High-Fidelity Measurement of a Superconducting Qubit using an On-Chip Microwave Photon Counter

We describe an approach to the high-fidelity measurement of a superconducting qubit using an on-chip microwave photon counter. The protocol relies on the transient response of a dispersively coupled measurement resonator to map the state of the qubit to "bright" and "dark" cavity...

Full description

Saved in:
Bibliographic Details
Published inarXiv.org
Main Authors Opremcak, A, Liu, C H, Wilen, C, Okubo, K, Christensen, B G, Sank, D, White, T C, Vainsencher, A, Giustina, M, Megrant, A, Burkett, B, Plourde, B L T, McDermott, R
Format Paper Journal Article
LanguageEnglish
Published Ithaca Cornell University Library, arXiv.org 05.08.2020
Subjects
Online AccessGet full text

Cover

Loading…
Abstract We describe an approach to the high-fidelity measurement of a superconducting qubit using an on-chip microwave photon counter. The protocol relies on the transient response of a dispersively coupled measurement resonator to map the state of the qubit to "bright" and "dark" cavity pointer states that are characterized by a large differential photon occupation. Following this mapping, we photodetect the resonator using the Josephson Photomultipler (JPM), which transitions between classically distinguishable flux states when cavity photon occupation exceeds a certain threshold. Our technique provides access to the binary outcome of projective quantum measurement at the millikelvin stage without the need for quantum-limited preamplification and thresholding at room temperature. We achieve raw single-shot measurement fidelity in excess of 98% across multiple samples using this approach in total measurement times under 500 ns. In addition, we show that the backaction and crosstalk associated with our measurement protocol can be mitigated by exploiting the intrinsic damping of the JPM itself.
AbstractList We describe an approach to the high-fidelity measurement of a superconducting qubit using an on-chip microwave photon counter. The protocol relies on the transient response of a dispersively coupled measurement resonator to map the state of the qubit to "bright" and "dark" cavity pointer states that are characterized by a large differential photon occupation. Following this mapping, we photodetect the resonator using the Josephson Photomultipler (JPM), which transitions between classically distinguishable flux states when cavity photon occupation exceeds a certain threshold. Our technique provides access to the binary outcome of projective quantum measurement at the millikelvin stage without the need for quantum-limited preamplification and thresholding at room temperature. We achieve raw single-shot measurement fidelity in excess of 98% across multiple samples using this approach in total measurement times under 500 ns. In addition, we show that the backaction and crosstalk associated with our measurement protocol can be mitigated by exploiting the intrinsic damping of the JPM itself.
Phys. Rev. X 11, 011027 (2021) We describe an approach to the high-fidelity measurement of a superconducting qubit using an on-chip microwave photon counter. The protocol relies on the transient response of a dispersively coupled measurement resonator to map the state of the qubit to "bright" and "dark" cavity pointer states that are characterized by a large differential photon occupation. Following this mapping, we photodetect the resonator using the Josephson Photomultipler (JPM), which transitions between classically distinguishable flux states when cavity photon occupation exceeds a certain threshold. Our technique provides access to the binary outcome of projective quantum measurement at the millikelvin stage without the need for quantum-limited preamplification and thresholding at room temperature. We achieve raw single-shot measurement fidelity in excess of 98% across multiple samples using this approach in total measurement times under 500 ns. In addition, we show that the backaction and crosstalk associated with our measurement protocol can be mitigated by exploiting the intrinsic damping of the JPM itself.
Author Vainsencher, A
Giustina, M
Okubo, K
Wilen, C
Sank, D
Christensen, B G
McDermott, R
Liu, C H
Megrant, A
Opremcak, A
Plourde, B L T
White, T C
Burkett, B
Author_xml – sequence: 1
  givenname: A
  surname: Opremcak
  fullname: Opremcak, A
– sequence: 2
  givenname: C
  surname: Liu
  middlename: H
  fullname: Liu, C H
– sequence: 3
  givenname: C
  surname: Wilen
  fullname: Wilen, C
– sequence: 4
  givenname: K
  surname: Okubo
  fullname: Okubo, K
– sequence: 5
  givenname: B
  surname: Christensen
  middlename: G
  fullname: Christensen, B G
– sequence: 6
  givenname: D
  surname: Sank
  fullname: Sank, D
– sequence: 7
  givenname: T
  surname: White
  middlename: C
  fullname: White, T C
– sequence: 8
  givenname: A
  surname: Vainsencher
  fullname: Vainsencher, A
– sequence: 9
  givenname: M
  surname: Giustina
  fullname: Giustina, M
– sequence: 10
  givenname: A
  surname: Megrant
  fullname: Megrant, A
– sequence: 11
  givenname: B
  surname: Burkett
  fullname: Burkett, B
– sequence: 12
  givenname: B
  surname: Plourde
  middlename: L T
  fullname: Plourde, B L T
– sequence: 13
  givenname: R
  surname: McDermott
  fullname: McDermott, R
BackLink https://doi.org/10.1103/PhysRevX.11.011027$$DView published paper (Access to full text may be restricted)
https://doi.org/10.48550/arXiv.2008.02346$$DView paper in arXiv
BookMark eNotkF9PwjAUxRujiYh8AJ9s4vOw_7s9mkXABIJGnl26tYMSaGe3onx7B_h0z01-OfeecweunXcGgAeMxizlHD2r8GsPY4JQOkaEMnEFBoRSnKSMkFswatstQogISTinA_A1s-tNMrHa7Gx3hAuj2hjM3rgO-hoq-BkbEyrvdKw669bwI5a2g7E9aeXg0iX5xjZwYavgf9TBwPeN77yDuY-uM-Ee3NRq15rR_xyC1eR1lc-S-XL6lr_ME8WJSDKKM0Fro2VZVikpqZCKYox1RvpFMs0pEpopRaXkBmWyzqo-GiOalJwJQYfg8WJ7Dl80we5VOBanEopzCT3xdCGa4L-jabti62Nw_U8FYf0twrEU9A_z12As
ContentType Paper
Journal Article
Copyright 2020. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
http://arxiv.org/licenses/nonexclusive-distrib/1.0
Copyright_xml – notice: 2020. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: http://arxiv.org/licenses/nonexclusive-distrib/1.0
DBID 8FE
8FG
ABJCF
ABUWG
AFKRA
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
HCIFZ
L6V
M7S
PIMPY
PQEST
PQQKQ
PQUKI
PRINS
PTHSS
GOX
DOI 10.48550/arxiv.2008.02346
DatabaseName ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central (Alumni Edition)
ProQuest Central UK/Ireland
ProQuest Central Essentials
AUTh Library subscriptions: ProQuest Central
Technology Collection
ProQuest One Community College
ProQuest Central Korea
SciTech Premium Collection
ProQuest Engineering Collection
Engineering Database
Publicly Available Content Database
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
arXiv.org
DatabaseTitle Publicly Available Content Database
Engineering Database
Technology Collection
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central China
ProQuest Central
ProQuest Engineering Collection
ProQuest One Academic UKI Edition
ProQuest Central Korea
Materials Science & Engineering Collection
ProQuest One Academic
Engineering Collection
DatabaseTitleList Publicly Available Content Database

Database_xml – sequence: 1
  dbid: GOX
  name: arXiv.org
  url: http://arxiv.org/find
  sourceTypes: Open Access Repository
– sequence: 2
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 2331-8422
ExternalDocumentID 2008_02346
Genre Working Paper/Pre-Print
GroupedDBID 8FE
8FG
ABJCF
ABUWG
AFKRA
ALMA_UNASSIGNED_HOLDINGS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
FRJ
HCIFZ
L6V
M7S
M~E
PIMPY
PQEST
PQQKQ
PQUKI
PRINS
PTHSS
GOX
ID FETCH-LOGICAL-a526-931963fed7bbc82b367a3111d922b374d5306d4aa3775e097f9c23442d2b54663
IEDL.DBID GOX
IngestDate Mon Jan 08 05:44:50 EST 2024
Thu Oct 10 20:36:20 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a526-931963fed7bbc82b367a3111d922b374d5306d4aa3775e097f9c23442d2b54663
OpenAccessLink https://arxiv.org/abs/2008.02346
PQID 2431125176
PQPubID 2050157
ParticipantIDs arxiv_primary_2008_02346
proquest_journals_2431125176
PublicationCentury 2000
PublicationDate 20200805
2020-08-05
PublicationDateYYYYMMDD 2020-08-05
PublicationDate_xml – month: 08
  year: 2020
  text: 20200805
  day: 05
PublicationDecade 2020
PublicationPlace Ithaca
PublicationPlace_xml – name: Ithaca
PublicationTitle arXiv.org
PublicationYear 2020
Publisher Cornell University Library, arXiv.org
Publisher_xml – name: Cornell University Library, arXiv.org
SSID ssj0002672553
Score 1.7753154
SecondaryResourceType preprint
Snippet We describe an approach to the high-fidelity measurement of a superconducting qubit using an on-chip microwave photon counter. The protocol relies on the...
Phys. Rev. X 11, 011027 (2021) We describe an approach to the high-fidelity measurement of a superconducting qubit using an on-chip microwave photon counter....
SourceID arxiv
proquest
SourceType Open Access Repository
Aggregation Database
SubjectTerms Accuracy
Crosstalk
Damping
Mapping
Photon counters
Photons
Physics - Mesoscale and Nanoscale Physics
Physics - Quantum Physics
Qubits (quantum computing)
Resonators
Room temperature
Superconductivity
Transient response
SummonAdditionalLinks – databaseName: ProQuest Technology Collection
  dbid: 8FG
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV07T8MwELagFRIbT7VQkAdWq60Tx8nEUBEqpEIRRepE5Sftkoa-4Odz5wY6IDHGUQafnbvvzp-_I-QGQC_vKq-YkT5isXSapaZjWQdcn7eomKYxURw8Jv3X-GEsxlXBbVnRKn98YnDUdm6wRt7mEOkwGMvktvxg2DUKT1erFhr7pN7lUuKuTvP73xoLTyQg5mh7mBmku9pq8TXbVBRKHiHsrYehP644xJf8iNSHqnSLY7LnihNyEGiZZnlK3pCGwXKUogK0TAe7gh6de6royxq-gowWRVshBtHntZ6tKHLZ36kq6FPBetNZSQfIuvtUG0eH0zmAPYo30cGgZ2SU3416fVZ1RGBK8IRl4X_xzkqtTcp1lEgFVunajMODjK2ABMDGSkVSCtfJpM8MTDLmlmsRA7Y4J7ViXrgGoZAUWxFzb6xxgKEy7ZMslTrxkXLcC9ckjWCXSbkVvajaVaLJmqT1Y6pJteGXk93yXPz_-pIcckxZkXUhWqS2WqzdFcT1lb4Oi_cND0qhrw
  priority: 102
  providerName: ProQuest
Title High-Fidelity Measurement of a Superconducting Qubit using an On-Chip Microwave Photon Counter
URI https://www.proquest.com/docview/2431125176
https://arxiv.org/abs/2008.02346
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwdZ3PT8IwFMdfAC9ejEYNKJIevDZi167sqIRBTAaomHCStGurXAbhl578233dRjgYL0u2tIe9Nq-ft337LcAtQi-7V07RVLqAcmk17aRtQ9uY-pzxjmnaF4rJMBy88aepmFaA7PfCqNX3fFf4A-v1XSF1ZAEPq1BlzEu2-qNp8XMyt-Iq2x_aIWPmj_6k1ny9iE_hpAQ98lCMzBlUbHYO715WQWNvLYX0S5LDBzqycESR1-3SrrBC9SasuKaQ562eb4jXpn8QlZFRRruf8yVJvIruS-0sGX8uEN6I31mOAbqASdybdAe0POGAKsFCGuXz31kjtU47TAehVAEmHxMxvJHcCAR6w5UKpBS2HUkXpfiSnBmmBUdWuIRatshsHQgWuUZw5lKTWmSiSLsw6kgdukBZ5oRtQD2Py2xZmFiUx0_6kDWguQ_VrJzA6xlDsPDsI8Or_3tewzHz5adXUIgm1Darrb3BNXqjW1DtxP0WHD32huOXVj5seE1-er-1qJTD
link.rule.ids 228,230,783,787,888,12779,21402,27939,33387,33758,43614,43819
linkProvider Cornell University
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV07T8MwELagFYKNp1oo4IHVaus83EwMFaFAU4ooUiciO7ZplyT0BT-fuzSlAxJjHGXw2bnvu_PnO0JugPTytrSSJcI6zBVGsU7S0qwFrs9qrJimMFCMBn7vzX0ce-My4TYvZZUbn1g4ap0lmCNvckA6BGPh3-afDLtG4elq2UJjl1RdB4AGb4qH9785Fu4LYMzO-jCzKN3VlLPv6aqUUHIHaW-1GPrjigt8CQ9JdShzMzsiOyY9JnuFLDOZn5B3lGGwEEtRAVum0TahRzNLJX1dwlcQ0WLRVsAg-rJU0wVFLfsHlSl9Tll3Ms1phKq7L7kydDjJgOxRvIkOBj0lo_Bu1O2xsiMCkx73WVD8L9ZooVTS4crxhQSrtHXA4UG42oMAQLtSOkJ4phUIGyQwSZdrrjwXuMUZqaRZamqEQlCsPZfbRCcGOFSgrB90hPKtIw23nqmTWmGXOF8XvSjbVaLJ6qSxMVVcbvh5vF2e8_9fX5P93ijqx_2HwdMFOeAYvqICw2uQymK2NJeA8Qt1VSzkD7dIpJE
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=High-Fidelity+Measurement+of+a+Superconducting+Qubit+using+an+On-Chip+Microwave+Photon+Counter&rft.jtitle=arXiv.org&rft.au=Opremcak%2C+A&rft.au=Liu%2C+C+H&rft.au=Wilen%2C+C&rft.au=Okubo%2C+K&rft.date=2020-08-05&rft.pub=Cornell+University+Library%2C+arXiv.org&rft.eissn=2331-8422&rft_id=info:doi/10.48550%2Farxiv.2008.02346