Computational simulation of the adaptive capacity of vein grafts in response to increased pressure
Vein maladaptation, leading to poor long-term patency, is a serious clinical problem in patients receiving coronary artery bypass grafts (CABGs) or undergoing related clinical procedures that subject veins to elevated blood flow and pressure. We propose a computational model of venous adaptation to...
Saved in:
Published in | Journal of biomechanical engineering Vol. 137; no. 3 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
United States
01.03.2015
|
Subjects | |
Online Access | Get more information |
Cover
Loading…
Abstract | Vein maladaptation, leading to poor long-term patency, is a serious clinical problem in patients receiving coronary artery bypass grafts (CABGs) or undergoing related clinical procedures that subject veins to elevated blood flow and pressure. We propose a computational model of venous adaptation to altered pressure based on a constrained mixture theory of growth and remodeling (G&R). We identify constitutive parameters that optimally match biaxial data from a mouse vena cava, then numerically subject the vein to altered pressure conditions and quantify the extent of adaptation for a biologically reasonable set of bounds for G&R parameters. We identify conditions under which a vein graft can adapt optimally and explore physiological constraints that lead to maladaptation. Finally, we test the hypothesis that a gradual, rather than a step, change in pressure will reduce maladaptation. Optimization is used to accelerate parameter identification and numerically evaluate hypotheses of vein remodeling. |
---|---|
AbstractList | Vein maladaptation, leading to poor long-term patency, is a serious clinical problem in patients receiving coronary artery bypass grafts (CABGs) or undergoing related clinical procedures that subject veins to elevated blood flow and pressure. We propose a computational model of venous adaptation to altered pressure based on a constrained mixture theory of growth and remodeling (G&R). We identify constitutive parameters that optimally match biaxial data from a mouse vena cava, then numerically subject the vein to altered pressure conditions and quantify the extent of adaptation for a biologically reasonable set of bounds for G&R parameters. We identify conditions under which a vein graft can adapt optimally and explore physiological constraints that lead to maladaptation. Finally, we test the hypothesis that a gradual, rather than a step, change in pressure will reduce maladaptation. Optimization is used to accelerate parameter identification and numerically evaluate hypotheses of vein remodeling. |
Author | Marsden, Alison L Sankaran, Sethuraman Humphrey, Jay D Ramachandra, Abhay B |
Author_xml | – sequence: 1 givenname: Abhay B surname: Ramachandra fullname: Ramachandra, Abhay B – sequence: 2 givenname: Sethuraman surname: Sankaran fullname: Sankaran, Sethuraman – sequence: 3 givenname: Jay D surname: Humphrey fullname: Humphrey, Jay D – sequence: 4 givenname: Alison L surname: Marsden fullname: Marsden, Alison L |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/25376151$$D View this record in MEDLINE/PubMed |
BookMark | eNo1j1tLAzEUhIMo9qIP_gHJH9iak81JN49StAoFX_S55HJWV_YSNtlC_7319jTzzcDALNh5P_TE2A2IFQDgHayUkEZIOGNzQFkVlUGYsUVKn0IAVEpcspnEcq0BYc7cZujilG1uht62PDXd1P4AH2qeP4jbYGNuDsS9jdY3-fhdHKjp-fto65z4yY2U4tAn4nk4oR_JJgo8nuI0jXTFLmrbJrr-0yV7e3x43TwVu5ft8-Z-V1iU61ygQm2tNsE4hOCVJld61FrV3kuqwTkSSpeKyhqFQGOCNkgYjHHSaV_KJbv93Y2T6yjs49h0djzu_8_KL3n4VuE |
CitedBy_id | crossref_primary_10_1016_j_cma_2023_116059 crossref_primary_10_1007_s10439_016_1628_0 crossref_primary_10_1097_MOP_0000000000000269 crossref_primary_10_1007_s12265_016_9706_0 crossref_primary_10_20517_2574_1209_2023_97 crossref_primary_10_1161_ATVBAHA_123_318239 crossref_primary_10_1016_j_jbiomech_2022_111165 crossref_primary_10_3390_cells6030019 crossref_primary_10_1115_1_4034873 crossref_primary_10_1016_j_tibtech_2017_08_008 crossref_primary_10_1038_s42003_021_02065_6 crossref_primary_10_1126_scitranslmed_aax6919 crossref_primary_10_1038_s44303_024_00014_6 crossref_primary_10_1007_s10659_020_09809_1 crossref_primary_10_1021_acsabm_0c00804 crossref_primary_10_1016_j_cma_2024_117259 crossref_primary_10_1007_s10898_019_00854_2 crossref_primary_10_1002_cnm_3545 crossref_primary_10_20517_2574_1209_97 crossref_primary_10_1007_s10237_017_0993_4 crossref_primary_10_1016_j_jmbbm_2015_09_017 crossref_primary_10_1007_s10439_018_2086_7 crossref_primary_10_1016_j_actbio_2022_09_040 crossref_primary_10_1007_s11081_020_09483_1 crossref_primary_10_1098_rsif_2016_0995 crossref_primary_10_1016_j_actbio_2022_08_029 crossref_primary_10_1063_5_0109400 crossref_primary_10_1016_j_medengphy_2019_08_007 crossref_primary_10_1002_wsbm_1642 |
ContentType | Journal Article |
DBID | CGR CUY CVF ECM EIF NPM |
DOI | 10.1115/1.4029021 |
DatabaseName | Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed |
DatabaseTitle | MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) |
DatabaseTitleList | MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | no_fulltext_linktorsrc |
Discipline | Medicine Engineering Forestry |
EISSN | 1528-8951 |
ExternalDocumentID | 25376151 |
Genre | Research Support, U.S. Gov't, Non-P.H.S Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: PHS HHS grantid: R01-RHL123689A – fundername: NHLBI NIH HHS grantid: R01 HL129727 – fundername: NHLBI NIH HHS grantid: R01 HL123689 |
GroupedDBID | --- -~X .DC .GJ 29J 4.4 53G 5AI 5GY 6TJ AAYJJ ABJNI ACBEA ACGFO ACGFS ACKMT ACXMS ADPDT AGNGV AI. ALEEW ALMA_UNASSIGNED_HOLDINGS CGR CS3 CUY CVF EBS ECM EIF EJD F5P H~9 L7B NPM P2P RAI RNS RXW TAE TN5 UKR VH1 WHG ZE2 |
ID | FETCH-LOGICAL-a527t-5456aa69d9b51dc46eb3c5664fcc2ef1bbe04634e3f500599d695e5d99b2b6c32 |
IngestDate | Mon Jul 21 05:28:20 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-a527t-5456aa69d9b51dc46eb3c5664fcc2ef1bbe04634e3f500599d695e5d99b2b6c32 |
OpenAccessLink | http://doi.org/10.1115/1.4029021 |
PMID | 25376151 |
ParticipantIDs | pubmed_primary_25376151 |
PublicationCentury | 2000 |
PublicationDate | 2015-Mar |
PublicationDateYYYYMMDD | 2015-03-01 |
PublicationDate_xml | – month: 03 year: 2015 text: 2015-Mar |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Journal of biomechanical engineering |
PublicationTitleAlternate | J Biomech Eng |
PublicationYear | 2015 |
SSID | ssj0011840 |
Score | 2.2801824 |
Snippet | Vein maladaptation, leading to poor long-term patency, is a serious clinical problem in patients receiving coronary artery bypass grafts (CABGs) or undergoing... |
SourceID | pubmed |
SourceType | Index Database |
SubjectTerms | Adaptation, Physiological Algorithms Animals Biomechanical Phenomena Blood Pressure Blood Vessel Prosthesis Computer Simulation Mice Vascular Remodeling Veins - pathology Veins - physiology |
Title | Computational simulation of the adaptive capacity of vein grafts in response to increased pressure |
URI | https://www.ncbi.nlm.nih.gov/pubmed/25376151 |
Volume | 137 |
hasFullText | |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9tAEF6FVkLlgFra8mip9sCtcvA63k32iKpWqGq4ABI3tM8SlThR7CDBn-AvM_uKQwQS5WKtvHZk-fu8mZmd-Qahg9zkAqx8mfXNgGWlKmnGKbUZYZpyzXJJfUuW4Qk7Pi9_X9CLTud-KWtp3siuunuyruQ1qMI5wNVVyf4HsosfhRMwBnzhCAjD8UUYh5YMKZxXj8axF1fa-BdaTH1qkIK_RBWTL27MqPr-dyZsU4diFp8k6ztojCpnQ9bGSwfUdRQbecJ29UX7rmbYQ2xaTcN222gs3LyehbitvBK3bYPnU1H9E7MYejXN1XwGl1erDAtJvLdtTvIQnPC4TB5d-9aJf5aDFoS2WVtdExfaYpANeBSbTStx0H-JlOs9s8I7MQzSBb-X56G4egnp6dhDXTiRGkJfMLsitp2m1tAauB2uj6oL_sRNKecMR3EqeIrDxTM4Qel434pz4o2Us_doMyKEjwJVPqCOqbbQxpLm5BZad81YXYc_GA5jYsVHJB9RCbdUwhOLgUo4UQknKrkJRyUcqIRhlKiEmwleUAknKn1C579-nv04zmL7jUzQot9kzrYWgnHNJSValczIngLrv7RKFcYSKY2TmytNz1Iv86MZp4ZqzmUhmeoVn9GbalKZHYT7mmqiLaEaPAQNy0PODOnnpRrYEkxMuYu2w2u7nAaNlcv0QveenfmC3rXM-oreWviozT5YiI385nF7AFCqanQ |
linkProvider | National Library of Medicine |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Computational+simulation+of+the+adaptive+capacity+of+vein+grafts+in+response+to+increased+pressure&rft.jtitle=Journal+of+biomechanical+engineering&rft.au=Ramachandra%2C+Abhay+B&rft.au=Sankaran%2C+Sethuraman&rft.au=Humphrey%2C+Jay+D&rft.au=Marsden%2C+Alison+L&rft.date=2015-03-01&rft.eissn=1528-8951&rft.volume=137&rft.issue=3&rft_id=info:doi/10.1115%2F1.4029021&rft_id=info%3Apmid%2F25376151&rft_id=info%3Apmid%2F25376151&rft.externalDocID=25376151 |