Properties of size-dependent models having quasiperiodic boundary conditions

Boundary conditions effects are explored for size-dependent models in thermal equilibrium. Scalar and fermionic models are used for \(D=1+3\) (films), \(D=1+2\) (hollow cylinder) and \(D=1+1\) (ring). For all models a minimal length is found, below which no thermally-induced phase transition occurs....

Full description

Saved in:
Bibliographic Details
Published inarXiv.org
Main Authors Cavalcanti, E, Linhares, C A, Malbouisson, A P C
Format Paper Journal Article
LanguageEnglish
Published Ithaca Cornell University Library, arXiv.org 10.12.2017
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Boundary conditions effects are explored for size-dependent models in thermal equilibrium. Scalar and fermionic models are used for \(D=1+3\) (films), \(D=1+2\) (hollow cylinder) and \(D=1+1\) (ring). For all models a minimal length is found, below which no thermally-induced phase transition occurs. Using quasiperiodic boundary condition controlled by a contour parameter \(\theta\) (\(\theta=0\) is a periodic boundary condition and \(\theta=1\) is an antiperiodic condition) it results that the minimal length depends directly on the value of \(\theta\). It is also argued that this parameter can be associated to an Aharonov-Bohm phase.
AbstractList Boundary conditions effects are explored for size-dependent models in thermal equilibrium. Scalar and fermionic models are used for $D=1+3$ (films), $D=1+2$ (hollow cylinder) and $D=1+1$ (ring). For all models a minimal length is found, below which no thermally-induced phase transition occurs. Using quasiperiodic boundary condition controlled by a contour parameter $\theta$ ($\theta=0$ is a periodic boundary condition and $\theta=1$ is an antiperiodic condition) it results that the minimal length depends directly on the value of $\theta$. It is also argued that this parameter can be associated to an Aharonov-Bohm phase.
Boundary conditions effects are explored for size-dependent models in thermal equilibrium. Scalar and fermionic models are used for \(D=1+3\) (films), \(D=1+2\) (hollow cylinder) and \(D=1+1\) (ring). For all models a minimal length is found, below which no thermally-induced phase transition occurs. Using quasiperiodic boundary condition controlled by a contour parameter \(\theta\) (\(\theta=0\) is a periodic boundary condition and \(\theta=1\) is an antiperiodic condition) it results that the minimal length depends directly on the value of \(\theta\). It is also argued that this parameter can be associated to an Aharonov-Bohm phase.
Author Malbouisson, A P C
Linhares, C A
Cavalcanti, E
Author_xml – sequence: 1
  givenname: E
  surname: Cavalcanti
  fullname: Cavalcanti, E
– sequence: 2
  givenname: C
  surname: Linhares
  middlename: A
  fullname: Linhares, C A
– sequence: 3
  givenname: A
  surname: Malbouisson
  middlename: P C
  fullname: Malbouisson, A P C
BackLink https://doi.org/10.48550/arXiv.1708.02672$$DView paper in arXiv
https://doi.org/10.1142/S0217751X18500082$$DView published paper (Access to full text may be restricted)
BookMark eNotj0tLAzEUhYMoWGt_gCsDrmfM5N2lFF8woIvuh8zkjqa0yTSZKeqvN7auDtzzcTnfFTr3wQNCNxUpuRaC3Jv45Q5lpYguCZWKnqEZZawqNKf0Ei1S2hByLIRgM1S_xzBAHB0kHHqc3A8UFgbwFvyId8HCNuFPc3D-A-8nk1yGXbCuw22YvDXxG3fBWze64NM1uujNNsHiP-do_fS4Xr0U9dvz6-qhLoygslCW60pSUEpq1rZa9FJb3oLhqtPQ0763HbdWGA5SiCpztlsqlo-gNGWUzdHt6e1RtRmi2-UdzZ9yczTLxN2JGGLYT5DGZhOm6POmhhKplxXRRLJfB31ckA
ContentType Paper
Journal Article
Copyright 2017. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
http://arxiv.org/licenses/nonexclusive-distrib/1.0
Copyright_xml – notice: 2017. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: http://arxiv.org/licenses/nonexclusive-distrib/1.0
DBID 8FE
8FG
ABJCF
ABUWG
AFKRA
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
HCIFZ
L6V
M7S
PIMPY
PQEST
PQQKQ
PQUKI
PRINS
PTHSS
GOX
DOI 10.48550/arxiv.1708.02672
DatabaseName ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
Technology Collection
ProQuest One Community College
ProQuest Central
SciTech Premium Collection
ProQuest Engineering Collection
Engineering Database
Publicly Available Content Database
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
arXiv.org
DatabaseTitle Publicly Available Content Database
Engineering Database
Technology Collection
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central China
ProQuest Central
ProQuest Engineering Collection
ProQuest One Academic UKI Edition
ProQuest Central Korea
Materials Science & Engineering Collection
ProQuest One Academic
Engineering Collection
DatabaseTitleList
Publicly Available Content Database
Database_xml – sequence: 1
  dbid: GOX
  name: arXiv.org
  url: http://arxiv.org/find
  sourceTypes: Open Access Repository
– sequence: 2
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 2331-8422
ExternalDocumentID 1708_02672
Genre Working Paper/Pre-Print
GroupedDBID 8FE
8FG
ABJCF
ABUWG
AFKRA
ALMA_UNASSIGNED_HOLDINGS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
FRJ
HCIFZ
L6V
M7S
M~E
PIMPY
PQEST
PQQKQ
PQUKI
PRINS
PTHSS
GOX
ID FETCH-LOGICAL-a526-7d48162e77683bb85f68d4bea47c8ef2ffdc4dd5a4e6551e77dc973dc4e782323
IEDL.DBID 8FG
IngestDate Mon Jan 08 05:49:18 EST 2024
Thu Oct 10 18:49:43 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a526-7d48162e77683bb85f68d4bea47c8ef2ffdc4dd5a4e6551e77dc973dc4e782323
OpenAccessLink https://www.proquest.com/docview/2068910806?pq-origsite=%requestingapplication%
PQID 2068910806
PQPubID 2050157
ParticipantIDs arxiv_primary_1708_02672
proquest_journals_2068910806
PublicationCentury 2000
PublicationDate 20171210
PublicationDateYYYYMMDD 2017-12-10
PublicationDate_xml – month: 12
  year: 2017
  text: 20171210
  day: 10
PublicationDecade 2010
PublicationPlace Ithaca
PublicationPlace_xml – name: Ithaca
PublicationTitle arXiv.org
PublicationYear 2017
Publisher Cornell University Library, arXiv.org
Publisher_xml – name: Cornell University Library, arXiv.org
SSID ssj0002672553
Score 1.6830018
SecondaryResourceType preprint
Snippet Boundary conditions effects are explored for size-dependent models in thermal equilibrium. Scalar and fermionic models are used for \(D=1+3\) (films),...
Boundary conditions effects are explored for size-dependent models in thermal equilibrium. Scalar and fermionic models are used for $D=1+3$ (films), $D=1+2$...
SourceID arxiv
proquest
SourceType Open Access Repository
Aggregation Database
SubjectTerms Boundary conditions
Cylinders
Mathematical models
Parameters
Phase transitions
Physics - High Energy Physics - Theory
SummonAdditionalLinks – databaseName: arXiv.org
  dbid: GOX
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwdV07T8MwELZKJxYEAtRCQR5YLZKzYzsjQpQK8RqKlC2KXyhLCkmLgF-P7aRiQKzW2cN31j3su-8QulBSKSNYQhg4SVjucqKUcCRxkOrAV5fJ0Dv88MgXL-yuyIoRwttemKr9rD96fmDVXaYilDoCF97I7gCEkq3bp6L_nIxUXIP8r5yPMePSH9Ma_cV8H-0NgR6-6jVzgEa2OUT3z-Htuw0kpnjlcFd_W7IdQ7vGcSpNh0PffPOK3zdVVwce4pWpNVZx_FH7hX3-avoyqyO0nN8srxdkmGdAqgw4EYbJlIMVPsKnSsnMcWmYshUTWloHzhnNjMkqZrmPY7yc0bmgftF6N06BHqNxs2rsBGFJqZaS-gONZJDoinlcM5NL7fNKADtFk4hC-dZTVpQBoDICNEWzLTDlcF27EhIu81BtyE_-33mKdiH4tBS87Z6h8brd2DPvkdfqPKrlB-oUjJU
  priority: 102
  providerName: Cornell University
Title Properties of size-dependent models having quasiperiodic boundary conditions
URI https://www.proquest.com/docview/2068910806
https://arxiv.org/abs/1708.02672
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3LS8MwGA-6IXjzyaZz5OA1uiZpkp4EZZuIm0Mm7Faal_TSbe0m6sG_3STr9CB4KeRBD98Xvld--X4AXEohpea0hyi2AtHEJkhKblHP4kj5fnWx8G-HR2N2_0IfZvGsLrhVNaxyaxODodZz5WvkLklnIvGAOHazWCLPGuVvV2sKjV3QjDDnHtIlBsOfGgtm3EXMZHOZGVp3XWfle_52FXEPofTLLiYNU39McfAvgwPQnGQLUx6CHVMcgb0Ay1TVMXic-Fp56ZuewrmFVf5p0Ja2dgUDi00F_Tv74hUu11mV-77Fc50rKANdUvkBXb6rN7CsEzAd9Kd396jmP0BZjBnimoqIYcNdRkCkFLFlQlNpMsqVMBZbqxXVOs6oYS7ucfu0Sjhxk8a5fYLJKWgU88K0ABSEKCGI-6EWFPdURp0eYp0I5fJQjE0btIIU0sWmxUXqBZQGAbVBZyuYtD7eVfqrjLP_l8_BPvZ-MMLO3ndAY1WuzYXz4ivZDarqguZtfzx5dqPh08x9R1_9bwYnoQs
link.rule.ids 228,230,783,787,888,12778,21401,27938,33386,33757,43613,43818
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1NT8IwGG4UYvTmZ0RRe_BaZW3XdicTDQQVCDGYcFvWL8Nlgw2M-utty9CDidd26eF9l_erT58HgGsppNScdhDFViCa2ARJyS3qWBwpz1cXC_92eDhi_Vf6NI2n9cCtqmGVm5gYArUulJ-RuyadicQD4tjdfIG8apS_Xa0lNLZB01NViQZo3ndH45efKQtm3NXMZH2dGci7brPyY_Z-E3EPovTbrioNS3-CccgwvX3QHGdzUx6ALZMfgp0AzFTVERiM_bS89LSnsLCwmn0ZtBGuXcKgY1NB_9I-f4OLVVbNPHNxoWcKyiCYVH5C1_HqNTDrGEx63clDH9UKCCiLMUNcUxExbLjrCYiUIrZMaCpNRrkSxmJrtaJaxxk1zFU-7jutEk7conGJn2ByAhp5kZtTAAUhSgjiDtSC4o7KqPNErBOhXCeKsWmB02CFdL4muUi9gdJgoBZobwyT1j94lf664-z_7Suw258MB-ngcfR8Dvawz4oRdtG_DRrLcmUuXE5fysvacd_a3qGC
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Properties+of+size-dependent+models+having+quasiperiodic+boundary+conditions&rft.jtitle=arXiv.org&rft.au=Cavalcanti%2C+E&rft.au=Linhares%2C+C+A&rft.au=Malbouisson%2C+A+P+C&rft.date=2017-12-10&rft.pub=Cornell+University+Library%2C+arXiv.org&rft.eissn=2331-8422&rft_id=info:doi/10.48550%2Farxiv.1708.02672