Realization of Holographic Entanglement Temperature for a Nearly-AdS boundary
Computing the holographic entanglement entropy proposed by Ryu-Takayanagi shows that thermal energy near boundary region in \(AdS_3\) gain maximum of the temperature. The absolute maxima of temperature is \(T^{Max}_{E}= \frac{4G_3 \epsilon_{\infty}}{l}\). By simple physical investigations it has bec...
Saved in:
Published in | arXiv.org |
---|---|
Main Authors | , , , |
Format | Paper Journal Article |
Language | English |
Published |
Ithaca
Cornell University Library, arXiv.org
29.06.2016
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Computing the holographic entanglement entropy proposed by Ryu-Takayanagi shows that thermal energy near boundary region in \(AdS_3\) gain maximum of the temperature. The absolute maxima of temperature is \(T^{Max}_{E}= \frac{4G_3 \epsilon_{\infty}}{l}\). By simple physical investigations it has become possible to predict a phase transition of first order at critical temperature \(T_c\leq T_{E}\). As they predict a tail or root towards which the AdS space ultimately tend, the boundary is considered thermalized. The Phase transitions of this form have received striking theoretical and experimental verifications so far. |
---|---|
AbstractList | Int J Theor Phys (2016) 55: 4751 Computing the holographic entanglement entropy proposed by Ryu-Takayanagi
shows that thermal energy near boundary region in $AdS_3$ gain maximum of the
temperature. The absolute maxima of temperature is $T^{Max}_{E}= \frac{4G_3
\epsilon_{\infty}}{l}$. By simple physical investigations it has become
possible to predict a phase transition of first order at critical temperature
$T_c\leq T_{E}$. As they predict a tail or root towards which the AdS space
ultimately tend, the boundary is considered thermalized. The Phase transitions
of this form have received striking theoretical and experimental verifications
so far. Computing the holographic entanglement entropy proposed by Ryu-Takayanagi shows that thermal energy near boundary region in \(AdS_3\) gain maximum of the temperature. The absolute maxima of temperature is \(T^{Max}_{E}= \frac{4G_3 \epsilon_{\infty}}{l}\). By simple physical investigations it has become possible to predict a phase transition of first order at critical temperature \(T_c\leq T_{E}\). As they predict a tail or root towards which the AdS space ultimately tend, the boundary is considered thermalized. The Phase transitions of this form have received striking theoretical and experimental verifications so far. |
Author | Myrzakulov, R Raza, M Momeni, D Gholizade, H |
Author_xml | – sequence: 1 givenname: D surname: Momeni fullname: Momeni, D – sequence: 2 givenname: M surname: Raza fullname: Raza, M – sequence: 3 givenname: H surname: Gholizade fullname: Gholizade, H – sequence: 4 givenname: R surname: Myrzakulov fullname: Myrzakulov, R |
BackLink | https://doi.org/10.1007/s10773-016-3098-4$$DView published paper (Access to full text may be restricted) https://doi.org/10.48550/arXiv.1505.00215$$DView paper in arXiv |
BookMark | eNotj1FLwzAUhYMoOOd-gE8GfG5Nbpo2fRxjbsJU0L6XW5PMji6paSvOX2_dfDqHw-Hc-12Rc-edIeSGszhRUrJ7DN_1V8wlkzFjwOUZmYAQPFIJwCWZdd2OjXmagZRiQp5eDTb1D_a1d9RbuvaN3wZsP-p3unQ9um1j9sb1tDD71gTsh2Co9YEifTYYmkM012-08oPTGA7X5MJi05nZv05J8bAsFuto87J6XMw3EUpQkRaaZ2BYzlHjaCoEAMm0TROVM5miQm2xSmVSQQpW6QqxEizPlckwS7SYktvT7JG1bEO9H4-Xf8zlkXls3J0abfCfg-n6cueH4MafSmCKM5FnQolfhJtbtA |
ContentType | Paper Journal Article |
Copyright | 2016. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. http://arxiv.org/licenses/nonexclusive-distrib/1.0 |
Copyright_xml | – notice: 2016. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: http://arxiv.org/licenses/nonexclusive-distrib/1.0 |
DBID | 8FE 8FG ABJCF ABUWG AFKRA AZQEC BENPR BGLVJ CCPQU DWQXO HCIFZ L6V M7S PIMPY PQEST PQQKQ PQUKI PRINS PTHSS GOX |
DOI | 10.48550/arxiv.1505.00215 |
DatabaseName | ProQuest SciTech Collection ProQuest Technology Collection Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central ProQuest Central Essentials ProQuest Central Technology Collection ProQuest One Community College ProQuest Central SciTech Premium Collection (Proquest) (PQ_SDU_P3) ProQuest Engineering Collection Engineering Database Publicly Available Content Database ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection arXiv.org |
DatabaseTitle | Publicly Available Content Database Engineering Database Technology Collection ProQuest Central Essentials ProQuest One Academic Eastern Edition ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Technology Collection ProQuest SciTech Collection ProQuest Central China ProQuest Central ProQuest Engineering Collection ProQuest One Academic UKI Edition ProQuest Central Korea Materials Science & Engineering Collection ProQuest One Academic Engineering Collection |
DatabaseTitleList | Publicly Available Content Database |
Database_xml | – sequence: 1 dbid: GOX name: arXiv.org url: http://arxiv.org/find sourceTypes: Open Access Repository – sequence: 2 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Physics |
EISSN | 2331-8422 |
ExternalDocumentID | 1505_00215 |
Genre | Working Paper/Pre-Print |
GroupedDBID | 8FE 8FG ABJCF ABUWG AFKRA ALMA_UNASSIGNED_HOLDINGS AZQEC BENPR BGLVJ CCPQU DWQXO FRJ HCIFZ L6V M7S M~E PIMPY PQEST PQQKQ PQUKI PRINS PTHSS GOX |
ID | FETCH-LOGICAL-a528-d3d172e091ada72eba22250df6489056a8adfab654b262f8dbaab30998e7a74d3 |
IEDL.DBID | GOX |
IngestDate | Mon Jan 08 05:49:47 EST 2024 Thu Oct 10 16:42:02 EDT 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | false |
IsScholarly | false |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a528-d3d172e091ada72eba22250df6489056a8adfab654b262f8dbaab30998e7a74d3 |
OpenAccessLink | https://arxiv.org/abs/1505.00215 |
PQID | 2081039738 |
PQPubID | 2050157 |
ParticipantIDs | arxiv_primary_1505_00215 proquest_journals_2081039738 |
PublicationCentury | 2000 |
PublicationDate | 20160629 |
PublicationDateYYYYMMDD | 2016-06-29 |
PublicationDate_xml | – month: 06 year: 2016 text: 20160629 day: 29 |
PublicationDecade | 2010 |
PublicationPlace | Ithaca |
PublicationPlace_xml | – name: Ithaca |
PublicationTitle | arXiv.org |
PublicationYear | 2016 |
Publisher | Cornell University Library, arXiv.org |
Publisher_xml | – name: Cornell University Library, arXiv.org |
SSID | ssj0002672553 |
Score | 1.6353998 |
SecondaryResourceType | preprint |
Snippet | Computing the holographic entanglement entropy proposed by Ryu-Takayanagi shows that thermal energy near boundary region in \(AdS_3\) gain maximum of the... Int J Theor Phys (2016) 55: 4751 Computing the holographic entanglement entropy proposed by Ryu-Takayanagi shows that thermal energy near boundary region in... |
SourceID | arxiv proquest |
SourceType | Open Access Repository Aggregation Database |
SubjectTerms | Critical temperature Entanglement Phase transitions Physics - General Relativity and Quantum Cosmology Physics - High Energy Physics - Theory Thermal energy |
SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3PT8IwFH5RFhNv_gwomh68VqHttnIyaiDEBEIQE25Lu7aGy4CBRv97X7uhBxNPa7bba_fe9370-wBuLLcudcz5_qCmosck1cw6mvNECSZUzKy_jTwaJ8NX8TyP53XBbVOPVe58YnDUZpn7Gjkm6dJ3LVMu71dr6lWjfHe1ltDYh4hhptBpQPTYH0-mP1UWlqSImXnVzgzkXXeq_Fx83CIOCsUUL4cbhVd_nHGIMIMjiCZqZctj2LPFCRyEwcx8cwqjKSK5-q4kWToy3JFML3LSLxDZvVXz32RmEQBXBMkEgShRZGw9eTF9MC9EB_Gk8usMZoP-7GlIawkEilaS1HCDAMNiTFdG4UIrn551jEuE7CF0UVIZp3QSC80S5qTRSmmOoE_aVKXC8HNoFMvCNoE4zjEzE0L7_9R2nNZOxCZ13VyzLj5b0AxmyFYVy0XmLZQFC7WgvbNMVp_wTfa7Hxf_f76EQwQZiR-vYr02NLblu73CQL7V1_VufQOzqZ7g priority: 102 providerName: ProQuest |
Title | Realization of Holographic Entanglement Temperature for a Nearly-AdS boundary |
URI | https://www.proquest.com/docview/2081039738 https://arxiv.org/abs/1505.00215 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwdZ3PT8IwFMdfAC9ejEYNKJIevC5C223liGZATECDmHBb-mhruAzDD6MX_3ZfuxEPxkvXLO2hr9vep-t73wLcWmFd6rjz-4MYyT5XEXLroqVItORSx9z6bOTJNBm_ysdFvKgBO-TC6M3n6qPUB8btHdFK-OXhs8jrnPuQrdHTotycDFJcVfvfdsSY4dafT2vwF8NTOKlAjw3KmTmDmi3OYTIjLqsyH9nasfFBMnq1ZFlBnPZWRnOzuSWcLeWOGWEl02xqvRRxNDAvDMNRSJuvC5gPs_nDOKoONIhozCoywhAuWPLQ2miqoPaLra5xiVR9AhGttHEak1giT7hTBrVGQQinbKpTacQlNIp1YZvAnBC0zpIS_Vtnuw7RydikrrdE3qNrC5rBDPl7qVmRewvlwUItaB8sk1fP6zbnRAZdQhOhrv7veQ3HhAuJD5Ti_TY0dpu9vSGXvMMO1NVw1IGj-2z6POuEWaJy8p39AFQjkIE |
link.rule.ids | 228,230,783,787,888,12777,21400,27937,33385,33756,43612,43817 |
linkProvider | Cornell University |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV09T8MwELWgEYKNT7VQwAOrobXdxJ0QoKIAbVSVIHWL7NhGXdKSFgT_nrOTwoDEFCvZzs7duw-_h9CFYcZGllrXH1SE96kgihpLchZKTrnsUeNuI4-SMH7hj9PetC64LeuxyrVP9I5az3NXI4ckXbiuZcTE9eKNONUo112tJTQ2UeCoqiD5Cm4HyXjyU2WhYQSYmVXtTE_edSXLz9nHJeAgX0xxcriBf_XHGfsIc7-LgrFcmHIPbZhiH235wcx8eYBGE0By9V1JPLc4XpNMz3I8KADZvVbz3zg1AIArgmQMQBRLnBhHXkxu9DNWXjyp_DpE6f0gvYtJLYFAwEqCaKYBYBiI6VJLWCjp0rOOtiEXfYAuUkhtpQp7XNGQWqGVlIoB6BMmkhHX7Ag1inlhmghbxiAz41y5_9R0rFKW93Rku7miXXi2UNObIVtULBeZs1DmLdRC7bVlsvqEL7Pf_Tj-__M52o7T0TAbPiRPJ2gHAEfoRq1ov40aq_LdnEJQX6mzeue-AWG6odo |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Realization+of+Holographic+Entanglement+Temperature+for+a+Nearly-AdS+boundary&rft.jtitle=arXiv.org&rft.au=Momeni%2C+D&rft.au=Raza%2C+M&rft.au=Gholizade%2C+H&rft.au=Myrzakulov%2C+R&rft.date=2016-06-29&rft.pub=Cornell+University+Library%2C+arXiv.org&rft.eissn=2331-8422&rft_id=info:doi/10.48550%2Farxiv.1505.00215 |