Advanced structural damage detection : from theory to engineering applications

Structural Health Monitoring (SHM) is the interdisciplinary engineering field devoted to the monitoring and assessment of structural health and integrity. SHM technology integrates non-destructive evaluation techniques using remote sensing and smart materials to create smart self-monitoring structur...

Full description

Saved in:
Bibliographic Details
Main Authors Stepinski, Tadeusz, Uhl, Tadeusz, Staszewski, Wieslaw
Format eBook Book
LanguageEnglish
Published Chichester Wiley 2013
John Wiley & Sons, Incorporated
Wiley-Blackwell
John Wiley & Sons Ltd
Edition1
Subjects
Online AccessGet full text

Cover

Loading…
Table of Contents:
  • 7.3.3 Numerical Verification of the DORT-CWT Method -- 7.4 Experimental Results -- 7.4.1 Experimental Setup -- 7.4.2 Experimental Evaluation of Sensing Array -- 7.4.3 Experimental Evaluation of Effective Aperture -- 7.4.4 Damage Imaging Using Synthetic Aperture -- 7.4.5 Experimental Validation of the DORT-CWT Method -- 7.4.6 Damage Imaging Using Self-Focused Transmitting Array -- 7.5 Discussion -- 7.6 Conclusions -- References -- 8 Modal Filtering Techniques -- 8.1 Introduction -- 8.2 State of the Art -- 8.3 Formulation of the Method -- 8.4 Numerical Verification of the Method -- 8.4.1 Models Used for Simulation -- 8.4.2 Testing Procedure -- 8.4.3 Results of Analyses -- 8.4.4 Model Based Probability of Detection -- 8.5 Monitoring System Based on Modal Filtration -- 8.5.1 Main Assumptions -- 8.5.2 Measuring Diagnostic Unit -- 8.5.3 Modal Analysis and Modal Filtration Software -- 8.6 Laboratory Tests -- 8.6.1 Programme of Tests -- 8.6.2 Results of Experiments -- 8.6.3 Probability of Detection Analysis -- 8.7 Operational Tests -- 8.8 Summary -- References -- 9 Vibrothermography -- 9.1 Introduction -- 9.2 State of the Art in Thermographic Nondestructive Testing -- 9.3 Developed Vibrothermographic Test System -- 9.4 Virtual Testing -- 9.5 Laboratory Testing -- 9.6 Field Measurements -- 9.7 Summary and Conclusions -- References -- 10 Vision-Based Monitoring System -- 10.1 Introduction -- 10.2 State of the Art -- 10.3 Deflection Measurement by Means of Digital Image Correlation -- 10.4 Image Registration and Plane Rectification -- 10.5 Automatic Feature Detection and Matching -- 10.5.1 Deflection-Shaped Based Damage Detectionand Localization -- 10.6 Developed Software Tool -- 10.7 Numerical Investigation of the Method -- 10.7.1 Numerical Modelling of the Developed Vision Measurement System -- 10.7.2 Uncertainty Investigation of the Method
  • Intro -- Advanced Structural Damage Detection: From Theory to Engineering Applications -- Copyright -- Contents -- List of Contributors -- Preface -- Acknowledgments -- 1 Introduction -- 1.1 Introduction -- 1.2 Structural Damage and Structural Damage Detection -- 1.3 SHM as an Evolutionary Step of NDT -- 1.4 Interdisciplinary Nature of SHM -- 1.5 Structure of SHM Systems -- 1.5.1 Local SHM Methods -- 1.5.2 Global SHM Methods -- 1.6 Aspects Related to SHM Systems Design -- 1.6.1 Design Principles -- References -- 2 Numerical Simulation of Elastic Wave Propagation -- 2.1 Introduction -- 2.2 Modelling Methods -- 2.2.1 Finite Difference Method -- 2.2.2 Finite Element Method -- 2.2.3 Spectral Element Method -- 2.2.4 Boundary Element Method -- 2.2.5 Finite Volume Method -- 2.2.6 Other Numerical Methods -- 2.2.7 Time Discretization -- 2.3 Hybrid and Multiscale Modelling -- 2.4 The LISA Method -- 2.4.1 GPU Implementation -- 2.4.2 Developed GPU-Based LISA Software Package -- 2.4.3 cuLISA3D Solver's Performance -- 2.5 Coupling Scheme -- 2.6 Damage Modelling -- 2.7 Absorbing Boundary Conditions for Wave Propagation -- 2.8 Conclusions -- References -- 3 Model Assisted Probability of Detection in Structural Health Monitoring -- 3.1 Introduction -- 3.2 Probability of Detection -- 3.3 Theoretical Aspects of POD -- 3.3.1 Hit/Miss Analysis -- 3.3.2 Signal Response Analysis -- 3.3.3 Confidence Bounds -- 3.3.4 Probability of False Alarm -- 3.4 From POD to MAPOD -- 3.5 POD for SHM -- 3.6 MAPOD of an SHM System Considering Flaw Geometry Uncertainty -- 3.6.1 SHM System -- 3.6.2 Simulation Framework -- 3.6.3 Reliability Assessment -- 3.7 Conclusions -- References -- 4 Nonlinear Acoustics -- 4.1 Introduction -- 4.2 Theoretical Background -- 4.2.1 Contact Acoustics Nonlinearity -- 4.2.2 Nonlinear Resonance -- 4.2.3 Frequency Mixing
  • 10.7.3 Model Based Probability of Damage Detection -- 10.8 Laboratory Investigation of the Method -- 10.8.1 Tests of the Method on the Laboratory Setup -- 10.8.2 The Probability of Detection of the Method in the Laboratory Investigation -- 10.8.3 Investigation of the Developed Method's Accuracy -- 10.9 Key Studies and Evaluation of the Method -- 10.9.1 Tram Viaduct Deflection Monitoring -- 10.10 Conclusions -- References -- Index
  • 4.3 Damage Detection Methods and Applications -- 4.3.1 Nonlinear Acoustics for Damage Detection -- 4.4 Conclusions -- References -- 5 Piezocomposite Transducers for Guided Waves -- 5.1 Introduction -- 5.2 Piezoelectric Transducers for Guided Waves -- 5.2.1 Piezoelectric Patches -- 5.2.2 Piezocomposite Based Transducers -- 5.2.3 Interdigital Transducers -- 5.3 Novel Type of IDT-DS Based on MFC -- 5.4 Generation of Lamb Waves using Piezocomposite Transducers -- 5.4.1 Numerical Simulations -- 5.4.2 Experimental Verification -- 5.4.3 Numerical and Experimental Results -- 5.4.4 Discussion -- 5.5 Lamb Wave Sensing Characteristics of the IDT-DS4 -- 5.5.1 Numerical Simulations -- 5.5.2 Experimental Verification -- 5.6 Conclusions -- Appendix -- References -- 6 Electromechanical Impedance Method -- 6.1 Introduction -- 6.2 Theoretical Background -- 6.2.1 Definition of the Electromechanical Impedance -- 6.2.2 Measurement Techniques -- 6.2.3 Damage Detection Algorithms -- 6.3 Numerical Simulations -- 6.3.1 Modelling Electromechanical Impedance with the use of FEM -- 6.3.2 Uncertainty and Sensitivity Analyses -- 6.3.3 Discussion -- 6.4 The Developed SHM System -- 6.5 Laboratory Tests -- 6.5.1 Experiments Performed for Plate Structures -- 6.5.2 Condition Monitoring of a Pipeline Section -- 6.5.3 Discussion -- 6.6 Verification of the Method on Aircraft Structures -- 6.6.1 Monitoring of a Bolted Joint in the Main Undercarriage Bay -- 6.6.2 Monitoring of a Riveted Fuselage Panel -- 6.6.3 Discussion -- 6.7 Conclusions -- References -- 7 Beamforming of Guided Waves -- 7.1 Introduction -- 7.2 Theory -- 7.2.1 Imaging Using Synthetic Aperture -- 7.2.2 Effective Aperture Concept -- 7.2.3 Imaging Schemes -- 7.2.4 Self-Focusing Arrays -- 7.3 Numerical Results -- 7.3.1 Examples of Effective Aperture -- 7.3.2 Imaging Using Star-like Array