Competing structures in two dimensions: square-to-hexagonal transition

We study a system of particles in two dimensions interacting via a dipolar long-range potential \(D/r^3\) and subject to a square-lattice substrate potential \(V({\bf r})\) with amplitude \(V\) and lattice constant \(b\). The isotropic interaction favors a hexagonal arrangement of the particles with...

Full description

Saved in:
Bibliographic Details
Published inarXiv.org
Main Authors Gränz, Barbara, Koshunov, Sergey E, Geshkenbein, Vadim B, Blatter, Gianni
Format Paper Journal Article
LanguageEnglish
Published Ithaca Cornell University Library, arXiv.org 26.05.2016
Subjects
Online AccessGet full text
ISSN2331-8422
DOI10.48550/arxiv.1605.08262

Cover

Loading…
Abstract We study a system of particles in two dimensions interacting via a dipolar long-range potential \(D/r^3\) and subject to a square-lattice substrate potential \(V({\bf r})\) with amplitude \(V\) and lattice constant \(b\). The isotropic interaction favors a hexagonal arrangement of the particles with lattice constant \(a\), which competes against the square symmetry of the substrate lattice. We determine the minimal-energy states at fixed external pressure \(p\) generating the commensurate density \(n = 1/b^2 = (4/3)^{1/2}/a^2\) in the absence of thermal and quantum fluctuations, using both analytical and numerical techniques. At large substrate amplitude \(V > 0.2\, e_D\), with \(e_D = D/b^3\) the dipolar energy scale, the particles reside in the substrate minima and hence arrange in a square lattice. Upon decreasing \(V\), the square lattice turns unstable with respect to a zone-boundary shear-mode and deforms into a period-doubled zig-zag lattice. Analytic and numerical results show that this period-doubled phase in turn becomes unstable at \(V \approx 0.074\, e_D\) towards a non-uniform phase developing an array of domain walls or solitons; as the density of solitons increases, the particle arrangement approaches that of a rhombic (or isosceles triangular) lattice. At a yet smaller substrate value estimated as \(V \approx 0.046\, e_D\), a further solitonic transition establishes a second non-uniform phase which smoothly approaches the hexagonal (or equilateral triangular) lattice phase with vanishing amplitude \(V\). At small but finite amplitude \(V\), the hexagonal phase is distorted and hexatically locked at an angle of \(\varphi \approx 3.8^\circ\) with respect to the substrate lattice. The square-to-hexagonal transformation in this two-dimensional commensurate-incommensurate system thus involves a complex pathway with various non-trivial lattice- and modulated phases.
AbstractList Phys. Rev. B 94, 054110 (2016) We study a system of particles in two dimensions interacting via a dipolar long-range potential $D/r^3$ and subject to a square-lattice substrate potential $V({\bf r})$ with amplitude $V$ and lattice constant $b$. The isotropic interaction favors a hexagonal arrangement of the particles with lattice constant $a$, which competes against the square symmetry of the substrate lattice. We determine the minimal-energy states at fixed external pressure $p$ generating the commensurate density $n = 1/b^2 = (4/3)^{1/2}/a^2$ in the absence of thermal and quantum fluctuations, using both analytical and numerical techniques. At large substrate amplitude $V > 0.2\, e_D$, with $e_D = D/b^3$ the dipolar energy scale, the particles reside in the substrate minima and hence arrange in a square lattice. Upon decreasing $V$, the square lattice turns unstable with respect to a zone-boundary shear-mode and deforms into a period-doubled zig-zag lattice. Analytic and numerical results show that this period-doubled phase in turn becomes unstable at $V \approx 0.074\, e_D$ towards a non-uniform phase developing an array of domain walls or solitons; as the density of solitons increases, the particle arrangement approaches that of a rhombic (or isosceles triangular) lattice. At a yet smaller substrate value estimated as $V \approx 0.046\, e_D$, a further solitonic transition establishes a second non-uniform phase which smoothly approaches the hexagonal (or equilateral triangular) lattice phase with vanishing amplitude $V$. At small but finite amplitude $V$, the hexagonal phase is distorted and hexatically locked at an angle of $\varphi \approx 3.8^\circ$ with respect to the substrate lattice. The square-to-hexagonal transformation in this two-dimensional commensurate-incommensurate system thus involves a complex pathway with various non-trivial lattice- and modulated phases.
We study a system of particles in two dimensions interacting via a dipolar long-range potential \(D/r^3\) and subject to a square-lattice substrate potential \(V({\bf r})\) with amplitude \(V\) and lattice constant \(b\). The isotropic interaction favors a hexagonal arrangement of the particles with lattice constant \(a\), which competes against the square symmetry of the substrate lattice. We determine the minimal-energy states at fixed external pressure \(p\) generating the commensurate density \(n = 1/b^2 = (4/3)^{1/2}/a^2\) in the absence of thermal and quantum fluctuations, using both analytical and numerical techniques. At large substrate amplitude \(V > 0.2\, e_D\), with \(e_D = D/b^3\) the dipolar energy scale, the particles reside in the substrate minima and hence arrange in a square lattice. Upon decreasing \(V\), the square lattice turns unstable with respect to a zone-boundary shear-mode and deforms into a period-doubled zig-zag lattice. Analytic and numerical results show that this period-doubled phase in turn becomes unstable at \(V \approx 0.074\, e_D\) towards a non-uniform phase developing an array of domain walls or solitons; as the density of solitons increases, the particle arrangement approaches that of a rhombic (or isosceles triangular) lattice. At a yet smaller substrate value estimated as \(V \approx 0.046\, e_D\), a further solitonic transition establishes a second non-uniform phase which smoothly approaches the hexagonal (or equilateral triangular) lattice phase with vanishing amplitude \(V\). At small but finite amplitude \(V\), the hexagonal phase is distorted and hexatically locked at an angle of \(\varphi \approx 3.8^\circ\) with respect to the substrate lattice. The square-to-hexagonal transformation in this two-dimensional commensurate-incommensurate system thus involves a complex pathway with various non-trivial lattice- and modulated phases.
Author Blatter, Gianni
Koshunov, Sergey E
Geshkenbein, Vadim B
Gränz, Barbara
Author_xml – sequence: 1
  givenname: Barbara
  surname: Gränz
  fullname: Gränz, Barbara
– sequence: 2
  givenname: Sergey
  surname: Koshunov
  middlename: E
  fullname: Koshunov, Sergey E
– sequence: 3
  givenname: Vadim
  surname: Geshkenbein
  middlename: B
  fullname: Geshkenbein, Vadim B
– sequence: 4
  givenname: Gianni
  surname: Blatter
  fullname: Blatter, Gianni
BackLink https://doi.org/10.48550/arXiv.1605.08262$$DView paper in arXiv
https://doi.org/10.1103/PhysRevB.94.054110$$DView published paper (Access to full text may be restricted)
BookMark eNotj8tOwzAURC0EEqX0A1gRiXWKc_2IzQ5FFJAqsek-cpzbkqqxW9uB8veEltUs5mg054ZcOu-QkLuCzrkSgj6acOy-5oWkYk4VSLggE2CsyBUHuCazGLeUUpAlCMEmZFH5fo-pc5sspjDYNASMWeey9O2ztuvRxc67-JTFw2AC5snnn3g0G-_MLkvBjHUagVtytTa7iLP_nJLV4mVVveXLj9f36nmZGwEyx0ZR3YDQ3JacYdGIUqO0krYU0SirbNsIBC2VluUaQFhjmGZca4lCWs6m5P48e5Ks96HrTfip_2Trk-xIPJyJffCHAWOqt34I49lYAy214lwIyX4BPZ5Zpg
ContentType Paper
Journal Article
Copyright 2016. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
http://arxiv.org/licenses/nonexclusive-distrib/1.0
Copyright_xml – notice: 2016. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: http://arxiv.org/licenses/nonexclusive-distrib/1.0
DBID 8FE
8FG
ABJCF
ABUWG
AFKRA
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
HCIFZ
L6V
M7S
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
GOX
DOI 10.48550/arxiv.1605.08262
DatabaseName ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
Technology collection
ProQuest One Community College
ProQuest Central
SciTech Premium Collection
ProQuest Engineering Collection
Engineering Database
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database (subscription)
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
arXiv.org
DatabaseTitle Publicly Available Content Database
Engineering Database
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
ProQuest One Academic UKI Edition
ProQuest Central Korea
Materials Science & Engineering Collection
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
Engineering Collection
DatabaseTitleList
Publicly Available Content Database
Database_xml – sequence: 1
  dbid: GOX
  name: arXiv.org
  url: http://arxiv.org/find
  sourceTypes: Open Access Repository
– sequence: 2
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 2331-8422
ExternalDocumentID 1605_08262
Genre Working Paper/Pre-Print
GroupedDBID 8FE
8FG
ABJCF
ABUWG
AFKRA
ALMA_UNASSIGNED_HOLDINGS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
FRJ
HCIFZ
L6V
M7S
M~E
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
GOX
ID FETCH-LOGICAL-a526-eb809b2594c743e1b579e6c60d0eea8c8cdb5e2968967f225caa3934996e56c43
IEDL.DBID BENPR
IngestDate Tue Jul 22 23:59:29 EDT 2025
Mon Jun 30 09:13:35 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a526-eb809b2594c743e1b579e6c60d0eea8c8cdb5e2968967f225caa3934996e56c43
Notes SourceType-Working Papers-1
ObjectType-Working Paper/Pre-Print-1
content type line 50
OpenAccessLink https://www.proquest.com/docview/2079844556?pq-origsite=%requestingapplication%
PQID 2079844556
PQPubID 2050157
ParticipantIDs arxiv_primary_1605_08262
proquest_journals_2079844556
PublicationCentury 2000
PublicationDate 20160526
2016-05-26
PublicationDateYYYYMMDD 2016-05-26
PublicationDate_xml – month: 05
  year: 2016
  text: 20160526
  day: 26
PublicationDecade 2010
PublicationPlace Ithaca
PublicationPlace_xml – name: Ithaca
PublicationTitle arXiv.org
PublicationYear 2016
Publisher Cornell University Library, arXiv.org
Publisher_xml – name: Cornell University Library, arXiv.org
SSID ssj0002672553
Score 1.5951684
SecondaryResourceType preprint
Snippet We study a system of particles in two dimensions interacting via a dipolar long-range potential \(D/r^3\) and subject to a square-lattice substrate potential...
Phys. Rev. B 94, 054110 (2016) We study a system of particles in two dimensions interacting via a dipolar long-range potential $D/r^3$ and subject to a...
SourceID arxiv
proquest
SourceType Open Access Repository
Aggregation Database
SubjectTerms Amplitudes
Deformation
Density
Domain walls
External pressure
Hexagonal phase
Lattice parameters
Physics - Materials Science
Physics - Statistical Mechanics
Quantum phenomena
Solitary waves
Substrates
SummonAdditionalLinks – databaseName: arXiv.org
  dbid: GOX
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwdV2xTsMwELUKEwsCAWqhIA-sFokTX2w2VFEqJGApUrfIdq7QJQUSoJ_P2UnFgFit85B3id-7s_3C2KU0ifOZVgILdCInSSCcNZkg6k_VMlk6rEIf8uERZs_5_UItBoxv78LYj83qq_MHds1VCqHlQQqYFtkdKcORrbunRbc5Ga24-vjfONKYcejP0hr5YnrA9nuhx2-6zByyAdZHbDqJMpXognfGrZ9U7fJVzdvvNa-C0X5oXjXXvHmn1KFo1-IVN_YlyGXeBlqJJ6yO2Xx6O5_MRP8nA2GVBIFOJ8ZRoZF7ImxMnSoMgoekShCt9tpXTqE0oA0US_rCvLWZyagYAVTg8-yE7dbrGoeMa5n5wjhlqsC9oKwrSPET3knqFTg5YsP4_OVbZ1ZRBmjKCM2IjbeQlP2L2pQyKYzOc6Xg9P-ZZ2yPdAKETXMJY7ZLAOE5cXHrLmJCfgBSF4mH
  priority: 102
  providerName: Cornell University
Title Competing structures in two dimensions: square-to-hexagonal transition
URI https://www.proquest.com/docview/2079844556
https://arxiv.org/abs/1605.08262
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1NT8JAEJ0IjYk3PwOKpAevq6Xtbne9mEhAYgISgwm3Zne7KBcKtConf7uzS9GDiZcmbU-d2c5782YyA3AVikDpiFNiEqNIjJSAKCkigtDfobNgpkxmdcjhiA1e4scpnVaCW1G1Ve5iogvUWa6tRm6VEMHjmFJ2t1wRuzXKVlerFRo18DAEc1oH7743Gj__qCwhS5AzR9typhvedSPXm_mHFVXoNcKf3ZLjuUd_grFDmP4heGO5NOsj2DOLY9h3jZm6OIF-1xFbBBh_O-r1HfNjf77wy8_cz-xofit3Fbd-sUJnG1Lm5M1s5Ksl2H5pgcj1ZJ3CpN-bdAek2n1AJA0ZMYoHQmFqEmuEeNNRNBGGaRZkgTGSa64zRU0oGBcsmeE_qaWMRITpCzOU6Tg6g_oiX5gG-DyMdCIUFZlFa0alSjBHQA8FHU2ZCpvQcN-fLrfjLVJrmtSZpgmtnUnS6mgX6a8jzv9_fQEHyC6YLbWHrAV1NJK5RAQvVRtqvP_QrpyFdw9PU7wOv3rfVaaexA
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT8MwDLZgE4IbT_GmBzgGuqRJGyTEARgbA8RhSNyqJPWAy14dDH4U_xEnY3BA4sa1lSrVdv19_pzaAPtcx9aJTDJM0bKEKAGzRgtG0F-TnbhjsfA65M2tatwnVw_yYQY-pv_C-GOV05wYEnXRc14j90qIzpJESnXaHzC_Ncp3V6crNCZh0cL3MZVs5UnznPx7wHn9on3WYF9bBZiRXDG0Wawtkf7EEXhizcpUo3IqLmJEk7nMFVYi1yrTKu1QtDtjhBZUGCiUyiWCHjsL1UQI7Uf1Z_XLb0mHq5QIupj0TsOksCMzfHt-9QqOPCSs9St5quHSr8wf4Ky-CNU708fhEsxgdxnmwilQV65A_SywaEKzaDJX9oWK8ei5G43GvajwewC8tlYeR-WAIgvZqMee8M08ejYfjTzqhQNgq9D-D5OsQaXb6-I6RBkXLtVW6sJTAyWNTakgoXCIa04qyzdgPbx_3p_M0si9afJgmg3Ynpok__qOyvzH65t_396D-Ub75jq_bt62tmCBaI3yPX6utqFCBsMdog4juxscFkH-zwHyCYnD1eI
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Competing+structures+in+two+dimensions%3A+square-to-hexagonal+transition&rft.jtitle=arXiv.org&rft.au=Gr%C3%A4nz%2C+Barbara&rft.au=Koshunov%2C+Sergey+E&rft.au=Geshkenbein%2C+Vadim+B&rft.au=Blatter%2C+Gianni&rft.date=2016-05-26&rft.pub=Cornell+University+Library%2C+arXiv.org&rft.eissn=2331-8422&rft_id=info:doi/10.48550%2Farxiv.1605.08262