A stabilized finite element method for inverse problems subject to the convection-diffusion equation. I: diffusion-dominated regime

The numerical approximation of an inverse problem subject to the convection--diffusion equation when diffusion dominates is studied. We derive Carleman estimates that are on a form suitable for use in numerical analysis and with explicit dependence on the Péclet number. A stabilized finite element m...

Full description

Saved in:
Bibliographic Details
Published inarXiv.org
Main Authors Burman, Erik, Nechita, Mihai, Oksanen, Lauri
Format Paper Journal Article
LanguageEnglish
Published Ithaca Cornell University Library, arXiv.org 05.10.2019
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The numerical approximation of an inverse problem subject to the convection--diffusion equation when diffusion dominates is studied. We derive Carleman estimates that are on a form suitable for use in numerical analysis and with explicit dependence on the Péclet number. A stabilized finite element method is then proposed and analysed. An upper bound on the condition number is first derived. Combining the stability estimates on the continuous problem with the numerical stability of the method, we then obtain error estimates in local \(H^1\)- or \(L^2\)-norms that are optimal with respect to the approximation order, the problem's stability and perturbations in data. The convergence order is the same for both norms, but the \(H^1\)-estimate requires an additional divergence assumption for the convective field. The theory is illustrated in some computational examples.
AbstractList The numerical approximation of an inverse problem subject to the convection--diffusion equation when diffusion dominates is studied. We derive Carleman estimates that are on a form suitable for use in numerical analysis and with explicit dependence on the Péclet number. A stabilized finite element method is then proposed and analysed. An upper bound on the condition number is first derived. Combining the stability estimates on the continuous problem with the numerical stability of the method, we then obtain error estimates in local $H^1$- or $L^2$-norms that are optimal with respect to the approximation order, the problem's stability and perturbations in data. The convergence order is the same for both norms, but the $H^1$-estimate requires an additional divergence assumption for the convective field. The theory is illustrated in some computational examples.
The numerical approximation of an inverse problem subject to the convection--diffusion equation when diffusion dominates is studied. We derive Carleman estimates that are on a form suitable for use in numerical analysis and with explicit dependence on the Péclet number. A stabilized finite element method is then proposed and analysed. An upper bound on the condition number is first derived. Combining the stability estimates on the continuous problem with the numerical stability of the method, we then obtain error estimates in local \(H^1\)- or \(L^2\)-norms that are optimal with respect to the approximation order, the problem's stability and perturbations in data. The convergence order is the same for both norms, but the \(H^1\)-estimate requires an additional divergence assumption for the convective field. The theory is illustrated in some computational examples.
Author Burman, Erik
Oksanen, Lauri
Nechita, Mihai
Author_xml – sequence: 1
  givenname: Erik
  surname: Burman
  fullname: Burman, Erik
– sequence: 2
  givenname: Mihai
  surname: Nechita
  fullname: Nechita, Mihai
– sequence: 3
  givenname: Lauri
  surname: Oksanen
  fullname: Oksanen, Lauri
BackLink https://doi.org/10.48550/arXiv.1811.00431$$DView paper in arXiv
https://doi.org/10.1007/s00211-019-01087-x$$DView published paper (Access to full text may be restricted)
BookMark eNo9kMtOwzAQRS0EEqX0A1hhiXWCn4nLrqp4VKrEpvvIScbUVWO3sVMBW34ct0WsZnTnaubOuUGXzjtA6I6SXCgpyaPuP-0hp4rSnBDB6QUaMc5ppgRj12gSwoYQwoqSSclH6GeGQ9S13dpvaLGxzkbAsIUOXMQdxLVPqu-xdQfoA-Bd7-s0DTgM9QaaiKPHcQ248cnQROtd1lpjhpA6DPtBH6UcL57wv5y1vrNOx3Svhw_bwS26MnobYPJXx2j18ryav2XL99fFfLbMtGQqExxqrZhphFCK1aIwpqZ1Q4VulOJTrdtaUMmlMZQ2BTHltGyJkm3Rtmxamikfo_vz2hOhatfbTvdf1ZFUdSKVHA9nR_pyP0CI1cYPvUuZKkaZ4kSQUvFf5jlwUQ
ContentType Paper
Journal Article
Copyright 2019. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
http://arxiv.org/licenses/nonexclusive-distrib/1.0
Copyright_xml – notice: 2019. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: http://arxiv.org/licenses/nonexclusive-distrib/1.0
DBID 8FE
8FG
ABJCF
ABUWG
AFKRA
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
HCIFZ
L6V
M7S
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
AKY
AKZ
GOX
DOI 10.48550/arxiv.1811.00431
DatabaseName ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials - QC
ProQuest Central
Technology Collection
ProQuest One
ProQuest Central
SciTech Premium Collection
ProQuest Engineering Collection
Engineering Database
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
arXiv Computer Science
arXiv Mathematics
arXiv.org
DatabaseTitle Publicly Available Content Database
Engineering Database
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
ProQuest One Academic UKI Edition
ProQuest Central Korea
Materials Science & Engineering Collection
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
Engineering Collection
DatabaseTitleList
Publicly Available Content Database
Database_xml – sequence: 1
  dbid: GOX
  name: arXiv.org
  url: http://arxiv.org/find
  sourceTypes: Open Access Repository
– sequence: 2
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 2331-8422
ExternalDocumentID 1811_00431
Genre Working Paper/Pre-Print
GroupedDBID 8FE
8FG
ABJCF
ABUWG
AFKRA
ALMA_UNASSIGNED_HOLDINGS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
FRJ
HCIFZ
L6V
M7S
M~E
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
AKY
AKZ
GOX
ID FETCH-LOGICAL-a528-43eba82fc44882b46ffb1bc14ac8839aadb41535ff11c60f797d085d6dd297f93
IEDL.DBID GOX
IngestDate Tue Jul 22 23:09:55 EDT 2025
Mon Jun 30 09:41:20 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a528-43eba82fc44882b46ffb1bc14ac8839aadb41535ff11c60f797d085d6dd297f93
Notes SourceType-Working Papers-1
ObjectType-Working Paper/Pre-Print-1
content type line 50
OpenAccessLink https://arxiv.org/abs/1811.00431
PQID 2128304078
PQPubID 2050157
ParticipantIDs arxiv_primary_1811_00431
proquest_journals_2128304078
PublicationCentury 2000
PublicationDate 20191005
PublicationDateYYYYMMDD 2019-10-05
PublicationDate_xml – month: 10
  year: 2019
  text: 20191005
  day: 05
PublicationDecade 2010
PublicationPlace Ithaca
PublicationPlace_xml – name: Ithaca
PublicationTitle arXiv.org
PublicationYear 2019
Publisher Cornell University Library, arXiv.org
Publisher_xml – name: Cornell University Library, arXiv.org
SSID ssj0002672553
Score 1.7035782
SecondaryResourceType preprint
Snippet The numerical approximation of an inverse problem subject to the convection--diffusion equation when diffusion dominates is studied. We derive Carleman...
The numerical approximation of an inverse problem subject to the convection--diffusion equation when diffusion dominates is studied. We derive Carleman...
SourceID arxiv
proquest
SourceType Open Access Repository
Aggregation Database
SubjectTerms Approximation
Computer Science - Numerical Analysis
Convection-diffusion equation
Dependence
Diffusion
Divergence
Estimates
Finite element analysis
Finite element method
Inverse problems
Mathematical analysis
Mathematics - Analysis of PDEs
Mathematics - Numerical Analysis
Nonlinear programming
Norms
Numerical analysis
Numerical stability
Upper bounds
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LSwMxEA7aInjzSatVcvCa1n1ks-tFVFqqYClSobclT-jB7WNbEa_-cWeyaz0IXpPbhMx8-ebLfIRcCR1J7mLF0lQLFlspmMpCzsLYJjIDhBI4_I38PEqGr_HTlE9rwq2sZZU_OdEnajPXyJH3IMWm8PSGina7WDJ0jcLuam2hsUuauA-Pr-Z9fzR-2bIsYSIAM0dVO9MP7-rJ1cfsvQuFLehiGwxnc_qlP8nYV5jBAWmO5cKuDsmOLY7Inhdm6vKYfN1RwG-oYP20hroZQkRqK803reyfKeBOOitQX2FpbRBT0nKjkGKh6zkFjEe9utz_YWDoibJBkozaZTXou0sfb-h2mZk56mMAilK0bXizJ2Qy6E8ehqw2TmCSI1kWWSXT0Gl4eqWhihPnVKB0EEudAh6S0igo2xF3Lgh0cu1EJgwgL5MYE2bCZdEpaRTzwrYI5bFwHCAUoB4XO22kEkqp0GC3JuEma5OWD16-qGZj5BjX3Me1TTo_8czre1Hmv6d49v_2OdkHaJJ52RzvkMZ6tbEXUP7X6rI-429HM7LU
  priority: 102
  providerName: ProQuest
Title A stabilized finite element method for inverse problems subject to the convection-diffusion equation. I: diffusion-dominated regime
URI https://www.proquest.com/docview/2128304078
https://arxiv.org/abs/1811.00431
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwdZ09T8MwEIattiwsCASohVLdwOrSOHGcsBXUFpBaECpSt8iObakDKfQDIQYW_jhnJ4UBsWSwnOUc5R7fvXdHyLnIQ8ltpGiS5IJGRgqqUsYpi0wsUySUwLpq5PEkvnmK7mZ8ViOwrYWRy_f5W9kfWK0u0P0EXZeswvtNnTEn2Rrdz8rkpG_FVe3_3YeM6Zf-_Fq9vxjuk70K9KBfnswBqZnikHz1AWnM6VE_jAY7d8AHplRwQznMGZAiYV44tYSBatzLClYb5QImsF4AEht4rbivSKBuwsnGhbzAvJZtu7twewk_y1QvnNoFwRLcEIZnc0Smw8H0-oZWYxCo5C70FRolE2ZzvEglTEWxtSpQeRDJPEG6kVIrdMIhtzYI8rhnRSo0cpSOtWapsGl4TBrFojBNAjwSliMQIcPYyOZaKqGUYtrlXmKu0xZpeuNlL2Wni8zZNfN2bZH21p5Z9ZWvMnR7SdhzmcCT_988JbsIGakXwPE2aayXG3OGjnytOqSeDEcdsnM1mDw8dvzZ4nP8OfgGrHmkdA
linkProvider Cornell University
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV07TxwxELYQKApdHkRASDJFKH2wXnu9ixRFKMnlLjyU4iLRrfyUruBee8erze_Jf2TGewcFUjpauxvbM9_MfJ6Psc_a5UZFaXlZOs1lMJrbSiguZChMhQgli_Qb-ey86P2Rvy7UxRr7t_oLQ7TKlU9MjtqPHdXID9DFlph6Y0T7OplyUo2i7upKQqO9Fifh9hpTtuZL_zue774Q3R-Dbz2-VBXgRlElKQ_WlCI6zEtKYWURo82sy6RxJYIFY7zFmJarGLPMFYdRV9ojLPGF96LSkWYvocffkHle0YMquz8fSjqi0AjQ87Z3miaFHZjZzfCqg1E061DPjQaBpqUnnj-Fs-4rtvHbTMLsNVsLozfsRWKBuuYt-3sMCBaJLnsXPMQh4VEILcEcWq1pQJALwxGROQIs1WgaaBaW6jkwHwMCSkhU9vRhgpMAy4IqchCm7VTxDvSP4GGZ-zGRcRD3AmlEXIYtNngOe75j66PxKGwzUFJHhXgNIVaU0XljtbVWeGoNFcpXO2w7Ga-etIM4arJrney6w_ZW9qyXj7CpH6_M7v-3P7GXvcHZaX3aPz95zzYRE1WJr6f22Pp8tggfEHfM7cd02sDqZ75d9-mE7g4
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+stabilized+finite+element+method+for+inverse+problems+subject+to+the+convection-diffusion+equation.+I%3A+diffusion-dominated+regime&rft.jtitle=arXiv.org&rft.au=Burman%2C+Erik&rft.au=Nechita%2C+Mihai&rft.au=Oksanen%2C+Lauri&rft.date=2019-10-05&rft.pub=Cornell+University+Library%2C+arXiv.org&rft.eissn=2331-8422&rft_id=info:doi/10.48550%2Farxiv.1811.00431