A Bayesian approach for estimation of weight matrices in spatial autoregressive models

We develop a Bayesian approach to estimate weight matrices in spatial autoregressive (or spatial lag) models. Datasets in regional economic literature are typically characterized by a limited number of time periods T relative to spatial units N. When the spatial weight matrix is subject to estimatio...

Full description

Saved in:
Bibliographic Details
Published inarXiv.org
Main Authors Krisztin, Tamás, Piribauer, Philipp
Format Paper Journal Article
LanguageEnglish
Published Ithaca Cornell University Library, arXiv.org 02.08.2022
Subjects
Online AccessGet full text
ISSN2331-8422
DOI10.48550/arxiv.2101.11938

Cover

Loading…
Abstract We develop a Bayesian approach to estimate weight matrices in spatial autoregressive (or spatial lag) models. Datasets in regional economic literature are typically characterized by a limited number of time periods T relative to spatial units N. When the spatial weight matrix is subject to estimation severe problems of over-parametrization are likely. To make estimation feasible, our approach focusses on spatial weight matrices which are binary prior to row-standardization. We discuss the use of hierarchical priors which impose sparsity in the spatial weight matrix. Monte Carlo simulations show that these priors perform very well where the number of unknown parameters is large relative to the observations. The virtues of our approach are demonstrated using global data from the early phase of the COVID-19 pandemic.
AbstractList We develop a Bayesian approach to estimate weight matrices in spatial autoregressive (or spatial lag) models. Datasets in regional economic literature are typically characterized by a limited number of time periods T relative to spatial units N. When the spatial weight matrix is subject to estimation severe problems of over-parametrization are likely. To make estimation feasible, our approach focusses on spatial weight matrices which are binary prior to row-standardization. We discuss the use of hierarchical priors which impose sparsity in the spatial weight matrix. Monte Carlo simulations show that these priors perform very well where the number of unknown parameters is large relative to the observations. The virtues of our approach are demonstrated using global data from the early phase of the COVID-19 pandemic.
We develop a Bayesian approach to estimate weight matrices in spatial autoregressive (or spatial lag) models. Datasets in regional economic literature are typically characterized by a limited number of time periods T relative to spatial units N. When the spatial weight matrix is subject to estimation severe problems of over-parametrization are likely. To make estimation feasible, our approach focusses on spatial weight matrices which are binary prior to row-standardization. We discuss the use of hierarchical priors which impose sparsity in the spatial weight matrix. Monte Carlo simulations show that these priors perform very well where the number of unknown parameters is large relative to the observations. The virtues of our approach are demonstrated using global data from the early phase of the COVID-19 pandemic.
Author Piribauer, Philipp
Krisztin, Tamás
Author_xml – sequence: 1
  givenname: Tamás
  surname: Krisztin
  fullname: Krisztin, Tamás
– sequence: 2
  givenname: Philipp
  surname: Piribauer
  fullname: Piribauer, Philipp
BackLink https://doi.org/10.1080/17421772.2022.2095426$$DView published paper (Access to full text may be restricted)
https://doi.org/10.48550/arXiv.2101.11938$$DView paper in arXiv
BookMark eNotj1FLwzAUhYMoOOd-gE8GfO5MbpI2e5zDqTDwZfhaYnuzZXRNTdrp_r1x8-nCuYfD992Qy9a3SMgdZ1OplWKPJvy4wxQ441POZ0JfkBEIwTMtAa7JJMYdYwzyApQSI_Ixp0_miNGZlpquC95UW2p9oBh7tze98y31ln6j22x7moLgKozUtTR26WsaaobeB9wEjNEdkO59jU28JVfWNBEn_3dM1svn9eI1W72_vC3mq8woyDPJK7SopbSJszK8sMAKK2QtQeta8aIwmEjzuuIAbMY4fgrUeYU5q9XMghiT-_PsSbrsQkIOx_JPvjzJp8bDuZHUvoYkVe78ENrEVILUQirQLBe_TSVetQ
ContentType Paper
Journal Article
Copyright 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
http://creativecommons.org/licenses/by/4.0
Copyright_xml – notice: 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: http://creativecommons.org/licenses/by/4.0
DBID 8FE
8FG
ABJCF
ABUWG
AFKRA
AZQEC
BENPR
BGLVJ
CCPQU
COVID
DWQXO
HCIFZ
L6V
M7S
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
ADEOX
GOX
DOI 10.48550/arxiv.2101.11938
DatabaseName ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
Technology Collection
ProQuest One Community College
Coronavirus Research Database
ProQuest Central Korea
SciTech Premium Collection
ProQuest Engineering Collection
Engineering Database
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
arXiv Economics
arXiv.org
DatabaseTitle Publicly Available Content Database
Engineering Database
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
Coronavirus Research Database
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
ProQuest One Academic UKI Edition
ProQuest Central Korea
Materials Science & Engineering Collection
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
Engineering Collection
DatabaseTitleList Publicly Available Content Database

Database_xml – sequence: 1
  dbid: GOX
  name: arXiv.org
  url: http://arxiv.org/find
  sourceTypes: Open Access Repository
– sequence: 2
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 2331-8422
ExternalDocumentID 2101_11938
Genre Working Paper/Pre-Print
GroupedDBID 8FE
8FG
ABJCF
ABUWG
AFKRA
ALMA_UNASSIGNED_HOLDINGS
AZQEC
BENPR
BGLVJ
CCPQU
COVID
DWQXO
FRJ
HCIFZ
L6V
M7S
M~E
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
ADEOX
GOX
ID FETCH-LOGICAL-a526-41cefe844f938ca17f207f34d4288d5177ae2676dc1220901eb3e86ce60d59f23
IEDL.DBID BENPR
IngestDate Tue Jul 22 21:57:26 EDT 2025
Mon Jun 30 09:17:00 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a526-41cefe844f938ca17f207f34d4288d5177ae2676dc1220901eb3e86ce60d59f23
Notes SourceType-Working Papers-1
ObjectType-Working Paper/Pre-Print-1
content type line 50
OpenAccessLink https://www.proquest.com/docview/2483452806?pq-origsite=%requestingapplication%
PQID 2483452806
PQPubID 2050157
ParticipantIDs arxiv_primary_2101_11938
proquest_journals_2483452806
PublicationCentury 2000
PublicationDate 20220802
PublicationDateYYYYMMDD 2022-08-02
PublicationDate_xml – month: 08
  year: 2022
  text: 20220802
  day: 02
PublicationDecade 2020
PublicationPlace Ithaca
PublicationPlace_xml – name: Ithaca
PublicationTitle arXiv.org
PublicationYear 2022
Publisher Cornell University Library, arXiv.org
Publisher_xml – name: Cornell University Library, arXiv.org
SSID ssj0002672553
Score 1.8049804
SecondaryResourceType preprint
Snippet We develop a Bayesian approach to estimate weight matrices in spatial autoregressive (or spatial lag) models. Datasets in regional economic literature are...
We develop a Bayesian approach to estimate weight matrices in spatial autoregressive (or spatial lag) models. Datasets in regional economic literature are...
SourceID arxiv
proquest
SourceType Open Access Repository
Aggregation Database
SubjectTerms Autoregressive models
Bayesian analysis
Standardization
Weight
SummonAdditionalLinks – databaseName: arXiv.org
  dbid: GOX
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwdV09T8MwED21nVgQCFALBXlgtUgujp2MBVEqJGApqFvkxGepAylqyte_x3YSMSBWy7ass893z3f3DHBZCSuMMyxc5lJwkVQp11Ya7olGlMzJUCB7fniUi2dxv0pXA2B9LYzefq0_Wn7gsrlyeCR2Sp0n2RCGiD5l6-5p1QYnAxVX1_-3n_MxQ9OfqzXYi_kB7HeOHpu1O3MIA6qP4GXGrvU3-cJF1rN5M-c2Ms910RYRso1ln-G9kr0G-nxq2Lpmjc98dvNpzzlAASS7e4qFj2yaY1jOb5c3C979bMB1ipKLuCJLmRDWrbjSsbIYKZsI47BAZtJYKU0olTRVjBg5i-0QL2WyIhmZNLeYnMCo3tQ0BoYeVfpwoEIjVK5LLTMrk9LE6DSLzATGQR7FW0teUXhRFUFUE5j2Iiq6g9sU6B8XUx9uPf1_5Bnsoa8C8JkTOIXRbvtO584278qLsEE_IhOOSQ
  priority: 102
  providerName: Cornell University
Title A Bayesian approach for estimation of weight matrices in spatial autoregressive models
URI https://www.proquest.com/docview/2483452806
https://arxiv.org/abs/2101.11938
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1JT8JAFJ4IjYk314AimYPXETqdzrQnI4YlJiAxaLg1wywJiRakuF387c4bih5MvDRpe2nftN-b7y3fQ-hCMcu0cyyEp5wRFqmYSMs1AaERwVOjjRd7Ho744IHdTuNpGXAryrLKLSZ6oNYLBTHyFoWoVwx5wKvlC4GpUZBdLUdoVFDgIDiJqyjodEfj-58oC-XC7ZmjTTrTi3e15Opj_nbpmE7o4CKFvpTAX_oDxt7D9PZRMJZLszpAOyY_RLu-MFMVR-jxGnfkp4FWR7zV_8Zuo4lBHWPTdogXFr_7CCd-9oL7psDzHBdQKy2fsASVAuNptUM27EffFMdo0utObgaknIVAZEw5YaEy1iSMWffESobC0rawEdOOPSQ6DoWQxr0r1yqktO18vOPIJuHK8LaOU0ujE1TNF7mpIUyBh0ICUVDNRCpnkieWRzMdUvcvGl1HNW-PbLmRu8jAVJk3VR01tibKyk-9yH4X5vT_22doj0LvANRb0Aaqrlev5tx59PWsiSpJr98sF8-d9e-m7jj86n4Df_Ojfg
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1JTwIxFG4IxOjNNaCoPeixwnQ6nZmDMW4IssQDGm6T0iUhUUAGRX6U_9G-DqMHE29ep5nL6-v39u8hdCKZYcoaFsJjzgjzZUCE4YoA0UjIY620I3vu9njzkd0PgkEBfeazMNBWmWOiA2o1kZAjr1HIegVQB7yYvhLYGgXV1XyFRqYWbb1c2JAtPW_d2Ps9pbRx279uktVWASICygnzpDY6YszEfiSFFxpaD43PlPXDIxV4YSg05SFX0qO0bq2ljTZ1xKXmdRXEBngOLOKXmO_HQNUfNe6-Uzr2N-ug-1nt1DGF1cTsY_R-ZsMqz2JTDEMwJffpF_I7c9bYRKUHMdWzLVTQ42205rpAZbqDni7xlVhqmKvEOdk4tl4tBiqObMYRTwxeuHQqfnHs_jrFozFOoTFbPGMBlAjaxfAWRrHbs5Puov5_iGgPFceTsS4jTCHohWplSBULYzEUPDLcHyqP2oevVQWVnTySacatkYCoEieqCqrmIkpW7ypNfrRg_-_jY7Te7Hc7SafVax-gDQpDC9DoQauoOJ-96UPrSsyHR-4CMUr-WWG-AHI32gw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Bayesian+approach+for+estimation+of+weight+matrices+in+spatial+autoregressive+models&rft.jtitle=arXiv.org&rft.au=Krisztin%2C+Tam%C3%A1s&rft.au=Piribauer%2C+Philipp&rft.date=2022-08-02&rft.pub=Cornell+University+Library%2C+arXiv.org&rft.eissn=2331-8422&rft_id=info:doi/10.48550%2Farxiv.2101.11938