A generalized sampling and preconditioning scheme for sparse approximation of polynomial chaos expansions

In this paper we propose an algorithm for recovering sparse orthogonal polynomials using stochastic collocation. Our approach is motivated by the desire to use generalized polynomial chaos expansions (PCE) to quantify uncertainty in models subject to uncertain input parameters. The standard sampling...

Full description

Saved in:
Bibliographic Details
Published inarXiv.org
Main Authors Jakeman, John D, Narayan, Akil, Zhou, Tao
Format Paper Journal Article
LanguageEnglish
Published Ithaca Cornell University Library, arXiv.org 22.02.2016
Subjects
Online AccessGet full text
ISSN2331-8422
DOI10.48550/arxiv.1602.06879

Cover

Loading…
Abstract In this paper we propose an algorithm for recovering sparse orthogonal polynomials using stochastic collocation. Our approach is motivated by the desire to use generalized polynomial chaos expansions (PCE) to quantify uncertainty in models subject to uncertain input parameters. The standard sampling approach for recovering sparse polynomials is to use Monte Carlo (MC) sampling of the density of orthogonality. However MC methods result in poor function recovery when the polynomial degree is high. Here we propose a general algorithm that can be applied to any admissible weight function on a bounded domain and a wide class of exponential weight functions defined on unbounded domains. Our proposed algorithm samples with respect to the weighted equilibrium measure of the parametric domain, and subsequently solves a preconditioned \(\ell^1\)-minimization problem, where the weights of the diagonal preconditioning matrix are given by evaluations of the Christoffel function. We present theoretical analysis to motivate the algorithm, and numerical results that show our method is superior to standard Monte Carlo methods in many situations of interest. Numerical examples are also provided that demonstrate that our proposed Christoffel Sparse Approximation algorithm leads to comparable or improved accuracy even when compared with Legendre and Hermite specific algorithms.
AbstractList In this paper we propose an algorithm for recovering sparse orthogonal polynomials using stochastic collocation. Our approach is motivated by the desire to use generalized polynomial chaos expansions (PCE) to quantify uncertainty in models subject to uncertain input parameters. The standard sampling approach for recovering sparse polynomials is to use Monte Carlo (MC) sampling of the density of orthogonality. However MC methods result in poor function recovery when the polynomial degree is high. Here we propose a general algorithm that can be applied to any admissible weight function on a bounded domain and a wide class of exponential weight functions defined on unbounded domains. Our proposed algorithm samples with respect to the weighted equilibrium measure of the parametric domain, and subsequently solves a preconditioned $\ell^1$-minimization problem, where the weights of the diagonal preconditioning matrix are given by evaluations of the Christoffel function. We present theoretical analysis to motivate the algorithm, and numerical results that show our method is superior to standard Monte Carlo methods in many situations of interest. Numerical examples are also provided that demonstrate that our proposed Christoffel Sparse Approximation algorithm leads to comparable or improved accuracy even when compared with Legendre and Hermite specific algorithms.
In this paper we propose an algorithm for recovering sparse orthogonal polynomials using stochastic collocation. Our approach is motivated by the desire to use generalized polynomial chaos expansions (PCE) to quantify uncertainty in models subject to uncertain input parameters. The standard sampling approach for recovering sparse polynomials is to use Monte Carlo (MC) sampling of the density of orthogonality. However MC methods result in poor function recovery when the polynomial degree is high. Here we propose a general algorithm that can be applied to any admissible weight function on a bounded domain and a wide class of exponential weight functions defined on unbounded domains. Our proposed algorithm samples with respect to the weighted equilibrium measure of the parametric domain, and subsequently solves a preconditioned \(\ell^1\)-minimization problem, where the weights of the diagonal preconditioning matrix are given by evaluations of the Christoffel function. We present theoretical analysis to motivate the algorithm, and numerical results that show our method is superior to standard Monte Carlo methods in many situations of interest. Numerical examples are also provided that demonstrate that our proposed Christoffel Sparse Approximation algorithm leads to comparable or improved accuracy even when compared with Legendre and Hermite specific algorithms.
Author Zhou, Tao
Jakeman, John D
Narayan, Akil
Author_xml – sequence: 1
  givenname: John
  surname: Jakeman
  middlename: D
  fullname: Jakeman, John D
– sequence: 2
  givenname: Akil
  surname: Narayan
  fullname: Narayan, Akil
– sequence: 3
  givenname: Tao
  surname: Zhou
  fullname: Zhou, Tao
BackLink https://doi.org/10.1137/16M1063885$$DView published paper (Access to full text may be restricted)
https://doi.org/10.48550/arXiv.1602.06879$$DView paper in arXiv
BookMark eNotkE1PAjEQhhujiYj8AE828bzYj213ORKiaELihftmdncKJbttbcGAv94FPM1k3ieTJ-8DuXXeISFPnE3zUin2CvFof6ZcMzFluixmN2QkpORZmQtxTyYp7RhjQhdCKTkidk436DBCZ3-xpQn60Fm3oeBaGiI23rV2b70731KzxR6p8ZGmADEhhRCiP9oezgj1hgbfnZzvLXS02YJPFI8BXBrS9EjuDHQJJ_9zTNbvb-vFR7b6Wn4u5qsMlCgy0-pa1JJhU6sWmGFG8ZYbXTcaG1lwVDNlpBlWIZlCCQ0wLgBA5rNc11yOyfP17aWHKsTBLp6qcx_VpY-BeLkSg_v3AdO-2vlDdINTJVhRcJmXspB_LW5n0Q
ContentType Paper
Journal Article
Copyright 2016. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
http://arxiv.org/licenses/nonexclusive-distrib/1.0
Copyright_xml – notice: 2016. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: http://arxiv.org/licenses/nonexclusive-distrib/1.0
DBID 8FE
8FG
ABJCF
ABUWG
AFKRA
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
HCIFZ
L6V
M7S
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
AKZ
GOX
DOI 10.48550/arxiv.1602.06879
DatabaseName ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
Technology Collection
ProQuest One Community College
ProQuest Central
SciTech Premium Collection
ProQuest Engineering Collection
Engineering Database
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection (ProQuest)
arXiv Mathematics
arXiv.org
DatabaseTitle Publicly Available Content Database
Engineering Database
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
ProQuest One Academic UKI Edition
ProQuest Central Korea
Materials Science & Engineering Collection
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
Engineering Collection
DatabaseTitleList
Publicly Available Content Database
Database_xml – sequence: 1
  dbid: GOX
  name: arXiv.org
  url: http://arxiv.org/find
  sourceTypes: Open Access Repository
– sequence: 2
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 2331-8422
ExternalDocumentID 1602_06879
Genre Working Paper/Pre-Print
GroupedDBID 8FE
8FG
ABJCF
ABUWG
AFKRA
ALMA_UNASSIGNED_HOLDINGS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
FRJ
HCIFZ
L6V
M7S
M~E
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
AKZ
GOX
ID FETCH-LOGICAL-a527-fd6b2b30ecb5da0f0f51d1f6bc6ec371e595f3fc372305e3aca012aaa34946b13
IEDL.DBID 8FG
IngestDate Wed Jul 23 01:55:47 EDT 2025
Mon Jun 30 08:14:33 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a527-fd6b2b30ecb5da0f0f51d1f6bc6ec371e595f3fc372305e3aca012aaa34946b13
Notes SourceType-Working Papers-1
ObjectType-Working Paper/Pre-Print-1
content type line 50
OpenAccessLink https://www.proquest.com/docview/2077134837?pq-origsite=%requestingapplication%
PQID 2077134837
PQPubID 2050157
ParticipantIDs arxiv_primary_1602_06879
proquest_journals_2077134837
PublicationCentury 2000
PublicationDate 20160222
2016-02-22
PublicationDateYYYYMMDD 2016-02-22
PublicationDate_xml – month: 02
  year: 2016
  text: 20160222
  day: 22
PublicationDecade 2010
PublicationPlace Ithaca
PublicationPlace_xml – name: Ithaca
PublicationTitle arXiv.org
PublicationYear 2016
Publisher Cornell University Library, arXiv.org
Publisher_xml – name: Cornell University Library, arXiv.org
SSID ssj0002672553
Score 1.5869493
SecondaryResourceType preprint
Snippet In this paper we propose an algorithm for recovering sparse orthogonal polynomials using stochastic collocation. Our approach is motivated by the desire to use...
In this paper we propose an algorithm for recovering sparse orthogonal polynomials using stochastic collocation. Our approach is motivated by the desire to use...
SourceID arxiv
proquest
SourceType Open Access Repository
Aggregation Database
SubjectTerms Algorithms
Approximation
Computer simulation
Domains
Mathematical models
Mathematics - Numerical Analysis
Monte Carlo simulation
Orthogonality
Parameter uncertainty
Polynomials
Preconditioning
Sampling
Weighting functions
SummonAdditionalLinks – databaseName: arXiv.org
  dbid: GOX
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwdV1BS8MwFA7bTl5EUdl0Sg5ei03atM1xiHMI6mXCbiVpXmZB27FOqf56X9IOD-ItlDSBl7y-9yXv-0rItQmljXTMAwiFDWKm0aWAsUBa6-TaU6WN4w4_PiWLl_hhJVYDQvdcGLVty89OH1g3NyxxeppJlsohGXLuSrbun1fd5aSX4ur7__bDHNM_-vNp9fFifkQO-0SPzrqVOSYDqE5IOaPrTue5_AZDG-Xquas1RThPNx6bmrI_IaUIO-EdKCaVFL1-2wD1-t9t2ZENaW3ppn77crRinKd4VXVDoUXndudfzSlZzu-Wt4ug_9lBoARPA2sSzXUUQqGFUaENrWCG2UQXCRRRykBIYSOLTcQMAiJVKAwtSiknL5NoFp2RUVVXMCZU40AmNYW2vIizGEeTTCqZZVKFRkI8IWNvonzT6Vnkznq5t96ETPdWy_u93OQ8TB3hFJHs-f9vXpADTCV8PTPnUzLabT_gEsP1Tl_5NfsBmQWZIQ
  priority: 102
  providerName: Cornell University
Title A generalized sampling and preconditioning scheme for sparse approximation of polynomial chaos expansions
URI https://www.proquest.com/docview/2077134837
https://arxiv.org/abs/1602.06879
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LS8NAEF60QfDmk1Zr2YPXaDbvnESlD4TWIhV6C_usAU1iU6V68Lc7u0n1IHgJmyzsYXYzj29nvkHoXDiJ8pjv2tIJlO0TBr-UJMROlNJ07RFlQtcOjyfh6NG_mwfzBnCrmrTKjU40iloUXGPkGgnRZY8QT12Vr7buGqVvV5sWGtvIImBp9AmPB8MfjMUNI_CYvfoy01B3XdLlOnvXkIp74YSxTuCyzKc_qtjYl8Eesqa0lMt9tCXzA7Rj0jJ5dYiya7yoeaGzTylwRXX-d77AEP7j0sSyImsQVQxhqnyRGJxQDFpiWUls-MLXWV2ciAuFy-L5Q5ch02fMn2hRYbkGZaDxsuoIzQb92e3Ibpoj2DRwI1uJkLnMcyRngaCOclRABFEh46HkXkRkkATKUzCEGCOQHuUUTBGlVNPRhIx4x6iVF7lsI8xgIREJzpTL_diH1RKS0CSOE-qIRPod1DYiSsua_yLV0kuN9Dqou5Fa2pz9Kv3dqZP_p0_RLrgfJgfadbuotVq-yTMw8SvWM_vYQ9ZNfzJ9gLfh_Rye46_-N5FDrYs
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VrhC9QSnqC_ABjimJnZcPFULAdvsUh0XqLfJjXCKVJN0UuuU_8R8ZO7v0UKm33qJEmsPY_jIz_uYbgHc2lk7olEcYZy5KE01HCpMkks55ufZCaet7h0_P8sn39Og8O1-Bv8teGE-rXGJiAGrbGl8j95UQ3_ZI-dTH7iryU6P87epyhMawLY7x9oZStn7_8Aut73vOx1-nnyfRYqpApDJeRM7mmmsRo9GZVbGLXZbYxOXa5GhEkWAmMyccPVJwnqFQRhGGK6W8jkuuE0Fmn8AoFUJ6BmE5Pvhf0uF5QQG6GO5Og1LYBzWb1799BYfvxXnp-WKj8Ooe8off2fg5jL6pDmcvYAWbdXgaWKCmfwn1J3YxyFDXf9CyXnm6eXPBVGNZF1JnWy8KuIyyYvyJjGJeRqA065EFefJ5PfRCstaxrr289V3P6pKZH6rtGc4Je3x5rt-A6WN47RWsNm2Dm8A0GbKFNdpxk5YpWZOJVLIspYqtxHQLNoOLqm6Q26i896rgvS3YXXqtWhy1vrrbGNsPf34LzybT05Pq5PDseAfWKPIJ9GvOd2H1evYLX1N0ca3fhDVlUD3yHvoHTdHnAQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+generalized+sampling+and+preconditioning+scheme+for+sparse+approximation+of+polynomial+chaos+expansions&rft.jtitle=arXiv.org&rft.au=Jakeman%2C+John+D&rft.au=Narayan%2C+Akil&rft.au=Zhou%2C+Tao&rft.date=2016-02-22&rft.pub=Cornell+University+Library%2C+arXiv.org&rft.eissn=2331-8422&rft_id=info:doi/10.48550%2Farxiv.1602.06879