Enhanced Teaching-Learning-based Optimization for 3D Path Planning of Multicopter UAVs

This paper introduces a new path planning algorithm for unmanned aerial vehicles (UAVs) based on the teaching-learning-based optimization (TLBO) technique. We first define an objective function that incorporates requirements on the path length and constraints on the movement and safe operation of UA...

Full description

Saved in:
Bibliographic Details
Published inarXiv.org
Main Authors Hoang, Van Truong, Phung, Manh Duong
Format Paper Journal Article
LanguageEnglish
Published Ithaca Cornell University Library, arXiv.org 31.05.2022
Subjects
Online AccessGet full text
ISSN2331-8422
DOI10.48550/arxiv.2205.15913

Cover

Loading…
Abstract This paper introduces a new path planning algorithm for unmanned aerial vehicles (UAVs) based on the teaching-learning-based optimization (TLBO) technique. We first define an objective function that incorporates requirements on the path length and constraints on the movement and safe operation of UAVs to convert the path planning into an optimization problem. The optimization algorithm named Multi-subject TLBO is then proposed to minimize the formulated objective function. The algorithm is developed based on TLBO but enhanced with new operations including mutation, elite selection and multi-subject training to improve the solution quality and speed up the convergence rate. Comparison with state-of-the-art algorithms and experiments with real UAVs have been conducted to evaluate the performance of the proposed algorithm. The results confirm its validity and effectiveness in generating optimal, collision-free and flyable paths for UAVs in complex operating environments.
AbstractList This paper introduces a new path planning algorithm for unmanned aerial vehicles (UAVs) based on the teaching-learning-based optimization (TLBO) technique. We first define an objective function that incorporates requirements on the path length and constraints on the movement and safe operation of UAVs to convert the path planning into an optimization problem. The optimization algorithm named Multi-subject TLBO is then proposed to minimize the formulated objective function. The algorithm is developed based on TLBO but enhanced with new operations including mutation, elite selection and multi-subject training to improve the solution quality and speed up the convergence rate. Comparison with state-of-the-art algorithms and experiments with real UAVs have been conducted to evaluate the performance of the proposed algorithm. The results confirm its validity and effectiveness in generating optimal, collision-free and flyable paths for UAVs in complex operating environments.
Lecture Notes in Mechanical Engineering, 2022 This paper introduces a new path planning algorithm for unmanned aerial vehicles (UAVs) based on the teaching-learning-based optimization (TLBO) technique. We first define an objective function that incorporates requirements on the path length and constraints on the movement and safe operation of UAVs to convert the path planning into an optimization problem. The optimization algorithm named Multi-subject TLBO is then proposed to minimize the formulated objective function. The algorithm is developed based on TLBO but enhanced with new operations including mutation, elite selection and multi-subject training to improve the solution quality and speed up the convergence rate. Comparison with state-of-the-art algorithms and experiments with real UAVs have been conducted to evaluate the performance of the proposed algorithm. The results confirm its validity and effectiveness in generating optimal, collision-free and flyable paths for UAVs in complex operating environments.
Author Van Truong Hoang
Manh Duong Phung
Author_xml – sequence: 1
  givenname: Van Truong
  surname: Hoang
  fullname: Hoang, Van Truong
– sequence: 2
  givenname: Manh Duong
  surname: Phung
  fullname: Phung, Manh Duong
BackLink https://doi.org/10.48550/arXiv.2205.15913$$DView paper in arXiv
https://doi.org/10.1007/978-3-030-99666-6_107$$DView published paper (Access to full text may be restricted)
BookMark eNotkMtOwzAQRS0EEqX0A1hhiXWKPY7jeFmV8pCK2kXpNpo4DnXV2sFJEfD1NIXVXI2ORvfMFTn3wVtCbjgbp7mU7B7jl_scAzA55lJzcUYGIARP8hTgkozadssYg0yBlGJA1jO_QW9sRVcWzcb592RuMfo-lNge94umc3v3g50LntYhUvFAl9ht6HKHvudoqOnrYdc5E5rORvo2WbfX5KLGXWtH_3NIVo-z1fQ5mS-eXqaTeYISVJLqTLJaQaVkrdHkaVWCFAY45LIstRJVXmmQiLXUBjNWa2aUNlqZLK-4VWJIbv_OnqSLJro9xu-ily9O8kfi7o9oYvg42LYrtuEQ_bFT0f-AKwZCiV9blV2e
ContentType Paper
Journal Article
Copyright 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
http://creativecommons.org/licenses/by/4.0
Copyright_xml – notice: 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: http://creativecommons.org/licenses/by/4.0
DBID 8FE
8FG
ABJCF
ABUWG
AFKRA
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
HCIFZ
L6V
M7S
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
AKY
GOX
DOI 10.48550/arxiv.2205.15913
DatabaseName ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central (New)
Technology Collection
ProQuest One Community College
ProQuest Central Korea
SciTech Premium Collection
ProQuest Engineering Collection
Engineering Database
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
arXiv Computer Science
arXiv.org
DatabaseTitle Publicly Available Content Database
Engineering Database
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
ProQuest One Academic UKI Edition
ProQuest Central Korea
Materials Science & Engineering Collection
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
Engineering Collection
DatabaseTitleList Publicly Available Content Database

Database_xml – sequence: 1
  dbid: GOX
  name: arXiv.org
  url: http://arxiv.org/find
  sourceTypes: Open Access Repository
– sequence: 2
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 2331-8422
ExternalDocumentID 2205_15913
Genre Working Paper/Pre-Print
GroupedDBID 8FE
8FG
ABJCF
ABUWG
AFKRA
ALMA_UNASSIGNED_HOLDINGS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
FRJ
HCIFZ
L6V
M7S
M~E
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
AKY
GOX
ID FETCH-LOGICAL-a527-49650f72d75f9ac84db253c21285bb973d8d925aaf59ca60f90c79c97c68d1e73
IEDL.DBID GOX
IngestDate Wed Jul 23 00:26:10 EDT 2025
Mon Jun 30 09:43:09 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a527-49650f72d75f9ac84db253c21285bb973d8d925aaf59ca60f90c79c97c68d1e73
Notes SourceType-Working Papers-1
ObjectType-Working Paper/Pre-Print-1
content type line 50
OpenAccessLink https://arxiv.org/abs/2205.15913
PQID 2672170237
PQPubID 2050157
ParticipantIDs arxiv_primary_2205_15913
proquest_journals_2672170237
PublicationCentury 2000
PublicationDate 20220531
2022-05-31
PublicationDateYYYYMMDD 2022-05-31
PublicationDate_xml – month: 05
  year: 2022
  text: 20220531
  day: 31
PublicationDecade 2020
PublicationPlace Ithaca
PublicationPlace_xml – name: Ithaca
PublicationTitle arXiv.org
PublicationYear 2022
Publisher Cornell University Library, arXiv.org
Publisher_xml – name: Cornell University Library, arXiv.org
SSID ssj0002672553
Score 1.7986952
SecondaryResourceType preprint
Snippet This paper introduces a new path planning algorithm for unmanned aerial vehicles (UAVs) based on the teaching-learning-based optimization (TLBO) technique. We...
Lecture Notes in Mechanical Engineering, 2022 This paper introduces a new path planning algorithm for unmanned aerial vehicles (UAVs) based on the...
SourceID arxiv
proquest
SourceType Open Access Repository
Aggregation Database
SubjectTerms Algorithms
Collision avoidance
Computer Science - Artificial Intelligence
Computer Science - Robotics
Machine learning
Mutation
Optimization
Path planning
Unmanned aerial vehicles
SummonAdditionalLinks – databaseName: ProQuest Central (New)
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV27TsMwFLWgERIbT7VQkAdWt01sx_GEeLSqGEqF2qpb5EcMDCShKYjPx3ZdGJBYHXnIsXPPzX0dAK4wFjLVmUCCkwIRXhDklI6QwjpONcbujrhqi0k6npOHJV2GgFsTyiq3NtEbal0pFyPvJ6n9V2GWYdh1_Y6capTLrgYJjV0QWROc0RaIboeT6dNPlMXtohRv0pl-eFdfrL5eP3uuv7RnqdzJGkR-6Y8x9gwzOgDRVNTF6hDsFOUR2POFmao5Both-eKT9HAW6h5RGIn6jBwDafhoP_q30E0JrQsK8T2cWr8ObvWIYGWg77NVVW1RhPObRXMCZqPh7G6MghYCEjRhyE11HxiWaEYNFyojWiYUK__SUnKGdaZ5QoUwlCuRDgwfKMYVZyrNdFwwfApaZVUWbQBjEcsMYykSIgmjTFKmlKEGx7GhUskOaHs88noz7iJ3UOUeqg7obiHKw1Vv8t-DOfv_8TnYT1zvgE-9d0FrvfooLiyjr-VlOLZvO0igBA
  priority: 102
  providerName: ProQuest
Title Enhanced Teaching-Learning-based Optimization for 3D Path Planning of Multicopter UAVs
URI https://www.proquest.com/docview/2672170237
https://arxiv.org/abs/2205.15913
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwdV3PT8IwFH4BvHgxGjWgSHrwWmXtuq5H1AExEYgBwm3pj1U9CATQePJvt-1GPBgvOyzd5Xttv7e8930P4JpSqRKTSixFXOBYFDH2k46wpiZKDKV-j_hui1EynMWPC7aoAdprYeTm6-2z9AdW21uvAr1xhOvH0tYJ8S1bg_GiLE4GK65q_e86l2OGV3-u1sAX_WM4qhI91CsjcwK1YnkK82z5GkruaFp1MeLK4PQFez4xaOyO8HuljUQuoUT0AU1clob204XQyqKgmtWrtcMEzXrz7RlM-9n0foiryQZYMsKx92jvWk4MZ1ZIncZGEUa1Y5GUKSU4NakRhElpmdAy6VrR1VxowXWSmqjg9Bway9WyaAKKZKRSSpUksYo544pxrS2zNIosU1q1oBnwyNeleUXuocoDVC1o7yHKq427zUnifgm5I3J-8f-Xl3BIvAogFNHb0NhtPoorx8071YF62h904OAuG02eOyFc7vn0nf0AhzGRtA
linkProvider Cornell University
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV07T8MwED5BKwQbT_Eo4AFGl8aO43hACNGWFkrpUBBb5EcCDLSl5fmj-I_YbgIDEltXR7Kiu_Pd2Xf3fQAHlEoVmVhiKcIUhyINsWM6wpqaIDKUOhtx3RbdqHUTXtyxuzn4KmZhXFtl4RO9ozZD7d7Ij0hk7yrcRhh-MnrGjjXKVVcLCo2pWVymn-_2yjY5btetfg8JaTb6Zy2cswpgyQjHDh-9lnFiOMuE1HFoFGFUWw8eM6UEpyY2gjApMya0jGqZqGkutOA6ik2Qcmq3nYdySKlwUP1x8_znScf9ImN0Wjv1SGFHcvzx-FZ1w6xVmzc4DoWyX_rj-X04ay5DuSdH6XgF5tLBKiz4LlA9WYPbxuDBdwSgft5kiXP81Xvswp1B19bDPOWjm8jmu4jWUc8mkaggP0LDDPmhXj0cWZWhm9PbyTr0ZyGiDSgNhoN0E1AgAxVTqiQJVcgZV4xrnbGMBkHGlFZbsOnlkYym2BqJE1XiRbUFlUJESX6uJsmvFWz__3kfFlv9q07SaXcvd2CJuKEFX_OvQOll_Jru2lTiRe15BSJIZmww3_S22kg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Enhanced+Teaching-Learning-based+Optimization+for+3D+Path+Planning+of+Multicopter+UAVs&rft.jtitle=arXiv.org&rft.au=Van+Truong+Hoang&rft.au=Manh+Duong+Phung&rft.date=2022-05-31&rft.pub=Cornell+University+Library%2C+arXiv.org&rft.eissn=2331-8422&rft_id=info:doi/10.48550%2Farxiv.2205.15913