An online convex optimization algorithm for controlling linear systems with state and input constraints
This paper studies the problem of controlling linear dynamical systems subject to point-wise-in-time constraints. We present an algorithm similar to online gradient descent, that can handle time-varying and a priori unknown convex cost functions while restraining the system states and inputs to poly...
Saved in:
Published in | arXiv.org |
---|---|
Main Authors | , |
Format | Paper Journal Article |
Language | English |
Published |
Ithaca
Cornell University Library, arXiv.org
16.03.2021
|
Subjects | |
Online Access | Get full text |
ISSN | 2331-8422 |
DOI | 10.48550/arxiv.2005.11308 |
Cover
Abstract | This paper studies the problem of controlling linear dynamical systems subject to point-wise-in-time constraints. We present an algorithm similar to online gradient descent, that can handle time-varying and a priori unknown convex cost functions while restraining the system states and inputs to polytopic constraint sets. Analysis of the algorithm's performance, measured by dynamic regret, reveals that sublinear regret is achieved if the variation of the cost functions is sublinear in time. Finally, we present a simple example to illustrate implementation details as well as the algorithm's performance and show that the proposed algorithm ensures constraint satisfaction. |
---|---|
AbstractList | This paper studies the problem of controlling linear dynamical systems subject to point-wise-in-time constraints. We present an algorithm similar to online gradient descent, that can handle time-varying and a priori unknown convex cost functions while restraining the system states and inputs to polytopic constraint sets. Analysis of the algorithm's performance, measured by dynamic regret, reveals that sublinear regret is achieved if the variation of the cost functions is sublinear in time. Finally, we present a simple example to illustrate implementation details as well as the algorithm's performance and show that the proposed algorithm ensures constraint satisfaction. In Proc. American Control Conference (ACC), 2021, pp. 2523-2528 This paper studies the problem of controlling linear dynamical systems subject to point-wise-in-time constraints. We present an algorithm similar to online gradient descent, that can handle time-varying and a priori unknown convex cost functions while restraining the system states and inputs to polytopic constraint sets. Analysis of the algorithm's performance, measured by dynamic regret, reveals that sublinear regret is achieved if the variation of the cost functions is sublinear in time. Finally, we present a simple example to illustrate implementation details as well as the algorithm's performance and show that the proposed algorithm ensures constraint satisfaction. |
Author | Nonhoff, Marko Müller, Matthias A |
Author_xml | – sequence: 1 givenname: Marko surname: Nonhoff fullname: Nonhoff, Marko – sequence: 2 givenname: Matthias surname: Müller middlename: A fullname: Müller, Matthias A |
BackLink | https://doi.org/10.48550/arXiv.2005.11308$$DView paper in arXiv https://doi.org/10.23919/ACC50511.2021.9482877$$DView published paper (Access to full text may be restricted) |
BookMark | eNot0LtOwzAUBmALgUQpfQAmLDGn-F5nrCpuUiWW7pGTnBRXiR1st7Q8PUnLdJbv3P47dO28A4QeKJkLLSV5NuFoD3NGiJxTyom-QhPGOc20YOwWzWLcEUKYWjAp-QRtlw5711oHuPLuAEfs-2Q7-2uS9Q6bduuDTV8dbnwYRQq-HfQWjy0m4HiKCbqIfwaEYzIJsHE1tq7fp9HHFIx1Kd6jm8a0EWb_dYo2ry-b1Xu2_nz7WC3XmZFMZ2UlFzWFvKy1UIIqYkABNKUGkleqUkrqRV1VAxDU6OENLvOcUS0grw3Ihk_R42XsOYWiD7Yz4VSMaRTnNAbxdBF98N97iKnY-X1ww00FE2RcKoTmfyglZsE |
ContentType | Paper Journal Article |
Copyright | 2021. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. http://arxiv.org/licenses/nonexclusive-distrib/1.0 |
Copyright_xml | – notice: 2021. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: http://arxiv.org/licenses/nonexclusive-distrib/1.0 |
DBID | 8FE 8FG ABJCF ABUWG AFKRA AZQEC BENPR BGLVJ CCPQU DWQXO HCIFZ L6V M7S PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS AKZ GOX |
DOI | 10.48550/arxiv.2005.11308 |
DatabaseName | ProQuest SciTech Collection ProQuest Technology Collection Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central Technology Collection ProQuest One ProQuest Central Korea SciTech Premium Collection ProQuest Engineering Collection Engineering Database ProQuest Central Premium ProQuest One Academic (New) ProQuest Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection arXiv Mathematics arXiv.org |
DatabaseTitle | Publicly Available Content Database Engineering Database Technology Collection ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest One Academic Eastern Edition ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Technology Collection ProQuest SciTech Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Engineering Collection ProQuest One Academic UKI Edition ProQuest Central Korea Materials Science & Engineering Collection ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) Engineering Collection |
DatabaseTitleList | Publicly Available Content Database |
Database_xml | – sequence: 1 dbid: GOX name: arXiv.org url: http://arxiv.org/find sourceTypes: Open Access Repository – sequence: 2 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Physics |
EISSN | 2331-8422 |
ExternalDocumentID | 2005_11308 |
Genre | Working Paper/Pre-Print |
GroupedDBID | 8FE 8FG ABJCF ABUWG AFKRA ALMA_UNASSIGNED_HOLDINGS AZQEC BENPR BGLVJ CCPQU DWQXO FRJ HCIFZ L6V M7S M~E PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS AKZ GOX |
ID | FETCH-LOGICAL-a528-bc57d1e9bd8464160ae6eefb8e09c6c66587dcce9b41a800235992184e9dae5f3 |
IEDL.DBID | 8FG |
IngestDate | Tue Jul 22 21:56:59 EDT 2025 Mon Jun 30 09:29:19 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | false |
IsScholarly | false |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a528-bc57d1e9bd8464160ae6eefb8e09c6c66587dcce9b41a800235992184e9dae5f3 |
Notes | SourceType-Working Papers-1 ObjectType-Working Paper/Pre-Print-1 content type line 50 |
OpenAccessLink | https://www.proquest.com/docview/2406416448?pq-origsite=%requestingapplication% |
PQID | 2406416448 |
PQPubID | 2050157 |
ParticipantIDs | arxiv_primary_2005_11308 proquest_journals_2406416448 |
PublicationCentury | 2000 |
PublicationDate | 20210316 |
PublicationDateYYYYMMDD | 2021-03-16 |
PublicationDate_xml | – month: 03 year: 2021 text: 20210316 day: 16 |
PublicationDecade | 2020 |
PublicationPlace | Ithaca |
PublicationPlace_xml | – name: Ithaca |
PublicationTitle | arXiv.org |
PublicationYear | 2021 |
Publisher | Cornell University Library, arXiv.org |
Publisher_xml | – name: Cornell University Library, arXiv.org |
SSID | ssj0002672553 |
Score | 1.753771 |
SecondaryResourceType | preprint |
Snippet | This paper studies the problem of controlling linear dynamical systems subject to point-wise-in-time constraints. We present an algorithm similar to online... In Proc. American Control Conference (ACC), 2021, pp. 2523-2528 This paper studies the problem of controlling linear dynamical systems subject to... |
SourceID | arxiv proquest |
SourceType | Open Access Repository Aggregation Database |
SubjectTerms | Algorithms Computational geometry Convexity Cost function Linear systems Mathematics - Optimization and Control Optimization |
SummonAdditionalLinks | – databaseName: arXiv.org dbid: GOX link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwdV1NS8NAEB3anryIotJqlTl4DTZpst09FrEWQb1UyC3sZy3YtDSp9Oc7u0nxIF7DLITZzM57m5k3APdcKeGESSNulCGCElPMMeUiJ2KjHdfxOPW9w69vbP6RvuRZ3gE89sLI3WH13egDq-ohXHnEdMzyLnSTxJOr5_e8-TkZpLha-187wpjh0Z-jNeSL2RmctkAPp83OnEPHlhewnJbYaFNgKPc-4IZCdt32QqL8Wm6IrH-ukaAktlXkvl8c_RK5w0Z3uUJ_e4qhFwhlaXBVbve1t6_CxIe6uoTF7GnxOI_aUQeRzBIeKZ1NTGyFMgQHCCKNpGXWOsXtSGimGcGEidGaDNJY8qBRI4QnZ1YYaTM3voJeuSltH5D4mkgzY5inFsZwyVJnpTWWgjMhfDCAfnBQsW3ULPwcyqwIvhvA8Oizov2Sq8JnfHojYnHX_6-8gZPE13r4Ojc2hF6929tbSta1ugs79gNHvJeS priority: 102 providerName: Cornell University |
Title | An online convex optimization algorithm for controlling linear systems with state and input constraints |
URI | https://www.proquest.com/docview/2406416448 https://arxiv.org/abs/2005.11308 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LS8NAEF60RfDmk1Zr2YPX0CZNtrsnUekDobVIhd7CvlILNo1JKj35253dbPUgeAkk2UCY3Z35ZvabGYRuqRAsYSr0qBIKHBQf9hwRiZcwX8mESr8XmtzhyZSMX8OnRbRwAbfC0Sr3OtEqarWRJkbeMZYHwAN4E3fZh2e6RpnTVddC4xDVfbA0Zp3T4egnxhKQPiDmXnWYaUt3dXi-W31WoRQf1DcFTGof_VHF1r4MT1B9xjOdn6IDnZ6hI0vLlMU5Wt6nuKplgS09fIc3sMXXLncS8_cl_GL5tsYAPbFjnZv8cmw-4Tmu6jQX2ERbsc0dwjxVeJVm29KML2yHiLK4QPPhYP449lxrBI9HAfWEjPrK10wogA8glS7XROtEUN1lkkgCsKKvpIQBoc-prWnDmHHmNFNcR0nvEtXSTaobCIN_x8JIKWJcEaUoJ2GiuVYaNnMAeKKJGlZAcVZVvzB9K6PYyq6JWnuZxW7lF_HvPF39__oaHQeGH2K4caSFamW-1Tdg4EvRtrPYRvWHwXT2Anej5wVcJ1-Dby0RrBo |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT8MwDLZgE4IbT_EYkAMcK2jXZskBIR5D4zUhNCRuVV4FJOhK28H4UfxHnLSDAxI3rm2Sg5PY_pzPNsAOk5InXIce01IjQPHxzlGZeAn3tUqY8tuhzR2-7tPeXXhxH91PweckF8bSKic60SlqPVQ2Rr5nLQ86D4gmDrNXz3aNsq-rkxYa1bG4NB_vCNmKg_NT3N_dIDjrDk56Xt1VwBNRwDypoo72DZcaLS8uuC8MNSaRzOxzRRVFi9zRSuGA0BfMlYPh3OIgw7UwUdLGZaehGdqE1gY0j7v9m9vvoE5AO-iit6vXU1crbE_k46e3Knbjo71g6AS7T790vzNoZ_PQvBGZyRdgyqSLMON4oKpYgoejlFTFM4jjo4_JEHXKS52sScTzA8qkfHwh6OuSmuZuE9qJnSJyUhWGLogN7xKXrEREqslTmo1KO75wLSnKYhkG_yG1FWikw9SsAkFAycNIa2qxj9ZM0DAxwmiD2iNAB2YNVp2A4qwqt2EbZUaxk90atCYyi-urVsQ_B2P979_bMNsbXF_FV-f9yw2YCyw5xRLzaAsaZT4ym-hdlHKr3lMC8T-foi93TuZh |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+online+convex+optimization+algorithm+for+controlling+linear+systems+with+state+and+input+constraints&rft.jtitle=arXiv.org&rft.au=Nonhoff%2C+Marko&rft.au=M%C3%BCller%2C+Matthias+A&rft.date=2021-03-16&rft.pub=Cornell+University+Library%2C+arXiv.org&rft.eissn=2331-8422&rft_id=info:doi/10.48550%2Farxiv.2005.11308 |