmbr.61.4.393-410.1997 – volume: 14 start-page: 481 year: 1993 end-page: 488 ident: B22 article-title: Site of transcriptional activation of virB on the large plasmid of Shigella flexneri 2a by VirF, a member of the AraC family of transcriptional activators publication-title: Microb Pathog doi: 10.1006/mpat.1993.1047 – volume: 27 start-page: 1017 year: 2011 end-page: 1018 ident: B74 article-title: FIMO: scanning for occurrences of a given motif publication-title: Bioinformatics doi: 10.1093/bioinformatics/btr064 – ident: B70 article-title: Andrews . 2010 . FastQC, a quality control tool for high throughput sequence data . – volume: 35 start-page: 949 year: 2000 end-page: 960 ident: B58 article-title: The putative invasion protein chaperone SicA acts together with InvF to activate the expression of Salmonella typhimurium virulence genes publication-title: Mol Microbiol doi: 10.1046/j.1365-2958.2000.01772.x – volume: 154 start-page: 1281 year: 2008 end-page: 1289 ident: B52 article-title: A global modulatory role for the Yersinia enterocolitica H-NS protein publication-title: Microbiology (Reading) doi: 10.1099/mic.0.2007/015610-0 – volume: 184 start-page: 4409 year: 2002 end-page: 4419 ident: B38 article-title: MxiE regulates intracellular expression of factors secreted by the Shigella flexneri 2a type III secretion system publication-title: J Bacteriol doi: 10.1128/JB.184.16.4409-4419.2002 – volume: 15 year: 2020 ident: B59 article-title: The Salmonella Typhimurium InvF-SicA complex is necessary for the transcription of sopB in the absence of the repressor H-NS publication-title: PLoS One doi: 10.1371/journal.pone.0240617 – volume: 63 start-page: 1719 year: 2007 end-page: 1730 ident: B36 article-title: The type III secretion system needle tip complex mediates host cell sensing and translocon insertion publication-title: Mol Microbiol doi: 10.1111/j.1365-2958.2007.05620.x – volume: 35 start-page: 6330 year: 2007 end-page: 6337 ident: B55 article-title: High-affinity DNA binding sites for H-NS provide a molecular basis for selective silencing within proteobacterial genomes publication-title: Nucleic Acids Res doi: 10.1093/nar/gkm712 – volume: 47 start-page: 825 year: 2003 end-page: 838 ident: B14 article-title: An extended role for the nucleoid structuring protein H-NS in the virulence gene regulatory cascade of Shigella flexneri publication-title: Mol Microbiol doi: 10.1046/j.1365-2958.2003.03347.x – volume: 16 start-page: 291 year: 1995 end-page: 300 ident: B46 article-title: Enhanced secretion through the Shigella flexneri Mxi-Spa translocon leads to assembly of extracellular proteins into macromolecular structures publication-title: Mol Microbiol doi: 10.1111/j.1365-2958.1995.tb02301.x – volume: 38 start-page: 3022 year: 2021 end-page: 3027 ident: B80 article-title: MEGA 11: molecular Evolutionary Genetics Analysis Version 11 publication-title: Mol Biol Evol doi: 10.1093/molbev/msab120 – volume: 190 start-page: 2249 year: 2008 end-page: 2251 ident: B39 article-title: The chaperone IpgC copurifies with the virulence regulator MxiE publication-title: J Bacteriol doi: 10.1128/JB.01824-07 – volume: 43 start-page: 1543 year: 2002 end-page: 1553 ident: B40 article-title: Regulation of transcription by the activity of the Shigella flexneri type III secretion apparatus publication-title: Mol Microbiol doi: 10.1046/j.1365-2958.2002.02836.x – volume: 13 start-page: 5293 year: 1994 end-page: 5302 ident: B35 article-title: The secretion of the Shigella flexneri Ipa invasins is activated by epithelial cells and controlled by IpaB and IpaD publication-title: EMBO J doi: 10.1002/j.1460-2075.1994.tb06863.x – volume: 38 start-page: 760 year: 2000 end-page: 771 ident: B7 article-title: The virulence plasmid pWR100 and the repertoire of proteins secreted by the type III secretion apparatus of Shigella flexneri publication-title: Mol Microbiol doi: 10.1046/j.1365-2958.2000.02179.x – volume: 10 start-page: 1826 year: 2019 ident: B4 article-title: Critical role of bacterial dissemination in an infant rabbit model of bacillary dysentery publication-title: Nat Commun doi: 10.1038/s41467-019-09808-4 – volume: 189 start-page: 3403 year: 2007 end-page: 3413 ident: B26 article-title: H-NS antagonism in Shigella flexneri by VirB, a virulence gene transcription regulator that is closely related to plasmid partition factors publication-title: J Bacteriol doi: 10.1128/JB.01813-06 |
SSID | ssj0001626676 |
Score | 2.246901 |
Snippet | The expression of horizontally acquired genes, including virulence genes, is subject to complex regulation involving xenogeneic silencing proteins, and... Shigella flexneri uses a type 3 secretion system (T3SS) apparatus to inject virulence effector proteins into the host cell cytosol. Upon host cell contact,... ABSTRACTShigella flexneri uses a type 3 secretion system (T3SS) apparatus to inject virulence effector proteins into the host cell cytosol. Upon host cell... Shigella flexneri uses a type 3 secretion system (T3SS) apparatus to inject virulence effector proteins into the host cell cytosol. Upon host cell contact,... ABSTRACT Shigella flexneri uses a type 3 secretion system (T3SS) apparatus to inject virulence effector proteins into the host cell cytosol. Upon host cell... |
SourceID | doaj pubmedcentral proquest asm2 pubmed crossref |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | e0048522 |
SubjectTerms | anti-silencing Bacteria Bacterial Proteins - genetics Bacterial Proteins - metabolism Bacteriology Chromosomes Cytosol DNA-Binding Proteins - genetics Gene expression Gene regulation H protein H-NS Infections MxiE Proteins Regulatory sequences Research Article Secretion Shigella Shigella flexneri Shigella flexneri - genetics Shigella flexneri - metabolism silencing T3SS Transcription Factors - genetics Transcription Factors - metabolism Type III Secretion Systems - genetics Type III Secretion Systems - metabolism Variance analysis Virulence Virulence factors |
SummonAdditionalLinks | – databaseName: American Society for Microbiology Open Access dbid: AAUOK link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3da9swEBclZbCX0e7TWzs0GINBlMayvvyYZQlho91DW-ibkSV5NbRKaFJI_vudbMVdRil71eks-z6knyzdHUKfeSmh3UrCWQjJSV1JVCVykiqXlzBnWq5DvPPpmZhdsh9X_GoP8W0sTJTgcqCXt81BfufZVJ3cLkOovRsEs-OEwsy7z2nOhj20Pxpd_vr58HMFYLqQ3bHkI6wwA8MIdGc1apL2P4Y0_70w-dcKND1ALyJ0xKNW14doz_mX6FlbTHLzCvlxl3u5Da3E8wqfrusJwdpbPCNn5-R7LHm7wpN1vAHbdKsXeiYHqo_ny8U47eONMZN-w7ap7BTXHp9f17_DRSlc3bi1hzFeo4vp5GI8I7GaAtGcqhUJOz_jMus4YMTMOcG1E05ILYRSRouhYhp21jwvA-RzTDObGU0p0LVVJnuDen7u3TuEU2FyqypeVrlghg61pbLKApCBp1NTJuhLkG2x1WXRbDSoKqISikYJBaUJOtlKvzAxJXmojHHzBMfXjmPRpuN4ou-3oNCuX0ik3TSAWRXRL4scZKOUSEujLIPFXFNlK6OlVtIoKUWCjrbm8PA9VIa0hxKgT4I-dWTwy3DYor2b34c-gA-ElHmaoLet9XRvkokMPIMBRe7Y1c6r7lJ8fd3k_gb0CIhevf9fEX9Az2kI2EgpoekR6q3u7t0xwKhV-TE6zR8ADBod priority: 102 providerName: American Society for Microbiology – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3da9swEBcjMNjLWNd9uOuKBmMwiJpatj78uGYJYdC-tIO-GVmSV0OrhCWF5L_vnex6yRjty16tk62PO-l3lu53hHwWlYLnTjGRY0hO6iuma1mwVPuigjXTCYPxzmfncvYz_3ElrrZSfeGdsJYeuB24USE4OGkyrax2Oay2hmtXW6OMVlYrFcm2Yc_bcqbi3xXA6VL155Jcj26XGKbvj1FlBcNcuQOzvOU721Fk7f8X1Pz7xuTWFjR9RV522JF-a9u8R5758Jo8b7NJbvZJGPfky21sJZ3X9GzdTBg1wdEZO79g37uctys6WXdXYKNYszAzdayHdL5cjNMh3Vg7GcZqm9pNaRPoxXXzC29K0frGrwN84w25nE4uxzPWpVNgBsZwxdD1sz5zXgBIzLyXwnjppTJSam2NPNG5AddaFBViPp-b3GXWcA7lxmmbvSWDMA_-PaGptIXTtajqQuaWnxjHVZ0hkoG3c1sl5AuObdmZw7KMngbXZTcJZZyEkvOEjB5Gv7QdJzmmxrh5pMbXvsai5eN4RPYUJ7SXQybt-AD0q-z0q3xKvxJy-KAOf_rDFfIeKsA-CfnUF4Nh4mmLCX5-hzIAEKRSRZqQd6329C3JZAamkUOJ2tGrnabuloTmOpJ_A3wESK8P_kffPpAXHKM5Us54ekgGq993_iNgrFV1FM3pHnLWIys priority: 102 providerName: Directory of Open Access Journals – databaseName: Health & Medical Collection dbid: 7X7 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3da9swEBdbxmAvY91XvbVDgzEYRE0tWx9-GmuWEAbtSzvIm5EluTW0dlankPz308mKs4ySV9_JlnV30k_SfSD0hRXCPTeCsBRCcmJbEFnyjMTSZoWbMw1TEO98fsFnv9NfczYPB25tcKvczIl-ojaNhjPyERWQak645eb74g-BqlFwuxpKaDxFzyB1Gbh0ibnYnrE4tM5FfztJ5eiuhWB9ewKKywhUzB2o9o7uLEo-d_9jgPN_v8l_FqLpK_QyIEj8oxP5AXpi69foeVdTcv0G1eM-BXMXYYmbEp-vqgnBqjZ4Ri4uyc9Q-XaJJ6vgCOvZqoWaiRM5xE27GMdDvNZ6MvTN1qWZ4qrGlzfVNfhL4fLWrmr3jbfoajq5Gs9IKKpAFKNySWADqG1iLHNQMbGWM2W55UJxLqVW_FSmym2wWVYA8rOpSk2iFaWOrozUyTs0qJvaHiIcc50ZWbKizHiq6akyVJQJ4Bn3dqqLCH2Fsc2DUbS5329QmQch5F4IOaURGm1GP9chMzkUyLjd0-Jb32LRZeXYw3sGAu35IJ-2f9DcX-fBPPPMjY2UPC60NKlb0xWVptRKKCm0FIJH6GijDtv_2apkhD73ZGeecOeiats8AI-DCVyILI7Q-057-p4kPHEGkjqK2NGrna7uUurqxqcAdyDSAXv5YX-3PqIXFKI1YkpofIQGy_sHe-ww1LL45A3lL8LWGyo priority: 102 providerName: ProQuest |
Title | Characterization of MxiE- and H-NS-Dependent Expression of ipaH7.8 , ospC1 , yccE , and yfdF in Shigella flexneri |
URI | https://www.ncbi.nlm.nih.gov/pubmed/36346241 https://journals.asm.org/doi/10.1128/msphere.00485-22 https://www.proquest.com/docview/2759827152 https://www.proquest.com/docview/2734167791 https://pubmed.ncbi.nlm.nih.gov/PMC9769918 https://doaj.org/article/95288861bc8d4362a28dfca7a87c8776 |
Volume | 7 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3da9swEBdby2AvY9_11gUNxmAwpbVsffhhjDRzCBvJxtpA3owsya0htdMkheS_38l23GWEwp4E-rKsu5N-J-nuEPrAUgH5RhAWOpMc36ZEZjwivrRRCmumYcrZO4_GfDgJv0_Z9M48upnA5V7VzsWTmixm3fXN5isI_JfaAEaeXC-dBb7tOm5khMKCfAj7knBiOmrAfnXiAtidN9HmREQYsOv23nJPJ7BEq-U13dmuKq_--6Dovy8q_9qiBk_RkwZb4l7NDM_QA1s8R4_qaJObF-im3zpnrm0vcZnh0TqPCVaFwUMyPiffmpi4KxyvmyeyVbV8roaiK_FnXC7nfR_SjdYxJK7lJjMDnBf4_Cq_dI-pcDaz6wI-8xJdDOKL_pA0EReIYlSuiNMOtQ2MZYAjA2s5U5ZbLhTnUmrFT2WoQPtmUepgoQ1VaAKtKIVyZaQOXqGDoizsEcI-15GRGUuziIeanipDRRY4sAO9U5166KOb3mRL8KRSRqhMGjokFR0SSj10siVAohu35S56xuyeFp_aFvPaZcc9dc8cTdt6ztl2lVEuLpNGdpMI5kZK7qdamhA2fEWlybQSSgotheAeOt5yxN3_UOFcIwqARx563xaD7LoLGVXY8tbVAQzBhYh8D72uGagdScADkJ4QSsQOa-0MdbekyK8q_-CAMAH1yzf_MQ9v0WPq7Dp8Sqh_jA5Wi1v7DtDWKu2gh2IqOuiw15v8_AHpWTz-9btTnV10KgH7A7IkKvQ |
linkProvider | Scholars Portal |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtR1db9Mw8DQ6IXhBfFMYYCRAQqrXxUls5wEh1rXq2Foh1kl7ixzb2SptSVk70f4o_iPnJE0pQn3bq892nPPd-c6-D4D3YSKw3QgaBi4kx7MJlSmPqCdtlKDMNKFy8c6DIe-fBt_OwrMt-L2MhXFulUuZWAhqk2t3R95mwqWaE3jcfJn8pK5qlHtdXZbQKMniyC5-ock2_Xx4gPv7gbFed9Tp06qqAFUhkzPqLCBtfWND1JV8a3moLLdcKM6l1IrvyUChhRlGiVN9bKAC42vFGMKVkdrHae_AduCjJdOA7f3u8PuP1aUOmgdc1M-hTLavpi47gN11nBJSV6K3oaZXbO0ULIoF_E_D_ddR86-Tr_cQHlQqK_la0tgj2LLZY7hbFrFcPIGsU-d8LkM6SZ6SwXzcpURlhvTp8IQeVKV2Z6Q7rzxvi27jieqLXdki-XTS8VpkoXW3VQxbpKZHxhk5uRifOwctkl7aeYbfeAqj28D3M2hkeWZfAPG4joxMwySNeKDZnjJMpL5ToHB2ppMmfHS4jSsunMaFgcNkXG1CXGxCzFgT2kvsx7pKhe4qclxuGPGpHjEp04Bs6LvvNrTu5xJ4Fw359XlcyYM4QtxIyb1ES4O0xBSTJtVKKCm0FII3YWdJDqv_WfFAE97VYJQH7pFHZTa_cX1QL-FCRF4TnpfUU6_E5z5yZIAQsUZXa0tdh2TjiyLnOGqtaEnIl5uX9Rbu9UeD4_j4cHj0Cu4zFyriMcq8HWjMrm_sa1TgZsmbim0IxLfMqH8AFoBZDQ |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLZGEYgXxHUEBhgJkJDqdXES23lACHpRx1iFtCH1LXJsZ6u0JWXtRPvT-Heck6QpRahve_Utjn3O8XfscyHkbZRKKLeSRSG65PguZSoTMfOVi1OQmTbS6O98PBLDH-HXcTTeIb9XvjBoVrmSiaWgtoXBO_IOlxhqTsJx08lqs4jvvcGn6U-GGaTwpXWVTqMikSO3_AXq2-zjYQ_2-h3ng_5pd8jqDANMR1zNGWpDxgXWRYCbAudEpJ1wQmohlDJaHKhQg7YZxSnCIBfq0AZGcw712ioTwLC3yG0ZRD6ymBzL9fUOKApCNg-jXHUuZxgnwO0jz0QMk_W29OySb5yHZdqA_2Hdf002_zoDBw_I_Rq80s8VtT0kOy5_RO5U6SyXj0nebaI_V86dtMjo8WLSZ1Tnlg7Z6IT16qS7c9pf1Da4ZbPJVA_lvmrTYjbt-m26NKbfLrstMzugk5yenE_O0FSLZhdukcM3npDTm1jtp6SVF7l7RqgvTGxVFqVZLELDD7TlMgsQSsHo3KQeeY9rm9T8OEtKVYerpN6EpNyEhHOPdFarn5g6KDrm5rjY0uND02NaBQTZ0vYLbmjTDkN5lwXF1VlSS4YkhrVRSvipUTYEOKG5spnRUitplJTCI3srclj_z5obPPKmqQbJgM89OnfFNbYBhCKkjH2P7FbU08wkEAHwZgg1coOuNqa6WZNPzsvo44BfQadQz7dP6zW5C-yZfDscHb0g9zj6jPiccX-PtOZX1-4lILl5-qrkGUqSG-bRP0QRW90 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Characterization+of+MxiE-+and+H-NS-Dependent+Expression+of+ipaH7.8+%2C+ospC1+%2C+yccE+%2C+and+yfdF+in+Shigella+flexneri&rft.jtitle=mSphere&rft.au=Hall%2C+Chelsea+P.&rft.au=Jadeja%2C+Niti+B.&rft.au=Sebeck%2C+Natalie&rft.au=Agaisse%2C+Herv%C3%A9&rft.date=2022-12-21&rft.issn=2379-5042&rft.eissn=2379-5042&rft.volume=7&rft.issue=6&rft_id=info:doi/10.1128%2Fmsphere.00485-22&rft.externalDBID=n%2Fa&rft.externalDocID=10_1128_msphere_00485_22 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2379-5042&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2379-5042&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2379-5042&client=summon |