Cooperative Multi-Agent Deep Reinforcement Learning for Reliable Surveillance via Autonomous Multi-UAV Control

CCTV-based surveillance using unmanned aerial vehicles (UAVs) is considered a key technology for security in smart city environments. This paper creates a case where the UAVs with CCTV-cameras fly over the city area for flexible and reliable surveillance services. UAVs should be deployed to cover a...

Full description

Saved in:
Bibliographic Details
Published inarXiv.org
Main Authors Yun, Won Joon, Park, Soohyun, Kim, Joongheon, Shin, MyungJae, Jung, Soyi, Mohaisen, David A, Jae-Hyun, Kim
Format Paper Journal Article
LanguageEnglish
Published Ithaca Cornell University Library, arXiv.org 15.01.2022
Subjects
Online AccessGet full text
ISSN2331-8422
DOI10.48550/arxiv.2201.05843

Cover

Loading…
Abstract CCTV-based surveillance using unmanned aerial vehicles (UAVs) is considered a key technology for security in smart city environments. This paper creates a case where the UAVs with CCTV-cameras fly over the city area for flexible and reliable surveillance services. UAVs should be deployed to cover a large area while minimize overlapping and shadow areas for a reliable surveillance system. However, the operation of UAVs is subject to high uncertainty, necessitating autonomous recovery systems. This work develops a multi-agent deep reinforcement learning-based management scheme for reliable industry surveillance in smart city applications. The core idea this paper employs is autonomously replenishing the UAV's deficient network requirements with communications. Via intensive simulations, our proposed algorithm outperforms the state-of-the-art algorithms in terms of surveillance coverage, user support capability, and computational costs.
AbstractList CCTV-based surveillance using unmanned aerial vehicles (UAVs) is considered a key technology for security in smart city environments. This paper creates a case where the UAVs with CCTV-cameras fly over the city area for flexible and reliable surveillance services. UAVs should be deployed to cover a large area while minimize overlapping and shadow areas for a reliable surveillance system. However, the operation of UAVs is subject to high uncertainty, necessitating autonomous recovery systems. This work develops a multi-agent deep reinforcement learning-based management scheme for reliable industry surveillance in smart city applications. The core idea this paper employs is autonomously replenishing the UAV's deficient network requirements with communications. Via intensive simulations, our proposed algorithm outperforms the state-of-the-art algorithms in terms of surveillance coverage, user support capability, and computational costs.
CCTV-based surveillance using unmanned aerial vehicles (UAVs) is considered a key technology for security in smart city environments. This paper creates a case where the UAVs with CCTV-cameras fly over the city area for flexible and reliable surveillance services. UAVs should be deployed to cover a large area while minimize overlapping and shadow areas for a reliable surveillance system. However, the operation of UAVs is subject to high uncertainty, necessitating autonomous recovery systems. This work develops a multi-agent deep reinforcement learning-based management scheme for reliable industry surveillance in smart city applications. The core idea this paper employs is autonomously replenishing the UAV's deficient network requirements with communications. Via intensive simulations, our proposed algorithm outperforms the state-of-the-art algorithms in terms of surveillance coverage, user support capability, and computational costs.
Author Jung, Soyi
Yun, Won Joon
Jae-Hyun, Kim
Shin, MyungJae
Kim, Joongheon
Mohaisen, David A
Park, Soohyun
Author_xml – sequence: 1
  givenname: Won
  surname: Yun
  middlename: Joon
  fullname: Yun, Won Joon
– sequence: 2
  givenname: Soohyun
  surname: Park
  fullname: Park, Soohyun
– sequence: 3
  givenname: Joongheon
  surname: Kim
  fullname: Kim, Joongheon
– sequence: 4
  givenname: MyungJae
  surname: Shin
  fullname: Shin, MyungJae
– sequence: 5
  givenname: Soyi
  surname: Jung
  fullname: Jung, Soyi
– sequence: 6
  givenname: David
  surname: Mohaisen
  middlename: A
  fullname: Mohaisen, David A
– sequence: 7
  givenname: Kim
  surname: Jae-Hyun
  fullname: Jae-Hyun, Kim
BackLink https://doi.org/10.1109/TII.2022.3143175$$DView published paper (Access to full text may be restricted)
https://doi.org/10.48550/arXiv.2201.05843$$DView paper in arXiv
BookMark eNotkFtLw0AUhBdRsNb-AJ9c8Dl192w2l8cQr1ARtPoaTpuTsiXdjZsL-u9NL08DM8MwfFfs3DpLjN1IMQ8TrcU9-l8zzAGEnAudhOqMTUApGSQhwCWbte1WCAFRDFqrCbO5cw157MxA_K2vOxNkG7IdfyBq-AcZWzm_pt3eWhB6a-yGj9YY1QZXNfHP3g9k6hrtmvhgkGd956zbub49DX5l3zx3tvOuvmYXFdYtzU46Zcunx2X-Eizen1_zbBGghijAtIwhKUtMQqlFCagFSoojSFfJKhWxjEliJaRUGK6xSrFSFFcJpCUqiJVUU3Z7nD3AKBpvduj_ij2U4gBlbNwdG413Pz21XbF1vbfjpwIikFKCTiL1D-GoZ00
ContentType Paper
Journal Article
Copyright 2022. This work is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
http://creativecommons.org/licenses/by-nc-nd/4.0
Copyright_xml – notice: 2022. This work is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: http://creativecommons.org/licenses/by-nc-nd/4.0
DBID 8FE
8FG
ABJCF
ABUWG
AFKRA
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
HCIFZ
L6V
M7S
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
AKY
GOX
DOI 10.48550/arxiv.2201.05843
DatabaseName ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
Technology collection
ProQuest One Community College
ProQuest Central Korea
SciTech Premium Collection
ProQuest Engineering Collection
Engineering Database
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
arXiv Computer Science
arXiv.org
DatabaseTitle Publicly Available Content Database
Engineering Database
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
ProQuest One Academic UKI Edition
ProQuest Central Korea
Materials Science & Engineering Collection
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
Engineering Collection
DatabaseTitleList
Publicly Available Content Database
Database_xml – sequence: 1
  dbid: GOX
  name: arXiv.org
  url: http://arxiv.org/find
  sourceTypes: Open Access Repository
– sequence: 2
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 2331-8422
ExternalDocumentID 2201_05843
Genre Working Paper/Pre-Print
GroupedDBID 8FE
8FG
ABJCF
ABUWG
AFKRA
ALMA_UNASSIGNED_HOLDINGS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
FRJ
HCIFZ
L6V
M7S
M~E
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
AKY
GOX
ID FETCH-LOGICAL-a526-a9d728dda84150d2a50a1e7629b8b90717e1af0113a4caf9af3e7f829da327313
IEDL.DBID BENPR
IngestDate Wed Jul 23 00:26:43 EDT 2025
Mon Jun 30 09:19:39 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a526-a9d728dda84150d2a50a1e7629b8b90717e1af0113a4caf9af3e7f829da327313
Notes SourceType-Working Papers-1
ObjectType-Working Paper/Pre-Print-1
content type line 50
OpenAccessLink https://www.proquest.com/docview/2621112586?pq-origsite=%requestingapplication%
PQID 2621112586
PQPubID 2050157
ParticipantIDs arxiv_primary_2201_05843
proquest_journals_2621112586
PublicationCentury 2000
PublicationDate 20220115
2022-01-15
PublicationDateYYYYMMDD 2022-01-15
PublicationDate_xml – month: 01
  year: 2022
  text: 20220115
  day: 15
PublicationDecade 2020
PublicationPlace Ithaca
PublicationPlace_xml – name: Ithaca
PublicationTitle arXiv.org
PublicationYear 2022
Publisher Cornell University Library, arXiv.org
Publisher_xml – name: Cornell University Library, arXiv.org
SSID ssj0002672553
Score 1.7847717
SecondaryResourceType preprint
Snippet CCTV-based surveillance using unmanned aerial vehicles (UAVs) is considered a key technology for security in smart city environments. This paper creates a case...
CCTV-based surveillance using unmanned aerial vehicles (UAVs) is considered a key technology for security in smart city environments. This paper creates a case...
SourceID arxiv
proquest
SourceType Open Access Repository
Aggregation Database
SubjectTerms Algorithms
Closed circuit television
Computer Science - Artificial Intelligence
Computer Science - Learning
Computer Science - Robotics
Computer Science - Systems and Control
Deep learning
Machine learning
Multiagent systems
Smart cities
Surveillance
Unmanned aerial vehicles
User services
SummonAdditionalLinks – databaseName: arXiv.org
  dbid: GOX
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwdV09T8MwELXaTiwIBKiFgjywWiTOlz1GhVIhARK0qFt0ji-oS1r1S_35nJ1UDIjVsjPc-Xzv4nvPjN2nTlZNYiCyGDIRxxaE0RSPSscIMjBGBY7g_PqWTmbxyzyZdxg_cmFgfVjsG31gs3mQ0klqUo6MuqwrpWvZen6fN5eTXoqrnf87jzCmH_pztPp8MT5jpy3Q43njmXPWwfqC1aPlcoWN2Db33FeRO24Tf0Rc8Q_0Mqal_2PHW-XTb05D3HUOO5IT_9yt9-heCiJn8f0CeL7bOl4CFfDtB2f5Fx81DeiXbDp-mo4mon3xQEAiUwHaZlJZC4rSamAlJAGESMeVNspoV3lhCBVFZARxCZWGKsKsUlJbiAiGhNEV69XLGvuMY2nSiAIUCYHFFWptVVKCJfgGtNraAet7OxWrRtSicCYsvAkHbHg0XdFu6E0hU6oUCQyp9Pr_lTfsRDp2QBCKMBmy3na9w1vK2Vtz5x33A1Eyl7k
  priority: 102
  providerName: Cornell University
Title Cooperative Multi-Agent Deep Reinforcement Learning for Reliable Surveillance via Autonomous Multi-UAV Control
URI https://www.proquest.com/docview/2621112586
https://arxiv.org/abs/2201.05843
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV07T8MwELZoKyQ2nuJZeWA1TZyXPaFS2iIkSlUe6hZd4gtiaUNfYuK3c3ZTGJBYIsVWMtzpHj7f9x1jl7GlVZPoiSSERIShAZFpskelQwTpZZnyLMD5YRDfvYT342hcFdzmVVvlxic6R22mua2Rt2RMRxWKxiq-Lj-EnRplb1erERo11iAXrKI6a9x0B8PRT5VFxgnlzMH6OtORd7Vg9vm-upLSknVS9A0oK3VLf5yxizC9XdYYQomzPbaFk3227Roz8_kBm3Sm0xLX9NzcoWVF26Kh-C1iyUfoiE9zV-PjFVfqG6clbnuNLSyKPy1nK7SzhUi9fPUOvL1cWCQDHfmrH760X3ln3bJ-yJ573efOnahmJAiIZCxAm0QqY0BRIPaMhMgDH8nB6Uxl2p7V0IeCbDiAMIdCQxFgUiipDQSUuPjBEatPphM8ZhzzLA7IpJFytrBArY2KcjCU8AF9bcwJO3ZySss1DUZqRZg6EZ6w843o0soE5umvwk7_3z5jO9JiCjxf-NE5qy9mS7ygSL_Imqymev1mpVR66z-O6fnw1f0G-xGs4A
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VVojeSgG10FIf4Gia2HnYhwqttmy3TyHYot6iSTxBvWzSfQE_iv_YsbMLh0q99eooPozH8_J83wB8yDytmqJI5gnmMkkcytLyfTQ2IVRRWZrIA5wvr7LhdXJ2k96swd8VFsa3Va5sYjDUrql8jfxQZZyqsDc22ef2TvqpUf51dTVCo1OLc_rzi1O26dHpMZ_vR6UGX0b9oVxOFZCYqkyidbkyzqFh1xU5hWmEMbFJsKUprc9uKMaatV5jUmFtsdaU10ZZh5pdfax522ewkWhtPVW_GZz8K-moLOcAXXdvp4Ep7BAnv28Xn5TyzKDs6jWHwGHpgeUP7mywBRtfsaXJS1ij8TY8D12g1fQVjPtN01LHBS4CNFf2PPRKHBO14hsFltUqFBTFkpj1p-Al4RubPQZLfJ9PFuQHGbEuicUtit585mETzXy63PC690P0u_741zB6CtG9gfVxM6YdEFSVmWb7QRwgJjVZ60xaoePoEvlv53ZhJ8ipaDvOjcKLsAgi3IW9leiK5X2bFv-14-3jnw_gxXB0eVFcnF6dv4NN5cEMUSzjdA_WZ5M57XOIMSvfh4MVUDyxIt0DuC7j-A
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Cooperative+Multi-Agent+Deep+Reinforcement+Learning+for+Reliable+Surveillance+via+Autonomous+Multi-UAV+Control&rft.jtitle=arXiv.org&rft.au=Yun%2C+Won+Joon&rft.au=Park%2C+Soohyun&rft.au=Kim%2C+Joongheon&rft.au=Shin%2C+MyungJae&rft.date=2022-01-15&rft.pub=Cornell+University+Library%2C+arXiv.org&rft.eissn=2331-8422&rft_id=info:doi/10.48550%2Farxiv.2201.05843