An online convex optimization algorithm for controlling linear systems with state and input constraints

This paper studies the problem of controlling linear dynamical systems subject to point-wise-in-time constraints. We present an algorithm similar to online gradient descent, that can handle time-varying and a priori unknown convex cost functions while restraining the system states and inputs to poly...

Full description

Saved in:
Bibliographic Details
Published inarXiv.org
Main Authors Nonhoff, Marko, Müller, Matthias A
Format Paper Journal Article
LanguageEnglish
Published Ithaca Cornell University Library, arXiv.org 16.03.2021
Subjects
Online AccessGet full text
ISSN2331-8422
DOI10.48550/arxiv.2005.11308

Cover

Abstract This paper studies the problem of controlling linear dynamical systems subject to point-wise-in-time constraints. We present an algorithm similar to online gradient descent, that can handle time-varying and a priori unknown convex cost functions while restraining the system states and inputs to polytopic constraint sets. Analysis of the algorithm's performance, measured by dynamic regret, reveals that sublinear regret is achieved if the variation of the cost functions is sublinear in time. Finally, we present a simple example to illustrate implementation details as well as the algorithm's performance and show that the proposed algorithm ensures constraint satisfaction.
AbstractList This paper studies the problem of controlling linear dynamical systems subject to point-wise-in-time constraints. We present an algorithm similar to online gradient descent, that can handle time-varying and a priori unknown convex cost functions while restraining the system states and inputs to polytopic constraint sets. Analysis of the algorithm's performance, measured by dynamic regret, reveals that sublinear regret is achieved if the variation of the cost functions is sublinear in time. Finally, we present a simple example to illustrate implementation details as well as the algorithm's performance and show that the proposed algorithm ensures constraint satisfaction.
In Proc. American Control Conference (ACC), 2021, pp. 2523-2528 This paper studies the problem of controlling linear dynamical systems subject to point-wise-in-time constraints. We present an algorithm similar to online gradient descent, that can handle time-varying and a priori unknown convex cost functions while restraining the system states and inputs to polytopic constraint sets. Analysis of the algorithm's performance, measured by dynamic regret, reveals that sublinear regret is achieved if the variation of the cost functions is sublinear in time. Finally, we present a simple example to illustrate implementation details as well as the algorithm's performance and show that the proposed algorithm ensures constraint satisfaction.
Author Nonhoff, Marko
Müller, Matthias A
Author_xml – sequence: 1
  givenname: Marko
  surname: Nonhoff
  fullname: Nonhoff, Marko
– sequence: 2
  givenname: Matthias
  surname: Müller
  middlename: A
  fullname: Müller, Matthias A
BackLink https://doi.org/10.48550/arXiv.2005.11308$$DView paper in arXiv
https://doi.org/10.23919/ACC50511.2021.9482877$$DView published paper (Access to full text may be restricted)
BookMark eNot0LtOwzAUBmALgUQpfQAmLDGn-F5nrCpuUiWW7pGTnBRXiR1st7Q8PUnLdJbv3P47dO28A4QeKJkLLSV5NuFoD3NGiJxTyom-QhPGOc20YOwWzWLcEUKYWjAp-QRtlw5711oHuPLuAEfs-2Q7-2uS9Q6bduuDTV8dbnwYRQq-HfQWjy0m4HiKCbqIfwaEYzIJsHE1tq7fp9HHFIx1Kd6jm8a0EWb_dYo2ry-b1Xu2_nz7WC3XmZFMZ2UlFzWFvKy1UIIqYkABNKUGkleqUkrqRV1VAxDU6OENLvOcUS0grw3Ihk_R42XsOYWiD7Yz4VSMaRTnNAbxdBF98N97iKnY-X1ww00FE2RcKoTmfyglZsE
ContentType Paper
Journal Article
Copyright 2021. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
http://arxiv.org/licenses/nonexclusive-distrib/1.0
Copyright_xml – notice: 2021. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: http://arxiv.org/licenses/nonexclusive-distrib/1.0
DBID 8FE
8FG
ABJCF
ABUWG
AFKRA
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
HCIFZ
L6V
M7S
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
AKZ
GOX
DOI 10.48550/arxiv.2005.11308
DatabaseName ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
Technology Collection
ProQuest One
ProQuest Central Korea
SciTech Premium Collection
ProQuest Engineering Collection
Engineering Database
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
arXiv Mathematics
arXiv.org
DatabaseTitle Publicly Available Content Database
Engineering Database
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
ProQuest One Academic UKI Edition
ProQuest Central Korea
Materials Science & Engineering Collection
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
Engineering Collection
DatabaseTitleList Publicly Available Content Database

Database_xml – sequence: 1
  dbid: GOX
  name: arXiv.org
  url: http://arxiv.org/find
  sourceTypes: Open Access Repository
– sequence: 2
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 2331-8422
ExternalDocumentID 2005_11308
Genre Working Paper/Pre-Print
GroupedDBID 8FE
8FG
ABJCF
ABUWG
AFKRA
ALMA_UNASSIGNED_HOLDINGS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
FRJ
HCIFZ
L6V
M7S
M~E
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
AKZ
GOX
ID FETCH-LOGICAL-a528-bc57d1e9bd8464160ae6eefb8e09c6c66587dcce9b41a800235992184e9dae5f3
IEDL.DBID 8FG
IngestDate Tue Jul 22 21:56:59 EDT 2025
Mon Jun 30 09:29:19 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a528-bc57d1e9bd8464160ae6eefb8e09c6c66587dcce9b41a800235992184e9dae5f3
Notes SourceType-Working Papers-1
ObjectType-Working Paper/Pre-Print-1
content type line 50
OpenAccessLink https://www.proquest.com/docview/2406416448?pq-origsite=%requestingapplication%
PQID 2406416448
PQPubID 2050157
ParticipantIDs arxiv_primary_2005_11308
proquest_journals_2406416448
PublicationCentury 2000
PublicationDate 20210316
PublicationDateYYYYMMDD 2021-03-16
PublicationDate_xml – month: 03
  year: 2021
  text: 20210316
  day: 16
PublicationDecade 2020
PublicationPlace Ithaca
PublicationPlace_xml – name: Ithaca
PublicationTitle arXiv.org
PublicationYear 2021
Publisher Cornell University Library, arXiv.org
Publisher_xml – name: Cornell University Library, arXiv.org
SSID ssj0002672553
Score 1.753771
SecondaryResourceType preprint
Snippet This paper studies the problem of controlling linear dynamical systems subject to point-wise-in-time constraints. We present an algorithm similar to online...
In Proc. American Control Conference (ACC), 2021, pp. 2523-2528 This paper studies the problem of controlling linear dynamical systems subject to...
SourceID arxiv
proquest
SourceType Open Access Repository
Aggregation Database
SubjectTerms Algorithms
Computational geometry
Convexity
Cost function
Linear systems
Mathematics - Optimization and Control
Optimization
SummonAdditionalLinks – databaseName: arXiv.org
  dbid: GOX
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwdV1NS8NAEB3anryIotJqlTl4DTZpst09FrEWQb1UyC3sZy3YtDSp9Oc7u0nxIF7DLITZzM57m5k3APdcKeGESSNulCGCElPMMeUiJ2KjHdfxOPW9w69vbP6RvuRZ3gE89sLI3WH13egDq-ohXHnEdMzyLnSTxJOr5_e8-TkZpLha-187wpjh0Z-jNeSL2RmctkAPp83OnEPHlhewnJbYaFNgKPc-4IZCdt32QqL8Wm6IrH-ukaAktlXkvl8c_RK5w0Z3uUJ_e4qhFwhlaXBVbve1t6_CxIe6uoTF7GnxOI_aUQeRzBIeKZ1NTGyFMgQHCCKNpGXWOsXtSGimGcGEidGaDNJY8qBRI4QnZ1YYaTM3voJeuSltH5D4mkgzY5inFsZwyVJnpTWWgjMhfDCAfnBQsW3ULPwcyqwIvhvA8Oizov2Sq8JnfHojYnHX_6-8gZPE13r4Ojc2hF6929tbSta1ugs79gNHvJeS
  priority: 102
  providerName: Cornell University
Title An online convex optimization algorithm for controlling linear systems with state and input constraints
URI https://www.proquest.com/docview/2406416448
https://arxiv.org/abs/2005.11308
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LS8NAEF60RfDmk1Zr2YPX0CZNtrsnUekDobVIhd7CvlILNo1JKj35253dbPUgeAkk2UCY3Z35ZvabGYRuqRAsYSr0qBIKHBQf9hwRiZcwX8mESr8XmtzhyZSMX8OnRbRwAbfC0Sr3OtEqarWRJkbeMZYHwAN4E3fZh2e6RpnTVddC4xDVfbA0Zp3T4egnxhKQPiDmXnWYaUt3dXi-W31WoRQf1DcFTGof_VHF1r4MT1B9xjOdn6IDnZ6hI0vLlMU5Wt6nuKplgS09fIc3sMXXLncS8_cl_GL5tsYAPbFjnZv8cmw-4Tmu6jQX2ERbsc0dwjxVeJVm29KML2yHiLK4QPPhYP449lxrBI9HAfWEjPrK10wogA8glS7XROtEUN1lkkgCsKKvpIQBoc-prWnDmHHmNFNcR0nvEtXSTaobCIN_x8JIKWJcEaUoJ2GiuVYaNnMAeKKJGlZAcVZVvzB9K6PYyq6JWnuZxW7lF_HvPF39__oaHQeGH2K4caSFamW-1Tdg4EvRtrPYRvWHwXT2Anej5wVcJ1-Dby0RrBo
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT8MwDLZgE4IbT_EYkAMcK2jXZskBIR5D4zUhNCRuVV4FJOhK28H4UfxHnLSDAxI3rm2Sg5PY_pzPNsAOk5InXIce01IjQPHxzlGZeAn3tUqY8tuhzR2-7tPeXXhxH91PweckF8bSKic60SlqPVQ2Rr5nLQ86D4gmDrNXz3aNsq-rkxYa1bG4NB_vCNmKg_NT3N_dIDjrDk56Xt1VwBNRwDypoo72DZcaLS8uuC8MNSaRzOxzRRVFi9zRSuGA0BfMlYPh3OIgw7UwUdLGZaehGdqE1gY0j7v9m9vvoE5AO-iit6vXU1crbE_k46e3Knbjo71g6AS7T790vzNoZ_PQvBGZyRdgyqSLMON4oKpYgoejlFTFM4jjo4_JEHXKS52sScTzA8qkfHwh6OuSmuZuE9qJnSJyUhWGLogN7xKXrEREqslTmo1KO75wLSnKYhkG_yG1FWikw9SsAkFAycNIa2qxj9ZM0DAxwmiD2iNAB2YNVp2A4qwqt2EbZUaxk90atCYyi-urVsQ_B2P979_bMNsbXF_FV-f9yw2YCyw5xRLzaAsaZT4ym-hdlHKr3lMC8T-foi93TuZh
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+online+convex+optimization+algorithm+for+controlling+linear+systems+with+state+and+input+constraints&rft.jtitle=arXiv.org&rft.au=Nonhoff%2C+Marko&rft.au=M%C3%BCller%2C+Matthias+A&rft.date=2021-03-16&rft.pub=Cornell+University+Library%2C+arXiv.org&rft.eissn=2331-8422&rft_id=info:doi/10.48550%2Farxiv.2005.11308