A stabilized finite element method for inverse problems subject to the convection-diffusion equation. I: diffusion-dominated regime
The numerical approximation of an inverse problem subject to the convection--diffusion equation when diffusion dominates is studied. We derive Carleman estimates that are on a form suitable for use in numerical analysis and with explicit dependence on the Péclet number. A stabilized finite element m...
Saved in:
Published in | arXiv.org |
---|---|
Main Authors | , , |
Format | Paper Journal Article |
Language | English |
Published |
Ithaca
Cornell University Library, arXiv.org
05.10.2019
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The numerical approximation of an inverse problem subject to the convection--diffusion equation when diffusion dominates is studied. We derive Carleman estimates that are on a form suitable for use in numerical analysis and with explicit dependence on the Péclet number. A stabilized finite element method is then proposed and analysed. An upper bound on the condition number is first derived. Combining the stability estimates on the continuous problem with the numerical stability of the method, we then obtain error estimates in local \(H^1\)- or \(L^2\)-norms that are optimal with respect to the approximation order, the problem's stability and perturbations in data. The convergence order is the same for both norms, but the \(H^1\)-estimate requires an additional divergence assumption for the convective field. The theory is illustrated in some computational examples. |
---|---|
AbstractList | The numerical approximation of an inverse problem subject to the
convection--diffusion equation when diffusion dominates is studied. We derive
Carleman estimates that are on a form suitable for use in numerical analysis
and with explicit dependence on the Péclet number. A stabilized finite
element method is then proposed and analysed. An upper bound on the condition
number is first derived. Combining the stability estimates on the continuous
problem with the numerical stability of the method, we then obtain error
estimates in local $H^1$- or $L^2$-norms that are optimal with respect to the
approximation order, the problem's stability and perturbations in data. The
convergence order is the same for both norms, but the $H^1$-estimate requires
an additional divergence assumption for the convective field. The theory is
illustrated in some computational examples. The numerical approximation of an inverse problem subject to the convection--diffusion equation when diffusion dominates is studied. We derive Carleman estimates that are on a form suitable for use in numerical analysis and with explicit dependence on the Péclet number. A stabilized finite element method is then proposed and analysed. An upper bound on the condition number is first derived. Combining the stability estimates on the continuous problem with the numerical stability of the method, we then obtain error estimates in local \(H^1\)- or \(L^2\)-norms that are optimal with respect to the approximation order, the problem's stability and perturbations in data. The convergence order is the same for both norms, but the \(H^1\)-estimate requires an additional divergence assumption for the convective field. The theory is illustrated in some computational examples. |
Author | Burman, Erik Oksanen, Lauri Nechita, Mihai |
Author_xml | – sequence: 1 givenname: Erik surname: Burman fullname: Burman, Erik – sequence: 2 givenname: Mihai surname: Nechita fullname: Nechita, Mihai – sequence: 3 givenname: Lauri surname: Oksanen fullname: Oksanen, Lauri |
BackLink | https://doi.org/10.48550/arXiv.1811.00431$$DView paper in arXiv https://doi.org/10.1007/s00211-019-01087-x$$DView published paper (Access to full text may be restricted) |
BookMark | eNo9kMtOwzAQRS0EEqX0A1hhiXWCn4nLrqp4VKrEpvvIScbUVWO3sVMBW34ct0WsZnTnaubOuUGXzjtA6I6SXCgpyaPuP-0hp4rSnBDB6QUaMc5ppgRj12gSwoYQwoqSSclH6GeGQ9S13dpvaLGxzkbAsIUOXMQdxLVPqu-xdQfoA-Bd7-s0DTgM9QaaiKPHcQ248cnQROtd1lpjhpA6DPtBH6UcL57wv5y1vrNOx3Svhw_bwS26MnobYPJXx2j18ryav2XL99fFfLbMtGQqExxqrZhphFCK1aIwpqZ1Q4VulOJTrdtaUMmlMZQ2BTHltGyJkm3Rtmxamikfo_vz2hOhatfbTvdf1ZFUdSKVHA9nR_pyP0CI1cYPvUuZKkaZ4kSQUvFf5jlwUQ |
ContentType | Paper Journal Article |
Copyright | 2019. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. http://arxiv.org/licenses/nonexclusive-distrib/1.0 |
Copyright_xml | – notice: 2019. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: http://arxiv.org/licenses/nonexclusive-distrib/1.0 |
DBID | 8FE 8FG ABJCF ABUWG AFKRA AZQEC BENPR BGLVJ CCPQU DWQXO HCIFZ L6V M7S PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS AKY AKZ GOX |
DOI | 10.48550/arxiv.1811.00431 |
DatabaseName | ProQuest SciTech Collection ProQuest Technology Collection Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials - QC ProQuest Central Technology Collection ProQuest One ProQuest Central SciTech Premium Collection ProQuest Engineering Collection Engineering Database ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection arXiv Computer Science arXiv Mathematics arXiv.org |
DatabaseTitle | Publicly Available Content Database Engineering Database Technology Collection ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest One Academic Eastern Edition ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Technology Collection ProQuest SciTech Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Engineering Collection ProQuest One Academic UKI Edition ProQuest Central Korea Materials Science & Engineering Collection ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) Engineering Collection |
DatabaseTitleList | Publicly Available Content Database |
Database_xml | – sequence: 1 dbid: GOX name: arXiv.org url: http://arxiv.org/find sourceTypes: Open Access Repository – sequence: 2 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Physics |
EISSN | 2331-8422 |
ExternalDocumentID | 1811_00431 |
Genre | Working Paper/Pre-Print |
GroupedDBID | 8FE 8FG ABJCF ABUWG AFKRA ALMA_UNASSIGNED_HOLDINGS AZQEC BENPR BGLVJ CCPQU DWQXO FRJ HCIFZ L6V M7S M~E PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS AKY AKZ GOX |
ID | FETCH-LOGICAL-a528-43eba82fc44882b46ffb1bc14ac8839aadb41535ff11c60f797d085d6dd297f93 |
IEDL.DBID | GOX |
IngestDate | Tue Jul 22 23:09:55 EDT 2025 Mon Jun 30 09:41:20 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | false |
IsScholarly | false |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a528-43eba82fc44882b46ffb1bc14ac8839aadb41535ff11c60f797d085d6dd297f93 |
Notes | SourceType-Working Papers-1 ObjectType-Working Paper/Pre-Print-1 content type line 50 |
OpenAccessLink | https://arxiv.org/abs/1811.00431 |
PQID | 2128304078 |
PQPubID | 2050157 |
ParticipantIDs | arxiv_primary_1811_00431 proquest_journals_2128304078 |
PublicationCentury | 2000 |
PublicationDate | 20191005 |
PublicationDateYYYYMMDD | 2019-10-05 |
PublicationDate_xml | – month: 10 year: 2019 text: 20191005 day: 05 |
PublicationDecade | 2010 |
PublicationPlace | Ithaca |
PublicationPlace_xml | – name: Ithaca |
PublicationTitle | arXiv.org |
PublicationYear | 2019 |
Publisher | Cornell University Library, arXiv.org |
Publisher_xml | – name: Cornell University Library, arXiv.org |
SSID | ssj0002672553 |
Score | 1.7035782 |
SecondaryResourceType | preprint |
Snippet | The numerical approximation of an inverse problem subject to the convection--diffusion equation when diffusion dominates is studied. We derive Carleman... The numerical approximation of an inverse problem subject to the convection--diffusion equation when diffusion dominates is studied. We derive Carleman... |
SourceID | arxiv proquest |
SourceType | Open Access Repository Aggregation Database |
SubjectTerms | Approximation Computer Science - Numerical Analysis Convection-diffusion equation Dependence Diffusion Divergence Estimates Finite element analysis Finite element method Inverse problems Mathematical analysis Mathematics - Analysis of PDEs Mathematics - Numerical Analysis Nonlinear programming Norms Numerical analysis Numerical stability Upper bounds |
SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LSwMxEA7aInjzSatVcvCa1n1ks-tFVFqqYClSobclT-jB7WNbEa_-cWeyaz0IXpPbhMx8-ebLfIRcCR1J7mLF0lQLFlspmMpCzsLYJjIDhBI4_I38PEqGr_HTlE9rwq2sZZU_OdEnajPXyJH3IMWm8PSGina7WDJ0jcLuam2hsUuauA-Pr-Z9fzR-2bIsYSIAM0dVO9MP7-rJ1cfsvQuFLehiGwxnc_qlP8nYV5jBAWmO5cKuDsmOLY7Inhdm6vKYfN1RwG-oYP20hroZQkRqK803reyfKeBOOitQX2FpbRBT0nKjkGKh6zkFjEe9utz_YWDoibJBkozaZTXou0sfb-h2mZk56mMAilK0bXizJ2Qy6E8ehqw2TmCSI1kWWSXT0Gl4eqWhihPnVKB0EEudAh6S0igo2xF3Lgh0cu1EJgwgL5MYE2bCZdEpaRTzwrYI5bFwHCAUoB4XO22kEkqp0GC3JuEma5OWD16-qGZj5BjX3Me1TTo_8czre1Hmv6d49v_2OdkHaJJ52RzvkMZ6tbEXUP7X6rI-429HM7LU priority: 102 providerName: ProQuest |
Title | A stabilized finite element method for inverse problems subject to the convection-diffusion equation. I: diffusion-dominated regime |
URI | https://www.proquest.com/docview/2128304078 https://arxiv.org/abs/1811.00431 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwdZ09T8MwEIattiwsCASohVLdwOrSOHGcsBXUFpBaECpSt8iObakDKfQDIQYW_jhnJ4UBsWSwnOUc5R7fvXdHyLnIQ8ltpGiS5IJGRgqqUsYpi0wsUySUwLpq5PEkvnmK7mZ8ViOwrYWRy_f5W9kfWK0u0P0EXZeswvtNnTEn2Rrdz8rkpG_FVe3_3YeM6Zf-_Fq9vxjuk70K9KBfnswBqZnikHz1AWnM6VE_jAY7d8AHplRwQznMGZAiYV44tYSBatzLClYb5QImsF4AEht4rbivSKBuwsnGhbzAvJZtu7twewk_y1QvnNoFwRLcEIZnc0Smw8H0-oZWYxCo5C70FRolE2ZzvEglTEWxtSpQeRDJPEG6kVIrdMIhtzYI8rhnRSo0cpSOtWapsGl4TBrFojBNAjwSliMQIcPYyOZaKqGUYtrlXmKu0xZpeuNlL2Wni8zZNfN2bZH21p5Z9ZWvMnR7SdhzmcCT_988JbsIGakXwPE2aayXG3OGjnytOqSeDEcdsnM1mDw8dvzZ4nP8OfgGrHmkdA |
linkProvider | Cornell University |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV07TxwxELYQKApdHkRASDJFKH2wXnu9ixRFKMnlLjyU4iLRrfyUruBee8erze_Jf2TGewcFUjpauxvbM9_MfJ6Psc_a5UZFaXlZOs1lMJrbSiguZChMhQgli_Qb-ey86P2Rvy7UxRr7t_oLQ7TKlU9MjtqPHdXID9DFlph6Y0T7OplyUo2i7upKQqO9Fifh9hpTtuZL_zue774Q3R-Dbz2-VBXgRlElKQ_WlCI6zEtKYWURo82sy6RxJYIFY7zFmJarGLPMFYdRV9ojLPGF96LSkWYvocffkHle0YMquz8fSjqi0AjQ87Z3miaFHZjZzfCqg1E061DPjQaBpqUnnj-Fs-4rtvHbTMLsNVsLozfsRWKBuuYt-3sMCBaJLnsXPMQh4VEILcEcWq1pQJALwxGROQIs1WgaaBaW6jkwHwMCSkhU9vRhgpMAy4IqchCm7VTxDvSP4GGZ-zGRcRD3AmlEXIYtNngOe75j66PxKGwzUFJHhXgNIVaU0XljtbVWeGoNFcpXO2w7Ga-etIM4arJrney6w_ZW9qyXj7CpH6_M7v-3P7GXvcHZaX3aPz95zzYRE1WJr6f22Pp8tggfEHfM7cd02sDqZ75d9-mE7g4 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+stabilized+finite+element+method+for+inverse+problems+subject+to+the+convection-diffusion+equation.+I%3A+diffusion-dominated+regime&rft.jtitle=arXiv.org&rft.au=Burman%2C+Erik&rft.au=Nechita%2C+Mihai&rft.au=Oksanen%2C+Lauri&rft.date=2019-10-05&rft.pub=Cornell+University+Library%2C+arXiv.org&rft.eissn=2331-8422&rft_id=info:doi/10.48550%2Farxiv.1811.00431 |