Cryogenic flow features on Ceres: Implications for crater‐related cryovolcanism

Craters on Ceres, such as Haulani, Kupalo, Ikapati, and Occator show postimpact modification by the deposition of extended plains material with pits, multiple lobate flows, and widely dispersed deposits that form a diffuse veneer on the preexisting surface. Bright material units in these features ha...

Full description

Saved in:
Bibliographic Details
Published inGeophysical research letters Vol. 43; no. 23; pp. 11,994 - 12,003
Main Authors Krohn, K., Jaumann, R., Stephan, K., Otto, K. A., Schmedemann, N., Wagner, R. J., Matz, K.‐D., Tosi, F., Zambon, F., Gathen, I., Schulzeck, F., Schröder, S. E., Buczkowski, D. L., Hiesinger, H., McSween, H. Y., Pieters, C. M., Preusker, F., Roatsch, T., Raymond, C. A., Russell, C. T., Williams, D. A.
Format Journal Article
LanguageEnglish
Published Washington John Wiley & Sons, Inc 16.12.2016
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Craters on Ceres, such as Haulani, Kupalo, Ikapati, and Occator show postimpact modification by the deposition of extended plains material with pits, multiple lobate flows, and widely dispersed deposits that form a diffuse veneer on the preexisting surface. Bright material units in these features have a negative spectral slope in the visible range, making it appear bluish with respect to the grey‐toned overall surface of Ceres. We calculate the drop height‐to‐runout length ratio of several flow features and obtain a coefficient of friction of < 0.1: The results imply higher flow efficiency for flow features on Ceres than for similar features on other planetary bodies with similar gravity, suggesting low‐viscosity material. The special association of flow features with impact craters could either point to an impact melt origin or to an exogenic triggering of cryovolcanic processes. Key Points We analyzed the geomorphology several flows of craters to prove if they were formed by impact melt or cryovolcanic processes The low coefficient of friction implies higher flow efficiency for flows on Ceres than for similar features on other planetary bodies The formation of the flows could be due to the mobility of crustal subsurface reservoirs enriched with hydrated salts by impacts
AbstractList Abstract Craters on Ceres, such as Haulani, Kupalo, Ikapati, and Occator show postimpact modification by the deposition of extended plains material with pits, multiple lobate flows, and widely dispersed deposits that form a diffuse veneer on the preexisting surface. Bright material units in these features have a negative spectral slope in the visible range, making it appear bluish with respect to the grey‐toned overall surface of Ceres. We calculate the drop height‐to‐runout length ratio of several flow features and obtain a coefficient of friction of < 0.1: The results imply higher flow efficiency for flow features on Ceres than for similar features on other planetary bodies with similar gravity, suggesting low‐viscosity material. The special association of flow features with impact craters could either point to an impact melt origin or to an exogenic triggering of cryovolcanic processes. Key Points We analyzed the geomorphology several flows of craters to prove if they were formed by impact melt or cryovolcanic processes The low coefficient of friction implies higher flow efficiency for flows on Ceres than for similar features on other planetary bodies The formation of the flows could be due to the mobility of crustal subsurface reservoirs enriched with hydrated salts by impacts
Craters on Ceres, such as Haulani, Kupalo, Ikapati, and Occator show postimpact modification by the deposition of extended plains material with pits, multiple lobate flows, and widely dispersed deposits that form a diffuse veneer on the preexisting surface. Bright material units in these features have a negative spectral slope in the visible range, making it appear bluish with respect to the grey-toned overall surface of Ceres. We calculate the drop height-to-runout length ratio of several flow features and obtain a coefficient of friction of<0.1: The results imply higher flow efficiency for flow features on Ceres than for similar features on other planetary bodies with similar gravity, suggesting low-viscosity material. The special association of flow features with impact craters could either point to an impact melt origin or to an exogenic triggering of cryovolcanic processes.
Craters on Ceres, such as Haulani, Kupalo, Ikapati, and Occator show postimpact modification by the deposition of extended plains material with pits, multiple lobate flows, and widely dispersed deposits that form a diffuse veneer on the preexisting surface. Bright material units in these features have a negative spectral slope in the visible range, making it appear bluish with respect to the grey-toned overall surface of Ceres. We calculate the drop height-to-runout length ratio of several flow features and obtain a coefficient of friction of<0.1: The results imply higher flow efficiency for flow features on Ceres than for similar features on other planetary bodies with similar gravity, suggesting low-viscosity material. The special association of flow features with impact craters could either point to an impact melt origin or to an exogenic triggering of cryovolcanic processes. Key Points * We analyzed the geomorphology several flows of craters to prove if they were formed by impact melt or cryovolcanic processes * The low coefficient of friction implies higher flow efficiency for flows on Ceres than for similar features on other planetary bodies * The formation of the flows could be due to the mobility of crustal subsurface reservoirs enriched with hydrated salts by impacts
Craters on Ceres, such as Haulani, Kupalo, Ikapati, and Occator show postimpact modification by the deposition of extended plains material with pits, multiple lobate flows, and widely dispersed deposits that form a diffuse veneer on the preexisting surface. Bright material units in these features have a negative spectral slope in the visible range, making it appear bluish with respect to the grey‐toned overall surface of Ceres. We calculate the drop height‐to‐runout length ratio of several flow features and obtain a coefficient of friction of < 0.1: The results imply higher flow efficiency for flow features on Ceres than for similar features on other planetary bodies with similar gravity, suggesting low‐viscosity material. The special association of flow features with impact craters could either point to an impact melt origin or to an exogenic triggering of cryovolcanic processes. Key Points We analyzed the geomorphology several flows of craters to prove if they were formed by impact melt or cryovolcanic processes The low coefficient of friction implies higher flow efficiency for flows on Ceres than for similar features on other planetary bodies The formation of the flows could be due to the mobility of crustal subsurface reservoirs enriched with hydrated salts by impacts
Author Stephan, K.
Tosi, F.
Hiesinger, H.
Preusker, F.
Wagner, R. J.
Matz, K.‐D.
Raymond, C. A.
Krohn, K.
Jaumann, R.
Gathen, I.
Schröder, S. E.
Roatsch, T.
Schulzeck, F.
Williams, D. A.
Buczkowski, D. L.
Otto, K. A.
Pieters, C. M.
Zambon, F.
Russell, C. T.
McSween, H. Y.
Schmedemann, N.
Author_xml – sequence: 1
  givenname: K.
  orcidid: 0000-0001-8518-4985
  surname: Krohn
  fullname: Krohn, K.
  email: katrin.krohn@dlr.de
  organization: Deutsches Zentrum für Luft‐ und Raumfahrt
– sequence: 2
  givenname: R.
  orcidid: 0000-0002-9759-6597
  surname: Jaumann
  fullname: Jaumann, R.
  organization: Freie Universität Berlin
– sequence: 3
  givenname: K.
  orcidid: 0000-0003-1009-0145
  surname: Stephan
  fullname: Stephan, K.
  organization: Deutsches Zentrum für Luft‐ und Raumfahrt
– sequence: 4
  givenname: K. A.
  orcidid: 0000-0002-0675-1177
  surname: Otto
  fullname: Otto, K. A.
  organization: Deutsches Zentrum für Luft‐ und Raumfahrt
– sequence: 5
  givenname: N.
  orcidid: 0000-0002-6638-0769
  surname: Schmedemann
  fullname: Schmedemann, N.
  organization: Freie Universität Berlin
– sequence: 6
  givenname: R. J.
  surname: Wagner
  fullname: Wagner, R. J.
  organization: Deutsches Zentrum für Luft‐ und Raumfahrt
– sequence: 7
  givenname: K.‐D.
  surname: Matz
  fullname: Matz, K.‐D.
  organization: Deutsches Zentrum für Luft‐ und Raumfahrt
– sequence: 8
  givenname: F.
  orcidid: 0000-0003-4002-2434
  surname: Tosi
  fullname: Tosi, F.
  organization: National Institute for Astrophysics
– sequence: 9
  givenname: F.
  orcidid: 0000-0002-4190-6592
  surname: Zambon
  fullname: Zambon, F.
  organization: National Institute for Astrophysics
– sequence: 10
  givenname: I.
  surname: Gathen
  fullname: Gathen, I.
  organization: Deutsches Zentrum für Luft‐ und Raumfahrt
– sequence: 11
  givenname: F.
  orcidid: 0000-0003-3022-1624
  surname: Schulzeck
  fullname: Schulzeck, F.
  organization: Deutsches Zentrum für Luft‐ und Raumfahrt
– sequence: 12
  givenname: S. E.
  orcidid: 0000-0003-0323-8324
  surname: Schröder
  fullname: Schröder, S. E.
  organization: Deutsches Zentrum für Luft‐ und Raumfahrt
– sequence: 13
  givenname: D. L.
  orcidid: 0000-0002-4729-7804
  surname: Buczkowski
  fullname: Buczkowski, D. L.
  organization: The Johns Hopkins University Applied Physics Laboratory
– sequence: 14
  givenname: H.
  orcidid: 0000-0001-7688-1965
  surname: Hiesinger
  fullname: Hiesinger, H.
  organization: Westfälische Wilhelms‐Universität Münster
– sequence: 15
  givenname: H. Y.
  orcidid: 0000-0003-3749-7711
  surname: McSween
  fullname: McSween, H. Y.
  organization: University of Tennessee
– sequence: 16
  givenname: C. M.
  orcidid: 0000-0003-1671-8415
  surname: Pieters
  fullname: Pieters, C. M.
  organization: Brown University
– sequence: 17
  givenname: F.
  orcidid: 0000-0001-9005-4202
  surname: Preusker
  fullname: Preusker, F.
  organization: Deutsches Zentrum für Luft‐ und Raumfahrt
– sequence: 18
  givenname: T.
  orcidid: 0000-0001-5712-5005
  surname: Roatsch
  fullname: Roatsch, T.
  organization: Deutsches Zentrum für Luft‐ und Raumfahrt
– sequence: 19
  givenname: C. A.
  orcidid: 0000-0002-4213-8097
  surname: Raymond
  fullname: Raymond, C. A.
  organization: California Institute of Technology
– sequence: 20
  givenname: C. T.
  orcidid: 0000-0003-1639-8298
  surname: Russell
  fullname: Russell, C. T.
  organization: University of California
– sequence: 21
  givenname: D. A.
  orcidid: 0000-0002-7930-9347
  surname: Williams
  fullname: Williams, D. A.
  organization: Arizona State University
BookMark eNqN0c9KAzEQBvAgFWyrNx9gwYsHq5P_iTcpWgsFUfS8ZNNEtmw3Nela9uYj-Iw-iVvqQTwUT_Mx_BgYvgHq1aF2CJ1iuMQA5IoAFpMZSKASDlAfa8ZGCkD2UB9Ad5lIcYQGKS0AgALFffQ4jm14dXVpM1-FTeadWTfRpSzU2dh14TqbLldVac26DHXKfIiZjWbt4tfHZ3RVl-bdog3vobKmLtPyGB16UyV38jOH6OXu9nl8P5o9TKbjm9nIcCLpiBmuC0c0neO5EFraQllvQBBmPGjvKcPCW1MUTHHjtCyI4pxjTawFbQtOh-h8d3cVw1vj0jpflsm6qjK1C03KsepeBwFa_4NyzbSUYkvP_tBFaGLdPZJjjQkTGBjbqxRnRIEiW3WxUzaGlKLz-SqWSxPbHEO-LSz_XVjHyY5vysq1e20-eZpxTjil34Pol4A
CitedBy_id crossref_primary_10_1016_j_chemer_2021_125745
crossref_primary_10_1016_j_icarus_2018_04_014
crossref_primary_10_1016_j_icarus_2017_09_014
crossref_primary_10_1016_j_icarus_2017_09_036
crossref_primary_10_3847_PSJ_ac502b
crossref_primary_10_1016_j_gca_2022_10_019
crossref_primary_10_1016_j_pss_2022_105538
crossref_primary_10_1016_j_icarus_2018_01_022
crossref_primary_10_1111_maps_13126
crossref_primary_10_1029_2018JE005660
crossref_primary_10_1016_j_icarus_2019_113404
crossref_primary_10_1038_s41467_020_17184_7
crossref_primary_10_1016_j_icarus_2018_02_029
crossref_primary_10_1002_2016GL071652
crossref_primary_10_1029_2018GL078697
crossref_primary_10_1016_j_icarus_2017_08_012
crossref_primary_10_1029_2018GL080327
crossref_primary_10_1038_s41467_020_20494_5
crossref_primary_10_1016_j_icarus_2017_05_025
crossref_primary_10_1016_j_icarus_2017_01_026
crossref_primary_10_3390_geosciences9110475
crossref_primary_10_1111_maps_12947
crossref_primary_10_1016_j_icarus_2017_07_019
crossref_primary_10_1016_j_icarus_2017_12_021
crossref_primary_10_1016_j_icarus_2018_07_016
crossref_primary_10_1016_j_icarus_2018_09_006
crossref_primary_10_1016_j_icarus_2021_114583
crossref_primary_10_1111_maps_13135
crossref_primary_10_1016_j_icarus_2017_11_013
crossref_primary_10_1016_j_icarus_2021_114428
crossref_primary_10_1016_j_icarus_2017_09_021
crossref_primary_10_1016_j_icarus_2017_06_018
crossref_primary_10_1016_j_icarus_2017_08_001
crossref_primary_10_1029_2022JE007383
crossref_primary_10_1002_2016GL072319
crossref_primary_10_1111_maps_13078
crossref_primary_10_1016_j_icarus_2018_05_012
crossref_primary_10_1016_j_pss_2018_02_009
crossref_primary_10_1007_s10686_021_09800_1
crossref_primary_10_1007_s11214_020_00683_w
crossref_primary_10_1016_j_icarus_2017_12_007
crossref_primary_10_1016_j_icarus_2017_10_038
crossref_primary_10_1002_2016GL071143
crossref_primary_10_1016_j_icarus_2017_10_013
Cites_doi 10.1007/s11214-010-9641-3
10.1016/j.icarus.2009.04.008
10.1016/j.icarus.2012.03.020
10.1111/j.1945-5100.2010.01044.x
10.1007/s11214-010-9729-9
10.1038/nature10175
10.1126/science.1225374
10.1029/2003JE002128
10.1029/JB073i012p03989
10.1016/j.epsl.2004.08.012
10.1016/0019-1035(88)90098-X
10.1007/s11214-011-9836-2
10.1016/j.icarus.2008.02.024
10.1029/GL006i009p00731
10.1038/ngeo1526
10.1130/0091-7613(1989)017<1111:MOLRAE>2.3.CO;2
10.1029/2010GL044666
10.1016/j.icarus.2012.07.027
10.1063/1.3340792
10.1007/978-94-007-1122-8
10.1016/j.pss.2013.06.017
10.1038/nature16172
10.1029/JS082i028p04055
10.1029/95JB02844
10.1029/95RG03287
10.1002/2013JE004333
10.1007/s11214-010-9677-4
10.1038/nature18290
10.1029/2004JE002244
10.1038/nature03938
10.1007/s11214-011-9745-4
10.1006/icar.1999.6132
10.1038/nature15754
10.1016/j.icarus.2004.07.011
ContentType Journal Article
Copyright 2016. American Geophysical Union. All Rights Reserved.
Copyright_xml – notice: 2016. American Geophysical Union. All Rights Reserved.
DBID AAYXX
CITATION
7TG
7TN
8FD
F1W
FR3
H8D
H96
KL.
KR7
L.G
L7M
DOI 10.1002/2016GL070370
DatabaseName CrossRef
Meteorological & Geoastrophysical Abstracts
Oceanic Abstracts
Technology Research Database
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Aerospace Database
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Meteorological & Geoastrophysical Abstracts - Academic
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Aerospace Database
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Meteorological & Geoastrophysical Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Oceanic Abstracts
Technology Research Database
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Meteorological & Geoastrophysical Abstracts - Academic
DatabaseTitleList CrossRef
Aerospace Database
Aerospace Database

Aerospace Database
Aquatic Science & Fisheries Abstracts (ASFA) Professional
DeliveryMethod fulltext_linktorsrc
Discipline Geology
Physics
EISSN 1944-8007
EndPage 12,003
ExternalDocumentID 4290086131
10_1002_2016GL070370
GRL55253
Genre article
GrantInformation_xml – fundername: NASA
– fundername: Helmholtz Association (HGF)
GroupedDBID -DZ
-~X
05W
0R~
1OB
1OC
24P
33P
50Y
5GY
5VS
702
8-1
8R4
8R5
A00
AAESR
AAHHS
AAIHA
AASGY
AAXRX
AAZKR
ABCUV
ABPPZ
ACAHQ
ACBEA
ACBWZ
ACCFJ
ACCZN
ACGFO
ACGFS
ACGOD
ACIWK
ACNCT
ACPOU
ACXBN
ACXQS
ADBBV
ADEOM
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEFZC
AENEX
AEQDE
AEUQT
AFBPY
AFGKR
AFPWT
AFRAH
AIURR
AIWBW
AJBDE
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMYDB
AVUZU
AZFZN
AZVAB
BENPR
BFHJK
BMXJE
BRXPI
CS3
DCZOG
DPXWK
DRFUL
DRSTM
DU5
EBS
EJD
F5P
G-S
GODZA
HZ~
LATKE
LEEKS
LITHE
LOXES
LUTES
LYRES
MEWTI
MSFUL
MSSTM
MXFUL
MXSTM
MY~
O9-
OK1
P-X
P2P
P2W
Q2X
R.K
RNS
ROL
SUPJJ
TN5
TWZ
UPT
WBKPD
WH7
WIH
WIN
WXSBR
WYJ
XSW
ZZTAW
~02
~OA
~~A
AAYXX
CITATION
PYCSY
7TG
7TN
8FD
ALXUD
F1W
FR3
H8D
H96
KL.
KR7
L.G
L7M
ID FETCH-LOGICAL-a5273-4a59be293d1d6697cb8cfa0624af09ff3416fcabb485ae97b28555192cc09cb53
ISSN 0094-8276
IngestDate Fri Oct 25 08:17:45 EDT 2024
Fri Oct 25 21:11:58 EDT 2024
Thu Oct 10 21:04:23 EDT 2024
Thu Oct 10 20:50:05 EDT 2024
Thu Sep 12 16:27:45 EDT 2024
Sat Aug 24 00:54:55 EDT 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 23
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-a5273-4a59be293d1d6697cb8cfa0624af09ff3416fcabb485ae97b28555192cc09cb53
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-4729-7804
0000-0002-0675-1177
0000-0003-4002-2434
0000-0001-5712-5005
0000-0002-4213-8097
0000-0003-1671-8415
0000-0003-3749-7711
0000-0002-9759-6597
0000-0003-0323-8324
0000-0002-4190-6592
0000-0001-7688-1965
0000-0002-7930-9347
0000-0001-8518-4985
0000-0003-3022-1624
0000-0003-1009-0145
0000-0002-6638-0769
0000-0001-9005-4202
0000-0003-1639-8298
OpenAccessLink https://agupubs.onlinelibrary.wiley.com/doi/pdfdirect/10.1002/2016GL070370
PQID 1854280824
PQPubID 54723
PageCount 10
ParticipantIDs proquest_miscellaneous_1880006099
proquest_miscellaneous_1859497769
proquest_journals_1912461044
proquest_journals_1854280824
crossref_primary_10_1002_2016GL070370
wiley_primary_10_1002_2016GL070370_GRL55253
PublicationCentury 2000
PublicationDate 16 December 2016
PublicationDateYYYYMMDD 2016-12-16
PublicationDate_xml – month: 12
  year: 2016
  text: 16 December 2016
  day: 16
PublicationDecade 2010
PublicationPlace Washington
PublicationPlace_xml – name: Washington
PublicationTitle Geophysical research letters
PublicationYear 2016
Publisher John Wiley & Sons, Inc
Publisher_xml – name: John Wiley & Sons, Inc
References 2012a; 219
2004; 226
2012; 221
2010; 37
2010; 107
2005; 110
2011
2010; 205
2005; 437
2016; 53
1999; 140
2013; 103
2015; 528
1988; 73
1979
2011; 474
1977; 82
1996; 34
2010; 45
2003; 108
2013; 118
2004; 172
1979; 6
1984
2010; 153
2016
2015
1982
1995; 100
2014
2012b; 338
2011; 163
1968; 73
2012; 5
2008; 196
1989; 17
e_1_2_6_51_1
e_1_2_6_53_1
e_1_2_6_32_1
Williams D. A. (e_1_2_6_52_1) 2013; 103
e_1_2_6_30_1
Stopar J. D. (e_1_2_6_49_1) 2014
Shoemaker E. M. (e_1_2_6_43_1) 1982
e_1_2_6_13_1
e_1_2_6_36_1
e_1_2_6_11_1
e_1_2_6_34_1
e_1_2_6_17_1
e_1_2_6_15_1
e_1_2_6_38_1
e_1_2_6_20_1
e_1_2_6_41_1
e_1_2_6_9_1
e_1_2_6_5_1
e_1_2_6_7_1
e_1_2_6_24_1
e_1_2_6_3_1
e_1_2_6_22_1
e_1_2_6_28_1
e_1_2_6_45_1
e_1_2_6_26_1
e_1_2_6_47_1
Brunsden D. (e_1_2_6_6_1) 1979
e_1_2_6_10_1
Hargitai H. (e_1_2_6_19_1) 2014
e_1_2_6_31_1
e_1_2_6_50_1
e_1_2_6_14_1
e_1_2_6_35_1
e_1_2_6_12_1
e_1_2_6_33_1
e_1_2_6_18_1
e_1_2_6_39_1
e_1_2_6_16_1
e_1_2_6_37_1
e_1_2_6_42_1
e_1_2_6_21_1
e_1_2_6_40_1
e_1_2_6_8_1
e_1_2_6_4_1
e_1_2_6_25_1
e_1_2_6_48_1
e_1_2_6_23_1
e_1_2_6_2_1
e_1_2_6_29_1
e_1_2_6_44_1
e_1_2_6_27_1
e_1_2_6_46_1
References_xml – year: 2011
– volume: 163
  start-page: 63
  year: 2011
  end-page: 76
  article-title: Ceres: Its origin, evolution and structure and Dawn's potential contribution
  publication-title: Space Sci. Rev.
– volume: 437
  start-page: 224
  year: 2005
  end-page: 226
  article-title: Differentiation of the asteroid Ceres as revealed by its shape
  publication-title: Nature
– volume: 45
  start-page: 638
  year: 2010
  end-page: 661
  article-title: Rampart craters on Ganymede: Their implications for fluidized ejecta emplacement
  publication-title: Meteor. Planet. Sci.
– volume: 103
  start-page: 24
  year: 2013
  end-page: 35
  article-title: Lobate and flow‐like features on asteroid Vesta
  publication-title: Planet. Space Sci.
– start-page: 130
  year: 1979
  end-page: 186
– volume: 17
  start-page: 1111
  year: 1989
  end-page: 1114
  article-title: Mobility of large rock avalanches: Evidence from Valles Marineris, Mars
  publication-title: Geology
– volume: 153
  start-page: 375
  year: 2010
  end-page: 410
  article-title: Surface, subsurface and atmosphere exchanges on the satellites of the outer Solar System
  publication-title: Space Sci. Rev.
– volume: 528
  start-page: 241
  year: 2015
  end-page: 244
  article-title: Ammoniated phyllosilicates with a likely outer Solar System origin on (1) Ceres
  publication-title: Nature
– volume: 226
  start-page: 529
  year: 2004
  end-page: 543
  article-title: Impact melt rocks from the Ries structure, Germany: An origin as impact melt flows?
  publication-title: Earth Planet. Sci. Lett.
– volume: 118
  start-page: 2279
  year: 2013
  end-page: 2294
  article-title: Mass wasting features in Vesta's south polar basin Rheaslilvia
  publication-title: J. Geophys. Res. Planets
– volume: 100
  start-page: 24,509
  year: 1995
  end-page: 24,519
  article-title: The dynamics of rapidly emplaced terrestrial lava flows and implications for planetary volcanism
  publication-title: J. Geophys. Res.
– volume: 205
  start-page: 443
  year: 2010
  end-page: 459
  article-title: Ceres' evolution and present state constrained by shape data
  publication-title: Icarus
– volume: 163
  start-page: 263
  year: 2011
  end-page: 327
  article-title: The Dawn Framing Camera
  publication-title: Space Sci. Rev.
– year: 2016
– volume: 221
  start-page: 262
  issue: 1
  year: 2012
  end-page: 275
  article-title: Origin of small pits in Martian impact craters
  publication-title: Icarus
– volume: 53
  start-page: 54
  year: 2016
  end-page: 57
  article-title: Bright carbonate deposits as evidence of aqueous alteration on (1) Ceres
  publication-title: Nature
– volume: 107
  year: 2010
  article-title: Physics of ice friction
  publication-title: J. Appl. Phys.
– start-page: 435
  year: 1982
  end-page: 520
– year: 1984
– volume: 37
  year: 2010
  article-title: New insight into lunar impact melt mobility from the LRO camera
  publication-title: Geophys. Res. Lett.
– volume: 73
  start-page: 3989
  year: 1968
  end-page: 4043
  article-title: Television observations from Surveyor 3
  publication-title: J. Geophys. Res.
– volume: 163
  start-page: 95
  year: 2011
  end-page: 116
  article-title: The surface composition of Ceres
  publication-title: Space Sci. Rev.
– volume: 6
  start-page: 731
  year: 1979
  end-page: 734
  article-title: Is there liquid water on Europa
  publication-title: Geophys. Res. Lett.
– volume: 73
  start-page: 279
  year: 1988
  end-page: 293
  article-title: Equation of state of ammonia‐water liquid: Derivation and planetological applications
  publication-title: Icarus
– volume: 474
  start-page: 620
  year: 2011
  end-page: 622
  article-title: A salt‐water reservoir as the source of a compositionally stratified plume on Enceladus
  publication-title: Nature
– volume: 219
  start-page: 665
  year: 2012a
  end-page: 675
  article-title: Physical constraints on impact melt properties from Lunar Reconnaissance Orbiter Camera images
  publication-title: Icarus
– volume: 34
  start-page: 33
  year: 1996
  end-page: 59
  article-title: Submarine landslides
  publication-title: Rev. Geophys.
– volume: 108
  issue: E12
  year: 2003
  article-title: Considerations for effusive cryovolcanism on Europa: The post‐Galileo perspective
  publication-title: J. Geophys. Res.
– volume: 338
  start-page: 246
  year: 2012b
  end-page: 249
  article-title: Pitted terrain on Vesta and implications for the presence of volatiles
  publication-title: Science
– volume: 140
  start-page: 294
  year: 1999
  end-page: 312
  article-title: Mass movement and landform degradation on the icy Galilean satellites: Results of the Galileo nominal mission
  publication-title: Icarus
– start-page: 1
  year: 2014
  end-page: 10
– volume: 528
  start-page: 237
  year: 2015
  end-page: 240
  article-title: Sublimation in bright spots on (1) Ceres
  publication-title: Nature
– volume: 5
  start-page: 574
  issue: 8
  year: 2012
  end-page: 578
  article-title: Massive ice avalanches on Iapetus mobilized by friction reduction during flash heating
  publication-title: Nat. Geosci.
– start-page: 1
  year: 2014
  end-page: 9
– volume: 82
  start-page: 4055
  year: 1977
  end-page: 4065
  article-title: Martian impact craters and emplacement of ejecta by surface flow
  publication-title: J. Geophys. Res.
– volume: 163
  start-page: 3
  year: 2011
  end-page: 23
  article-title: The Dawn mission to Vesta and Ceres
  publication-title: Space Sci. Rev.
– year: 2015
– volume: 110
  year: 2005
  article-title: Ceres: Evolution and current state
  publication-title: J. Geophys. Res.
– volume: 196
  start-page: 216
  year: 2008
  end-page: 224
  article-title: Resurfacing of Titan by ammonia‐water cryomagma
  publication-title: Icarus
– volume: 172
  start-page: 625
  year: 2004
  end-page: 640
  article-title: On the resurfacing of Ganymede by liquid water volcanism
  publication-title: Icarus
– ident: e_1_2_6_51_1
  doi: 10.1007/s11214-010-9641-3
– ident: e_1_2_6_9_1
  doi: 10.1016/j.icarus.2009.04.008
– ident: e_1_2_6_14_1
  doi: 10.1016/j.icarus.2012.03.020
– ident: e_1_2_6_3_1
  doi: 10.1111/j.1945-5100.2010.01044.x
– ident: e_1_2_6_24_1
  doi: 10.1007/s11214-010-9729-9
– ident: e_1_2_6_40_1
– ident: e_1_2_6_29_1
– ident: e_1_2_6_37_1
– ident: e_1_2_6_53_1
– ident: e_1_2_6_22_1
– start-page: 1
  volume-title: Encyclopedia of Planetary Landforms
  year: 2014
  ident: e_1_2_6_19_1
  contributor:
    fullname: Hargitai H.
– ident: e_1_2_6_34_1
  doi: 10.1038/nature10175
– start-page: 130
  volume-title: Process in Geomorphology
  year: 1979
  ident: e_1_2_6_6_1
  contributor:
    fullname: Brunsden D.
– ident: e_1_2_6_15_1
  doi: 10.1126/science.1225374
– ident: e_1_2_6_16_1
  doi: 10.1029/2003JE002128
– ident: e_1_2_6_42_1
  doi: 10.1029/JB073i012p03989
– ident: e_1_2_6_47_1
– ident: e_1_2_6_31_1
  doi: 10.1016/j.epsl.2004.08.012
– ident: e_1_2_6_10_1
  doi: 10.1016/0019-1035(88)90098-X
– ident: e_1_2_6_38_1
  doi: 10.1007/s11214-011-9836-2
– ident: e_1_2_6_26_1
  doi: 10.1016/j.icarus.2008.02.024
– ident: e_1_2_6_8_1
  doi: 10.1029/GL006i009p00731
– ident: e_1_2_6_46_1
  doi: 10.1038/ngeo1526
– ident: e_1_2_6_20_1
– ident: e_1_2_6_25_1
  doi: 10.1130/0091-7613(1989)017<1111:MOLRAE>2.3.CO;2
– ident: e_1_2_6_5_1
  doi: 10.1029/2010GL044666
– ident: e_1_2_6_4_1
  doi: 10.1016/j.icarus.2012.07.027
– ident: e_1_2_6_21_1
  doi: 10.1063/1.3340792
– start-page: 1
  volume-title: Encyclopedia of Planetary Landforms
  year: 2014
  ident: e_1_2_6_49_1
  contributor:
    fullname: Stopar J. D.
– ident: e_1_2_6_48_1
– ident: e_1_2_6_11_1
  doi: 10.1007/978-94-007-1122-8
– volume: 103
  start-page: 24
  year: 2013
  ident: e_1_2_6_52_1
  article-title: Lobate and flow‐like features on asteroid Vesta
  publication-title: Planet. Space Sci.
  doi: 10.1016/j.pss.2013.06.017
  contributor:
    fullname: Williams D. A.
– ident: e_1_2_6_39_1
– ident: e_1_2_6_12_1
  doi: 10.1038/nature16172
– ident: e_1_2_6_17_1
– ident: e_1_2_6_33_1
– start-page: 435
  volume-title: Satellites of Jupiter
  year: 1982
  ident: e_1_2_6_43_1
  contributor:
    fullname: Shoemaker E. M.
– ident: e_1_2_6_41_1
– ident: e_1_2_6_7_1
  doi: 10.1029/JS082i028p04055
– ident: e_1_2_6_30_1
– ident: e_1_2_6_2_1
  doi: 10.1029/95JB02844
– ident: e_1_2_6_18_1
  doi: 10.1029/95RG03287
– ident: e_1_2_6_32_1
  doi: 10.1002/2013JE004333
– ident: e_1_2_6_36_1
  doi: 10.1007/s11214-010-9677-4
– ident: e_1_2_6_13_1
  doi: 10.1038/nature18290
– ident: e_1_2_6_23_1
  doi: 10.1029/2004JE002244
– ident: e_1_2_6_50_1
  doi: 10.1038/nature03938
– ident: e_1_2_6_35_1
– ident: e_1_2_6_45_1
  doi: 10.1007/s11214-011-9745-4
– ident: e_1_2_6_27_1
  doi: 10.1006/icar.1999.6132
– ident: e_1_2_6_28_1
  doi: 10.1038/nature15754
– ident: e_1_2_6_44_1
  doi: 10.1016/j.icarus.2004.07.011
SSID ssj0003031
Score 2.4551678
Snippet Craters on Ceres, such as Haulani, Kupalo, Ikapati, and Occator show postimpact modification by the deposition of extended plains material with pits, multiple...
Abstract Craters on Ceres, such as Haulani, Kupalo, Ikapati, and Occator show postimpact modification by the deposition of extended plains material with pits,...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Publisher
StartPage 11,994
SubjectTerms Asteroids
Coefficient of friction
Computing time
Craters
cryovolcanism
Deposits
Dispersion
dwarf planet Ceres
Efficiency
Enrichment
flow features
Friction
Geomorphology
Geophysics
Gravitation
Gravity
Height
impact melt
Impact melts
Length
Marine
Pits
Plains
Planets
Slopes
Spectra
subsurface materials
Viscosity
Volcanology
Title Cryogenic flow features on Ceres: Implications for crater‐related cryovolcanism
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2F2016GL070370
https://www.proquest.com/docview/1854280824
https://www.proquest.com/docview/1912461044
https://search.proquest.com/docview/1859497769
https://search.proquest.com/docview/1880006099
Volume 43
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3da9swEBehZbCXsU_WrhsabE_Gm6NIirW3kK1J29COrRllL8aSJToodnETRve6f3ynDyc2KWHbizGWsGXd6T6ku98h9AaUDkvBsoh5kZiY5rqIpU3OYakG102YlPkA2VM-ndPjC3bR6_1uRS0tF_Kd-nVnXsn_UBWeAV1tluw_UHb1UngA90BfuAKF4fpXNB7XtxU0_lCRuap-RkY7lE53ADDWtY92O2qHjNuYQmXBIerYJbGAtangHSCiYIYbMMFgqk50dd0QMUACXUZXLvtnfQBUV5dlZ7P0OLenAmUnFNFFkuXdfmcLV78pOgmbqWHjoe_K9fi8SK8UNiN7NsI3bdxinJJhALv2IlZQeJb4WreNDPZQTYHXyKAlUa1AHwtfCHlD3Hv4WDu4yczKLl-DpIuqPR19zT5_PMxmR6cn3VanxUEfW7eub3PxdwlIKxCTu6Nv8-_zlUIHLe8LL4afCfkT8PH37U93LZu1u9J2epzVcv4QPQjuBh553nmEerp8jO5NXDnnW7hzAcDq5gk6W_EStryEG17CVYkdL33AbU7CwEm4y0m4w0lP0fzw0_l4GodiG3FuMfhgmTIhNRh_Rb_gXAyVTJXJE05obhJhDFg73KhcSpqyXIuhJCkDa1sQpRKhJBs8QztlVernCBeSM5tfPUikokMmpeQG9LGQjCREE7qH3jYTlV17TJXMo2eTrD2he-igmcUsrLqbDOxL8JjBcKV3N4u-RUhMKDS_XjWDyLTnYHmpq6V7haDg93CxrU_qsIoE9IkcAbcONZt8mTFG2GB_-5hfoPvrpXSAdhb1Ur8Eq3YhXwWu-wOZQJ0V
link.rule.ids 315,783,787,27936,27937,50826,50935
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bS8MwFA4yEX0RrzivEfRJyrosSRvfZLiLTkFxMnwpTZrAQFvZJrI3f4K_0V_iSdpdBBF8K81pKCcn53xJzvmC0AkEHRYCsvB44huPxjrxpC3OYaGGpZswIcsTZG95q0uveqxX3HNqa2FyfojphpudGc5f2wluN6QrM9ZQCF282bEmG8CafZHZI70SWrx47D51p84YPHR-aZ6gXkgCXuS-Qw-V-e9_RqUZ1JwHrC7iNNbQagEV8UU-tutoQacbaKnpruIdw5NL3lTDTXRXH4wzMIS-wuY5e8dGO7bOIc5SXNfwcI7bc4njGHAqVpYiYvD18emKWXQCL8YZuCrQdH_4soW6jcuHessrrkrwYsugBkpmQmoI3Uk14VwESobKxD4nNDa-MAZiFTcqlpKGLNYikCRkgJUEUcoXSrLaNiqlWap3EE4kZ7Y6tuZLRQMmpeQGvKmQjPhEE1pGpxNVRa85I0aUcx-TaF6lZbQ_0WNUzIthBOgA1jsAO-jvzaJq-e18Cs3H02YweHuKEac6e3NdCAqolYu_ZELHNCNA5swN4Z-_GjXvO4wRVtv9l_QRWm493HSiTvv2eg-tWBmb6FLl-6g0GrzpA4ArI3lYmOQ3bPLghA
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bS8MwFA6yofgiXnE6NYI-SbHLkrTxTaa76BgqTsSX0qQJCNrKLsje_An-Rn-JJ2mdE0TwLTSnoZycnPMlPecLQgcQdFgIyMLjiW88GuvEk7Y4h4Uatm7ChCxPkO3xdp9e3LP74sDN1sLk_BDTAze7Mpy_tgv8JTHH36ShELl4q2stNoAtexmABgELL5_e9R_6U18MDjq_M09QLyQBL1LfYYTj2fd_BqVvpDmLV13AaS6jpQIp4tN8alfQnE5X0XzL3cQ7gZbL3VTDNXTdGEwysINHhc1T9oqNdmSdQ5yluKGhcYI7M3njGGAqVpYhYvDx9u5qWXQCDyYZeCpQ9OPweR31m-e3jbZX3JTgxZZADXTMhNQQuZNawrkIlAyViX1OaGx8YQyEKm5ULCUNWaxFIEnIACoJopQvlGT1DVRKs1RvIpxIzmxxbN2XigZMSskNOFMhGfGJJrSCDr9UFb3khBhRTn1MolmVVlD1S49RsSyGEYAD2O7ATNHfu0XN0tv5FLr3p91g7_YnRpzqbOyGEBRAKxd_yYSOaEaAzJGbwj8_NWrddBkjrL71L-k9tHB11oy6nd7lNlq0IjbNpcarqDQajPUOgJWR3C0s8hMcG9-t
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Cryogenic+flow+features+on+Ceres%3A+Implications+for+crater-related+cryovolcanism&rft.jtitle=Geophysical+research+letters&rft.au=Krohn%2C+K&rft.au=Jaumann%2C+R&rft.au=Stephan%2C+K&rft.au=Otto%2C+K+A&rft.date=2016-12-16&rft.pub=John+Wiley+%26+Sons%2C+Inc&rft.issn=0094-8276&rft.eissn=1944-8007&rft.volume=43&rft.issue=23&rft.spage=11%2C994&rft_id=info:doi/10.1002%2F2016GL070370&rft.externalDBID=HAS_PDF_LINK&rft.externalDocID=4290086131
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0094-8276&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0094-8276&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0094-8276&client=summon