A Bayesian approach for estimation of weight matrices in spatial autoregressive models
We develop a Bayesian approach to estimate weight matrices in spatial autoregressive (or spatial lag) models. Datasets in regional economic literature are typically characterized by a limited number of time periods T relative to spatial units N. When the spatial weight matrix is subject to estimatio...
Saved in:
Published in | arXiv.org |
---|---|
Main Authors | , |
Format | Paper Journal Article |
Language | English |
Published |
Ithaca
Cornell University Library, arXiv.org
02.08.2022
|
Subjects | |
Online Access | Get full text |
ISSN | 2331-8422 |
DOI | 10.48550/arxiv.2101.11938 |
Cover
Loading…
Abstract | We develop a Bayesian approach to estimate weight matrices in spatial autoregressive (or spatial lag) models. Datasets in regional economic literature are typically characterized by a limited number of time periods T relative to spatial units N. When the spatial weight matrix is subject to estimation severe problems of over-parametrization are likely. To make estimation feasible, our approach focusses on spatial weight matrices which are binary prior to row-standardization. We discuss the use of hierarchical priors which impose sparsity in the spatial weight matrix. Monte Carlo simulations show that these priors perform very well where the number of unknown parameters is large relative to the observations. The virtues of our approach are demonstrated using global data from the early phase of the COVID-19 pandemic. |
---|---|
AbstractList | We develop a Bayesian approach to estimate weight matrices in spatial autoregressive (or spatial lag) models. Datasets in regional economic literature are typically characterized by a limited number of time periods T relative to spatial units N. When the spatial weight matrix is subject to estimation severe problems of over-parametrization are likely. To make estimation feasible, our approach focusses on spatial weight matrices which are binary prior to row-standardization. We discuss the use of hierarchical priors which impose sparsity in the spatial weight matrix. Monte Carlo simulations show that these priors perform very well where the number of unknown parameters is large relative to the observations. The virtues of our approach are demonstrated using global data from the early phase of the COVID-19 pandemic. We develop a Bayesian approach to estimate weight matrices in spatial autoregressive (or spatial lag) models. Datasets in regional economic literature are typically characterized by a limited number of time periods T relative to spatial units N. When the spatial weight matrix is subject to estimation severe problems of over-parametrization are likely. To make estimation feasible, our approach focusses on spatial weight matrices which are binary prior to row-standardization. We discuss the use of hierarchical priors which impose sparsity in the spatial weight matrix. Monte Carlo simulations show that these priors perform very well where the number of unknown parameters is large relative to the observations. The virtues of our approach are demonstrated using global data from the early phase of the COVID-19 pandemic. |
Author | Piribauer, Philipp Krisztin, Tamás |
Author_xml | – sequence: 1 givenname: Tamás surname: Krisztin fullname: Krisztin, Tamás – sequence: 2 givenname: Philipp surname: Piribauer fullname: Piribauer, Philipp |
BackLink | https://doi.org/10.1080/17421772.2022.2095426$$DView published paper (Access to full text may be restricted) https://doi.org/10.48550/arXiv.2101.11938$$DView paper in arXiv |
BookMark | eNotj1FLwzAUhYMoOOd-gE8GfO5MbpI2e5zDqTDwZfhaYnuzZXRNTdrp_r1x8-nCuYfD992Qy9a3SMgdZ1OplWKPJvy4wxQ441POZ0JfkBEIwTMtAa7JJMYdYwzyApQSI_Ixp0_miNGZlpquC95UW2p9oBh7tze98y31ln6j22x7moLgKozUtTR26WsaaobeB9wEjNEdkO59jU28JVfWNBEn_3dM1svn9eI1W72_vC3mq8woyDPJK7SopbSJszK8sMAKK2QtQeta8aIwmEjzuuIAbMY4fgrUeYU5q9XMghiT-_PsSbrsQkIOx_JPvjzJp8bDuZHUvoYkVe78ENrEVILUQirQLBe_TSVetQ |
ContentType | Paper Journal Article |
Copyright | 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. http://creativecommons.org/licenses/by/4.0 |
Copyright_xml | – notice: 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: http://creativecommons.org/licenses/by/4.0 |
DBID | 8FE 8FG ABJCF ABUWG AFKRA AZQEC BENPR BGLVJ CCPQU COVID DWQXO HCIFZ L6V M7S PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS ADEOX GOX |
DOI | 10.48550/arxiv.2101.11938 |
DatabaseName | ProQuest SciTech Collection ProQuest Technology Collection Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central Technology Collection ProQuest One Community College Coronavirus Research Database ProQuest Central Korea SciTech Premium Collection ProQuest Engineering Collection Engineering Database ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection arXiv Economics arXiv.org |
DatabaseTitle | Publicly Available Content Database Engineering Database Technology Collection ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest One Academic Eastern Edition Coronavirus Research Database ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Technology Collection ProQuest SciTech Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Engineering Collection ProQuest One Academic UKI Edition ProQuest Central Korea Materials Science & Engineering Collection ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) Engineering Collection |
DatabaseTitleList | Publicly Available Content Database |
Database_xml | – sequence: 1 dbid: GOX name: arXiv.org url: http://arxiv.org/find sourceTypes: Open Access Repository – sequence: 2 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Physics |
EISSN | 2331-8422 |
ExternalDocumentID | 2101_11938 |
Genre | Working Paper/Pre-Print |
GroupedDBID | 8FE 8FG ABJCF ABUWG AFKRA ALMA_UNASSIGNED_HOLDINGS AZQEC BENPR BGLVJ CCPQU COVID DWQXO FRJ HCIFZ L6V M7S M~E PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS ADEOX GOX |
ID | FETCH-LOGICAL-a526-41cefe844f938ca17f207f34d4288d5177ae2676dc1220901eb3e86ce60d59f23 |
IEDL.DBID | BENPR |
IngestDate | Tue Jul 22 21:57:26 EDT 2025 Mon Jun 30 09:17:00 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | false |
IsScholarly | false |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a526-41cefe844f938ca17f207f34d4288d5177ae2676dc1220901eb3e86ce60d59f23 |
Notes | SourceType-Working Papers-1 ObjectType-Working Paper/Pre-Print-1 content type line 50 |
OpenAccessLink | https://www.proquest.com/docview/2483452806?pq-origsite=%requestingapplication% |
PQID | 2483452806 |
PQPubID | 2050157 |
ParticipantIDs | arxiv_primary_2101_11938 proquest_journals_2483452806 |
PublicationCentury | 2000 |
PublicationDate | 20220802 |
PublicationDateYYYYMMDD | 2022-08-02 |
PublicationDate_xml | – month: 08 year: 2022 text: 20220802 day: 02 |
PublicationDecade | 2020 |
PublicationPlace | Ithaca |
PublicationPlace_xml | – name: Ithaca |
PublicationTitle | arXiv.org |
PublicationYear | 2022 |
Publisher | Cornell University Library, arXiv.org |
Publisher_xml | – name: Cornell University Library, arXiv.org |
SSID | ssj0002672553 |
Score | 1.8049804 |
SecondaryResourceType | preprint |
Snippet | We develop a Bayesian approach to estimate weight matrices in spatial autoregressive (or spatial lag) models. Datasets in regional economic literature are... We develop a Bayesian approach to estimate weight matrices in spatial autoregressive (or spatial lag) models. Datasets in regional economic literature are... |
SourceID | arxiv proquest |
SourceType | Open Access Repository Aggregation Database |
SubjectTerms | Autoregressive models Bayesian analysis Standardization Weight |
SummonAdditionalLinks | – databaseName: arXiv.org dbid: GOX link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwdV09T8MwED21nVgQCFALBXlgtUgujp2MBVEqJGApqFvkxGepAylqyte_x3YSMSBWy7ass893z3f3DHBZCSuMMyxc5lJwkVQp11Ya7olGlMzJUCB7fniUi2dxv0pXA2B9LYzefq0_Wn7gsrlyeCR2Sp0n2RCGiD5l6-5p1QYnAxVX1_-3n_MxQ9OfqzXYi_kB7HeOHpu1O3MIA6qP4GXGrvU3-cJF1rN5M-c2Ms910RYRso1ln-G9kr0G-nxq2Lpmjc98dvNpzzlAASS7e4qFj2yaY1jOb5c3C979bMB1ipKLuCJLmRDWrbjSsbIYKZsI47BAZtJYKU0olTRVjBg5i-0QL2WyIhmZNLeYnMCo3tQ0BoYeVfpwoEIjVK5LLTMrk9LE6DSLzATGQR7FW0teUXhRFUFUE5j2Iiq6g9sU6B8XUx9uPf1_5Bnsoa8C8JkTOIXRbvtO584278qLsEE_IhOOSQ priority: 102 providerName: Cornell University |
Title | A Bayesian approach for estimation of weight matrices in spatial autoregressive models |
URI | https://www.proquest.com/docview/2483452806 https://arxiv.org/abs/2101.11938 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1JT8JAFJ4IjYk314AimYPXETqdzrQnI4YlJiAxaLg1wywJiRakuF387c4bih5MvDRpe2nftN-b7y3fQ-hCMcu0cyyEp5wRFqmYSMs1AaERwVOjjRd7Ho744IHdTuNpGXAryrLKLSZ6oNYLBTHyFoWoVwx5wKvlC4GpUZBdLUdoVFDgIDiJqyjodEfj-58oC-XC7ZmjTTrTi3e15Opj_nbpmE7o4CKFvpTAX_oDxt7D9PZRMJZLszpAOyY_RLu-MFMVR-jxGnfkp4FWR7zV_8Zuo4lBHWPTdogXFr_7CCd-9oL7psDzHBdQKy2fsASVAuNptUM27EffFMdo0utObgaknIVAZEw5YaEy1iSMWffESobC0rawEdOOPSQ6DoWQxr0r1yqktO18vOPIJuHK8LaOU0ujE1TNF7mpIUyBh0ICUVDNRCpnkieWRzMdUvcvGl1HNW-PbLmRu8jAVJk3VR01tibKyk-9yH4X5vT_22doj0LvANRb0Aaqrlev5tx59PWsiSpJr98sF8-d9e-m7jj86n4Df_Ojfg |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1JTwIxFG4IxOjNNaCoPeixwnQ6nZmDMW4IssQDGm6T0iUhUUAGRX6U_9G-DqMHE29ep5nL6-v39u8hdCKZYcoaFsJjzgjzZUCE4YoA0UjIY620I3vu9njzkd0PgkEBfeazMNBWmWOiA2o1kZAjr1HIegVQB7yYvhLYGgXV1XyFRqYWbb1c2JAtPW_d2Ps9pbRx279uktVWASICygnzpDY6YszEfiSFFxpaD43PlPXDIxV4YSg05SFX0qO0bq2ljTZ1xKXmdRXEBngOLOKXmO_HQNUfNe6-Uzr2N-ug-1nt1DGF1cTsY_R-ZsMqz2JTDEMwJffpF_I7c9bYRKUHMdWzLVTQ42205rpAZbqDni7xlVhqmKvEOdk4tl4tBiqObMYRTwxeuHQqfnHs_jrFozFOoTFbPGMBlAjaxfAWRrHbs5Puov5_iGgPFceTsS4jTCHohWplSBULYzEUPDLcHyqP2oevVQWVnTySacatkYCoEieqCqrmIkpW7ypNfrRg_-_jY7Te7Hc7SafVax-gDQpDC9DoQauoOJ-96UPrSsyHR-4CMUr-WWG-AHI32gw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Bayesian+approach+for+estimation+of+weight+matrices+in+spatial+autoregressive+models&rft.jtitle=arXiv.org&rft.au=Krisztin%2C+Tam%C3%A1s&rft.au=Piribauer%2C+Philipp&rft.date=2022-08-02&rft.pub=Cornell+University+Library%2C+arXiv.org&rft.eissn=2331-8422&rft_id=info:doi/10.48550%2Farxiv.2101.11938 |