Sintering-Resistant Single-Site Nickel Catalyst Supported by Metal–Organic Framework
Developing supported single-site catalysts is an important goal in heterogeneous catalysis since the well-defined active sites afford opportunities for detailed mechanistic studies, thereby facilitating the design of improved catalysts. We present herein a method for installing Ni ions uniformly and...
Saved in:
Published in | Journal of the American Chemical Society Vol. 138; no. 6; pp. 1977 - 1982 |
---|---|
Main Authors | , , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
American Chemical Society
17.02.2016
American Chemical Society (ACS) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Developing supported single-site catalysts is an important goal in heterogeneous catalysis since the well-defined active sites afford opportunities for detailed mechanistic studies, thereby facilitating the design of improved catalysts. We present herein a method for installing Ni ions uniformly and precisely on the node of a Zr-based metal–organic framework (MOF), NU-1000, in high density and large quantity (denoted as Ni-AIM) using atomic layer deposition (ALD) in a MOF (AIM). Ni-AIM is demonstrated to be an efficient gas-phase hydrogenation catalyst upon activation. The structure of the active sites in Ni-AIM is proposed, revealing its single-site nature. More importantly, due to the organic linker used to construct the MOF support, the Ni ions stay isolated throughout the hydrogenation catalysis, in accord with its long-term stability. A quantum chemical characterization of the catalyst and the catalytic process complements the experimental results. With validation of computational modeling protocols, we further targeted ethylene oligomerization catalysis by Ni-AIM guided by theoretical prediction. Given the generality of the AIM methodology, this emerging class of materials should prove ripe for the discovery of new catalysts for the transformation of volatile substrates. |
---|---|
AbstractList | Developing supported single-site catalysts is an important goal in heterogeneous catalysis since the well-defined active sites afford opportunities for detailed mechanistic studies, thereby facilitating the design of improved catalysts. We present herein a method for installing Ni ions uniformly and precisely on the node of a Zr-based metal–organic framework (MOF), NU-1000, in high density and large quantity (denoted as Ni-AIM) using atomic layer deposition (ALD) in a MOF (AIM). Ni-AIM is demonstrated to be an efficient gas-phase hydrogenation catalyst upon activation. The structure of the active sites in Ni-AIM is proposed, revealing its single-site nature. More importantly, due to the organic linker used to construct the MOF support, the Ni ions stay isolated throughout the hydrogenation catalysis, in accord with its long-term stability. A quantum chemical characterization of the catalyst and the catalytic process complements the experimental results. With validation of computational modeling protocols, we further targeted ethylene oligomerization catalysis by Ni-AIM guided by theoretical prediction. Given the generality of the AIM methodology, this emerging class of materials should prove ripe for the discovery of new catalysts for the transformation of volatile substrates. Developing supported single-site catalysts is an important goal in heterogeneous catalysis, since the well-defined active sites afford opportunities for detailed mechanistic studies, thereby facilitating the design of improved catalysts. We present herein a method for installing Ni ions uniformly and precisely on the node of a Zr-based MOF, NU-1000, in high density and large quantity (denoted as Ni-AIM) using atomic layer deposition (ALD) in a metal–organic framework (MOF) (AIM). Ni-AIM is demonstrated to be an efficient gas-phase hydrogenation catalyst upon activation. The structure of the active sites in Ni-AIM is proposed, revealing its single-site nature. More importantly, due to the organic linker used to construct the MOF support, the Ni ions stay isolated throughout the hydrogenation catalysis, in accord with its long-term stability. A quantum chemical characterization of the catalyst and the catalytic process complements the experimental results. With validation of computational modeling protocols, we further targeted ethylene oligomerization catalysis by Ni-AIM guided by theoretical prediction. Given the generality of the AIM methodology, this emerging class of materials should prove ripe for the discovery of new catalysts for the transformation of volatile substrates. Developing supported single-site catalysts is an important goal in heterogeneous catalysis since the well-defined active sites afford opportunities for detailed mechanistic studies, thereby facilitating the design of improved catalysts. We present herein a method for installing Ni ions uniformly and precisely on the node of a Zr-based metal-organic framework (MOF), NU-1000, in high density and large quantity (denoted as Ni-AIM) using atomic layer deposition (ALD) in a MOF (AIM). Ni-AIM is demonstrated to be an efficient gas-phase hydrogenation catalyst upon activation. The structure of the active sites in Ni-AIM is proposed, revealing its single-site nature. More importantly, due to the organic linker used to construct the MOF support, the Ni ions stay isolated throughout the hydrogenation catalysis, in accord with its long-term stability. A quantum chemical characterization of the catalyst and the catalytic process complements the experimental results. With validation of computational modeling protocols, we further targeted ethylene oligomerization catalysis by Ni-AIM guided by theoretical prediction. Given the generality of the AIM methodology, this emerging class of materials should prove ripe for the discovery of new catalysts for the transformation of volatile substrates.Developing supported single-site catalysts is an important goal in heterogeneous catalysis since the well-defined active sites afford opportunities for detailed mechanistic studies, thereby facilitating the design of improved catalysts. We present herein a method for installing Ni ions uniformly and precisely on the node of a Zr-based metal-organic framework (MOF), NU-1000, in high density and large quantity (denoted as Ni-AIM) using atomic layer deposition (ALD) in a MOF (AIM). Ni-AIM is demonstrated to be an efficient gas-phase hydrogenation catalyst upon activation. The structure of the active sites in Ni-AIM is proposed, revealing its single-site nature. More importantly, due to the organic linker used to construct the MOF support, the Ni ions stay isolated throughout the hydrogenation catalysis, in accord with its long-term stability. A quantum chemical characterization of the catalyst and the catalytic process complements the experimental results. With validation of computational modeling protocols, we further targeted ethylene oligomerization catalysis by Ni-AIM guided by theoretical prediction. Given the generality of the AIM methodology, this emerging class of materials should prove ripe for the discovery of new catalysts for the transformation of volatile substrates. |
Author | Hupp, Joseph T Wang, Timothy C Farha, Omar K Fulton, John L Li, Zhanyong Vjunov, Aleksei Gagliardi, Laura League, Aaron B Lercher, Johannes A Schweitzer, Neil M Miller, Jeffrey T Getsoian, Andrew “Bean” Peters, Aaron W Cramer, Christopher J Bernales, Varinia |
AuthorAffiliation | Chemical Science and Engineering Division, Advanced Photon Source Purdue University Northwestern University Department of Chemistry, Supercomputing Institute, and Chemical Theory Center Argonne National Laboratory Department of Chemistry and Chemical and Biological Engineering School of Chemical Engineering Department of Chemistry, Faculty of Science Technische Universität München Institute for Integrated Catalysis Department of Chemistry and Catalysis Research Institute University of Minnesota Pacific Northwest National Laboratory King Abdulaziz University |
AuthorAffiliation_xml | – name: Department of Chemistry, Supercomputing Institute, and Chemical Theory Center – name: School of Chemical Engineering – name: Northwestern University – name: Purdue University – name: University of Minnesota – name: Chemical Science and Engineering Division, Advanced Photon Source – name: King Abdulaziz University – name: Department of Chemistry and Catalysis Research Institute – name: Department of Chemistry and Chemical and Biological Engineering – name: Institute for Integrated Catalysis – name: Technische Universität München – name: Pacific Northwest National Laboratory – name: Department of Chemistry, Faculty of Science – name: Argonne National Laboratory |
Author_xml | – sequence: 1 givenname: Zhanyong surname: Li fullname: Li, Zhanyong – sequence: 2 givenname: Neil M surname: Schweitzer fullname: Schweitzer, Neil M – sequence: 3 givenname: Aaron B surname: League fullname: League, Aaron B – sequence: 4 givenname: Varinia surname: Bernales fullname: Bernales, Varinia – sequence: 5 givenname: Aaron W surname: Peters fullname: Peters, Aaron W – sequence: 6 givenname: Andrew “Bean” surname: Getsoian fullname: Getsoian, Andrew “Bean” – sequence: 7 givenname: Timothy C surname: Wang fullname: Wang, Timothy C – sequence: 8 givenname: Jeffrey T surname: Miller fullname: Miller, Jeffrey T – sequence: 9 givenname: Aleksei surname: Vjunov fullname: Vjunov, Aleksei – sequence: 10 givenname: John L surname: Fulton fullname: Fulton, John L – sequence: 11 givenname: Johannes A surname: Lercher fullname: Lercher, Johannes A – sequence: 12 givenname: Christopher J surname: Cramer fullname: Cramer, Christopher J email: cramer@umn.edu – sequence: 13 givenname: Laura surname: Gagliardi fullname: Gagliardi, Laura email: gagliard@umn.edu – sequence: 14 givenname: Joseph T surname: Hupp fullname: Hupp, Joseph T email: j-hupp@northwestern.edu – sequence: 15 givenname: Omar K surname: Farha fullname: Farha, Omar K email: o-farha@northwestern.edu |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/26836273$$D View this record in MEDLINE/PubMed https://www.osti.gov/biblio/1255383$$D View this record in Osti.gov |
BookMark | eNqFkc1OGzEUha0KVAJl13U16qoLBuzr2B6WVVQoEj9S-dlaHudO6jCxg-1RlV3fgTfkSeooYVO1YmX7-LtXR-fskx0fPBLykdFjRoGdzI1Nx6JlIJh4R0ZMAK0FA7lDRpRSqFUj-R7ZT2lenmNo2HuyB7LhEhQfkYdb5zNG52f1D0wuZeNzVbRZj_Wty1hdO_uIfTUx2fSrVP6G5TLEjNOqXVVXWNSX3883cWa8s9VZNAv8FeLjB7LbmT7h4fY8IPdn3-4m3-vLm_OLydfL2ggQue64YFiss3HbMoan0LSojD013ZR31ioQClsYo5ICadMZZjraiPUdmKCo-AH5vNkbUnY62eLY_rTBe7RZl0gEb3iBvmygZQxPA6asFy5Z7HvjMQxJQwmGC6mkehNlSkqQHERT0E9bdGgXONXL6BYmrvRrtgWADWBjSClip4s9k13wORrXa0b1ukC9LlBvCyxDR38Nve79D771uxbnYYi-pP1v9A8WaKn1 |
CitedBy_id | crossref_primary_10_1038_s41467_020_19571_6 crossref_primary_10_1021_acs_chemrev_1c00243 crossref_primary_10_1021_acs_jpcc_2c05504 crossref_primary_10_1021_jacs_6b08711 crossref_primary_10_1039_D3DT01328F crossref_primary_10_1002_adma_201705112 crossref_primary_10_1016_j_nantod_2018_02_013 crossref_primary_10_1021_acscatal_0c00801 crossref_primary_10_1021_acscatal_8b00012 crossref_primary_10_1002_advs_202407631 crossref_primary_10_1016_j_cplett_2023_141034 crossref_primary_10_1021_acssuschemeng_8b05524 crossref_primary_10_1021_acs_inorgchem_7b03181 crossref_primary_10_1016_j_inoche_2017_10_023 crossref_primary_10_1021_acs_chemrev_0c00148 crossref_primary_10_1021_jacs_7b02936 crossref_primary_10_1016_j_jcat_2022_01_033 crossref_primary_10_1039_C7CE90106B crossref_primary_10_1021_acsami_8b04543 crossref_primary_10_1021_acscatal_6b02923 crossref_primary_10_1039_C7FD00061H crossref_primary_10_1002_smll_202005334 crossref_primary_10_1039_C7CC09173G crossref_primary_10_1039_D1CC05377A crossref_primary_10_1039_C6CC07858C crossref_primary_10_1039_D0CP01451F crossref_primary_10_1016_j_ccr_2024_215935 crossref_primary_10_1039_C6CC05568K crossref_primary_10_1021_acsami_9b23256 crossref_primary_10_1002_anie_202202297 crossref_primary_10_1016_j_poly_2016_03_027 crossref_primary_10_1021_acscatal_1c01200 crossref_primary_10_1016_j_jcat_2017_08_011 crossref_primary_10_1021_acsami_0c11615 crossref_primary_10_1002_adma_201605071 crossref_primary_10_1021_acs_jpcc_3c03888 crossref_primary_10_1021_acs_chemrev_1c00905 crossref_primary_10_1021_acscatal_0c01459 crossref_primary_10_1002_anie_201702387 crossref_primary_10_1021_acscatal_8b04055 crossref_primary_10_1016_j_jcat_2024_115747 crossref_primary_10_1016_j_cej_2024_153969 crossref_primary_10_1021_acscentsci_8b00073 crossref_primary_10_12677_AMC_2019_72002 crossref_primary_10_1021_acsmaterialslett_2c00751 crossref_primary_10_1002_ejic_201600394 crossref_primary_10_1016_j_poly_2019_01_045 crossref_primary_10_1038_s41467_021_22512_6 crossref_primary_10_1021_acscatal_8b04515 crossref_primary_10_1021_acs_jpcc_6b06381 crossref_primary_10_1021_acs_jpca_9b11835 crossref_primary_10_1021_acs_jpca_8b08340 crossref_primary_10_1021_acs_nanolett_2c00042 crossref_primary_10_1016_j_fuel_2018_04_111 crossref_primary_10_1002_anie_201800269 crossref_primary_10_1021_acs_inorgchem_7b01334 crossref_primary_10_1063_1_5126077 crossref_primary_10_1021_acs_jpclett_6b00860 crossref_primary_10_1021_jacs_8b06006 crossref_primary_10_1039_C9CY01069F crossref_primary_10_1063_1_5128934 crossref_primary_10_1002_adma_201601133 crossref_primary_10_1016_j_poly_2018_03_009 crossref_primary_10_1021_jacs_7b09365 crossref_primary_10_1002_smll_202403767 crossref_primary_10_1039_C8NR06917D crossref_primary_10_1002_cey2_382 crossref_primary_10_1039_C8CE00598B crossref_primary_10_1039_D1CY00308A crossref_primary_10_1007_s41061_021_00324_y crossref_primary_10_1021_acs_inorgchem_4c04961 crossref_primary_10_1021_acscatal_3c00502 crossref_primary_10_1021_acs_chemrev_2c00495 crossref_primary_10_1039_C7FD00110J crossref_primary_10_1016_j_ccr_2022_214493 crossref_primary_10_1021_acsami_7b05214 crossref_primary_10_1021_acscentsci_7b00197 crossref_primary_10_1021_jacs_8b04059 crossref_primary_10_1039_C7QI00056A crossref_primary_10_1002_cctc_201900791 crossref_primary_10_1016_j_mcat_2022_112855 crossref_primary_10_1021_acs_chemrev_0c00076 crossref_primary_10_1016_j_jece_2025_115648 crossref_primary_10_1021_acs_langmuir_0c03378 crossref_primary_10_1016_j_cattod_2022_09_005 crossref_primary_10_1002_open_202400428 crossref_primary_10_1021_acs_chemrev_0c00864 crossref_primary_10_1021_acs_langmuir_8b00823 crossref_primary_10_1021_jacs_9b10034 crossref_primary_10_1039_C8BM00830B crossref_primary_10_1021_jacs_3c11809 crossref_primary_10_1016_j_mattod_2018_10_038 crossref_primary_10_1039_D0CS00635A crossref_primary_10_1002_adma_201707582 crossref_primary_10_1016_j_cej_2020_126013 crossref_primary_10_1021_acsami_8b02825 crossref_primary_10_1002_ange_201908761 crossref_primary_10_1002_smll_202205898 crossref_primary_10_1016_j_jpowsour_2020_228446 crossref_primary_10_1002_adma_201703663 crossref_primary_10_1016_j_poly_2018_08_041 crossref_primary_10_1021_acs_chemrev_8b00361 crossref_primary_10_1039_C6CC03727E crossref_primary_10_1016_j_apcatb_2020_119613 crossref_primary_10_3390_cryst8080325 crossref_primary_10_1021_acsami_7b11348 crossref_primary_10_1021_acsami_8b08496 crossref_primary_10_1021_acs_jpcc_6b07362 crossref_primary_10_1039_C8NJ02078G crossref_primary_10_1002_ange_201708092 crossref_primary_10_1021_acs_jpcc_8b02368 crossref_primary_10_1039_D0MA00955E crossref_primary_10_1021_acsaem_9b01664 crossref_primary_10_1038_s41467_019_10013_6 crossref_primary_10_1021_acsanm_1c04380 crossref_primary_10_1021_jacs_6b08898 crossref_primary_10_1016_j_cattod_2018_03_063 crossref_primary_10_1016_j_jcat_2017_12_007 crossref_primary_10_1021_acs_inorgchem_6b02103 crossref_primary_10_1039_C7CP06751H crossref_primary_10_1038_s41467_021_25116_2 crossref_primary_10_1021_acsami_7b17662 crossref_primary_10_1016_j_apcata_2017_06_011 crossref_primary_10_3390_catal14040268 crossref_primary_10_1016_j_cattod_2024_114786 crossref_primary_10_1016_j_cattod_2018_02_024 crossref_primary_10_1039_D1CE01076J crossref_primary_10_1002_smtd_201700286 crossref_primary_10_1016_j_ijbiomac_2024_139173 crossref_primary_10_1039_D0CY01186J crossref_primary_10_1039_D3DT01109G crossref_primary_10_1016_j_ccr_2018_08_012 crossref_primary_10_1142_S1793292018501187 crossref_primary_10_1021_acs_cgd_7b00277 crossref_primary_10_1021_acscatal_8b02921 crossref_primary_10_1039_C8TA02132E crossref_primary_10_1039_D0CY01325K crossref_primary_10_1007_s11244_018_0910_9 crossref_primary_10_1007_s40089_018_0255_1 crossref_primary_10_1039_D0SC00485E crossref_primary_10_1002_adma_202415135 crossref_primary_10_1021_acscentsci_7b00500 crossref_primary_10_1021_acs_chemmater_0c03539 crossref_primary_10_1021_acscatal_0c03056 crossref_primary_10_1039_C8SC05510F crossref_primary_10_1021_acs_jpcc_8b12263 crossref_primary_10_1021_jacs_9b02603 crossref_primary_10_1002_anie_201708092 crossref_primary_10_1021_acs_jpcc_8b12024 crossref_primary_10_1021_jacs_7b05130 crossref_primary_10_1002_smll_202405759 crossref_primary_10_1021_acs_inorgchem_0c01250 crossref_primary_10_1002_adma_201704303 crossref_primary_10_1039_D1CS00968K crossref_primary_10_1021_jacs_2c10554 crossref_primary_10_1039_C6DT03952A crossref_primary_10_1016_j_poly_2018_09_066 crossref_primary_10_1016_j_molcata_2016_07_042 crossref_primary_10_1021_acsenergylett_9b00249 crossref_primary_10_1002_tcr_201900037 crossref_primary_10_1016_j_crcon_2025_100326 crossref_primary_10_1016_j_ccr_2021_213777 crossref_primary_10_1039_C6CC08191F crossref_primary_10_1002_ange_202015262 crossref_primary_10_1016_j_joule_2019_09_015 crossref_primary_10_1002_adma_202002910 crossref_primary_10_1021_acscentsci_6b00290 crossref_primary_10_1021_jacs_1c02272 crossref_primary_10_1016_j_apcatb_2020_118687 crossref_primary_10_1021_acscatal_9b03594 crossref_primary_10_1016_j_jcis_2022_10_110 crossref_primary_10_1063_5_0153656 crossref_primary_10_1002_chem_201901939 crossref_primary_10_1039_D3CS00873H crossref_primary_10_1016_j_jcat_2024_115465 crossref_primary_10_1021_acsenergylett_8b00010 crossref_primary_10_1002_adfm_202304468 crossref_primary_10_1016_j_jcat_2022_06_019 crossref_primary_10_1002_asia_202001306 crossref_primary_10_1016_j_jcat_2023_04_007 crossref_primary_10_1016_j_nantod_2019_05_007 crossref_primary_10_1016_j_pmatsci_2023_101159 crossref_primary_10_1002_ange_201800269 crossref_primary_10_1039_D0CS00424C crossref_primary_10_1002_ejic_201700993 crossref_primary_10_1016_j_poly_2016_04_015 crossref_primary_10_1021_acsami_9b09010 crossref_primary_10_1021_acs_chemrev_9b00757 crossref_primary_10_1021_acsami_7b03858 crossref_primary_10_3390_molecules29061212 crossref_primary_10_1021_acs_jpcc_1c07658 crossref_primary_10_1002_anie_201908761 crossref_primary_10_1021_acs_chemmater_3c03129 crossref_primary_10_1021_acs_chemrev_0c00094 crossref_primary_10_1002_ange_202202297 crossref_primary_10_1016_j_jece_2023_111349 crossref_primary_10_1039_D3CY01768K crossref_primary_10_1021_acs_inorgchem_3c04215 crossref_primary_10_1021_acssuschemeng_8b05703 crossref_primary_10_1039_C7SC01491K crossref_primary_10_1021_acsami_1c17670 crossref_primary_10_1021_acs_inorgchem_1c01804 crossref_primary_10_1038_s41467_021_26724_8 crossref_primary_10_1021_jacs_9b03361 crossref_primary_10_1021_acs_jpcc_9b08749 crossref_primary_10_1021_acsami_6b04729 crossref_primary_10_1021_acscentsci_7b00013 crossref_primary_10_1021_acs_chemmater_0c00059 crossref_primary_10_1039_D0NR05907B crossref_primary_10_1038_s41467_018_06296_w crossref_primary_10_1039_D1CE00610J crossref_primary_10_1016_j_ica_2018_06_042 crossref_primary_10_1039_D0CY00394H crossref_primary_10_1021_acsami_1c13525 crossref_primary_10_1002_asia_202401578 crossref_primary_10_1016_j_jcat_2019_11_031 crossref_primary_10_1021_acs_chemmater_6b03244 crossref_primary_10_1021_jacs_0c08641 crossref_primary_10_1021_jacs_7b04997 crossref_primary_10_1016_j_apcata_2018_07_030 crossref_primary_10_1021_acscentsci_2c01422 crossref_primary_10_3390_catal13101338 crossref_primary_10_1021_jacs_8b11386 crossref_primary_10_1021_acscatal_1c00524 crossref_primary_10_1021_jacs_7b13330 crossref_primary_10_1039_D3CS00188A crossref_primary_10_1146_annurev_chembioeng_060816_101547 crossref_primary_10_1039_D1CY01787J crossref_primary_10_1002_cctc_201701658 crossref_primary_10_1039_D2EE01010K crossref_primary_10_1021_acsanm_8b01762 crossref_primary_10_1002_chem_201804490 crossref_primary_10_1002_chem_201804312 crossref_primary_10_1016_j_ccr_2019_03_005 crossref_primary_10_1021_acs_accounts_6b00577 crossref_primary_10_1039_C6DT02572B crossref_primary_10_1021_acs_chemmater_0c04675 crossref_primary_10_1002_ange_201702387 crossref_primary_10_1002_adma_201801995 crossref_primary_10_1021_acscatal_7b04294 crossref_primary_10_1002_smll_202301235 crossref_primary_10_1016_j_ica_2017_02_005 crossref_primary_10_1021_jacs_9b00733 crossref_primary_10_1021_acs_chemrev_7b00776 crossref_primary_10_1002_smll_202306353 crossref_primary_10_1021_acs_langmuir_8b02166 crossref_primary_10_1002_chem_202001435 crossref_primary_10_1039_C7DT00005G crossref_primary_10_3390_nano12234263 crossref_primary_10_1021_acs_chemmater_9b00960 crossref_primary_10_1016_j_ccr_2022_214522 crossref_primary_10_1021_acsami_4c17626 crossref_primary_10_1021_acs_chemrev_4c00664 crossref_primary_10_1021_jacs_7b07921 crossref_primary_10_1002_hlca_201800227 crossref_primary_10_1002_anie_202015262 crossref_primary_10_1088_1361_648X_ab38da crossref_primary_10_1016_j_cej_2022_140623 crossref_primary_10_1016_j_molstruc_2018_02_090 crossref_primary_10_1021_acs_chemrev_2c00537 crossref_primary_10_1021_jacs_9b02902 crossref_primary_10_1016_j_ccr_2017_10_014 crossref_primary_10_1016_j_cattod_2020_03_038 crossref_primary_10_1021_acscatal_9b01536 crossref_primary_10_1021_jacs_1c11213 crossref_primary_10_1039_C7FD00055C crossref_primary_10_1016_j_enchem_2019_100005 crossref_primary_10_1039_D2CS00100D crossref_primary_10_1002_adfm_202007624 crossref_primary_10_1021_jacs_2c12192 crossref_primary_10_1016_j_ccr_2020_213734 crossref_primary_10_1021_acscatal_0c01844 crossref_primary_10_1021_acs_est_4c05999 crossref_primary_10_1021_jacs_1c03036 crossref_primary_10_1016_j_jcat_2024_115779 crossref_primary_10_1039_D1QM00242B crossref_primary_10_3390_catal13030640 crossref_primary_10_1039_C8DT03866J crossref_primary_10_1002_asia_202100957 crossref_primary_10_1039_C7RA02741A crossref_primary_10_1021_acscatal_8b04828 crossref_primary_10_1021_acs_cgd_6b01538 crossref_primary_10_1021_acs_jpcc_4c01312 crossref_primary_10_1021_acscatal_0c03579 crossref_primary_10_1007_s40843_020_1304_3 crossref_primary_10_1021_acs_organomet_9b00286 crossref_primary_10_1016_j_fuel_2024_134021 crossref_primary_10_1002_chem_202101072 |
Cites_doi | 10.1039/b807083k 10.1021/cr200324t 10.1021/ar050040d 10.1039/b802256a 10.1016/0021-9517(74)90238-3 10.1039/c4cy00305e 10.1021/jz501899j 10.1039/C4CS00067F 10.1038/natrevmats.2015.18 10.1016/S0144-2449(82)80050-X 10.1021/acsnano.5b03429 10.1038/nchem.444 10.1039/b807080f 10.1016/S0021-9517(02)00034-9 10.1021/acs.chemmater.5b01560 10.1039/B618320B 10.1021/cr900056b 10.1038/nature14327 10.1002/ejic.201000473 10.1002/anie.201108565 10.1021/cs401189a 10.1126/science.1230444 10.1146/annurev-chembioeng-062011-080939 10.1021/ja4050828 10.1016/0016-2361(86)90120-1 10.1021/ja310173e 10.1039/C4CS00230J 10.1002/anie.200462473 10.1038/nature01650 10.1038/nmat1000 |
ContentType | Journal Article |
Copyright | Copyright © 2016 American Chemical
Society |
Copyright_xml | – notice: Copyright © 2016 American Chemical Society |
CorporateAuthor | Pacific Northwest National Laboratory (PNNL), Richland, WA (United States) |
CorporateAuthor_xml | – name: Pacific Northwest National Laboratory (PNNL), Richland, WA (United States) |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 7S9 L.6 OTOTI |
DOI | 10.1021/jacs.5b12515 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic OSTI.GOV |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | MEDLINE MEDLINE - Academic AGRICOLA |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1520-5126 |
EndPage | 1982 |
ExternalDocumentID | 1255383 26836273 10_1021_jacs_5b12515 a032288337 |
Genre | Research Support, U.S. Gov't, Non-P.H.S Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: NIH HHS grantid: 1S10OD012016-01 – fundername: NCRR NIH HHS grantid: 1S10RR019071-01A1 |
GroupedDBID | - .K2 02 53G 55A 5GY 5RE 5VS 7~N 85S AABXI ABFLS ABMVS ABPPZ ABPTK ABUCX ABUFD ACGFS ACJ ACNCT ACS AEESW AENEX AETEA AFEFF ALMA_UNASSIGNED_HOLDINGS AQSVZ BAANH BKOMP CS3 DU5 DZ EBS ED ED~ EJD ET F5P GNL IH9 JG JG~ K2 LG6 P2P ROL RXW TAE TAF TN5 UHB UI2 UKR UPT VF5 VG9 VQA W1F WH7 X XFK YZZ ZHY --- -DZ -ET -~X .DC 4.4 AAHBH AAYXX ABBLG ABJNI ABLBI ABQRX ACBEA ACGFO ADHLV AGXLV AHDLI AHGAQ CITATION CUPRZ GGK IH2 XSW YQT ZCA ~02 CGR CUY CVF ECM EIF NPM YIN 7X8 7S9 L.6 ABFRP OTOTI |
ID | FETCH-LOGICAL-a525t-f351eb1214bb11e928be7ac9afd3fcc7257eb24e765e08fa1af0855e082150e73 |
IEDL.DBID | ACS |
ISSN | 0002-7863 1520-5126 |
IngestDate | Mon Jul 03 03:59:12 EDT 2023 Fri Jul 11 01:32:47 EDT 2025 Fri Jul 11 09:40:32 EDT 2025 Wed Feb 19 01:58:37 EST 2025 Tue Jul 01 04:33:23 EDT 2025 Thu Apr 24 22:51:41 EDT 2025 Thu Aug 27 13:43:01 EDT 2020 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a525t-f351eb1214bb11e928be7ac9afd3fcc7257eb24e765e08fa1af0855e082150e73 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 USDOE AC05-76RL01830 PNNL-SA-115461 |
OpenAccessLink | https://www.osti.gov/biblio/1387404 |
PMID | 26836273 |
PQID | 1766263258 |
PQPubID | 23479 |
PageCount | 6 |
ParticipantIDs | osti_scitechconnect_1255383 proquest_miscellaneous_2000356767 proquest_miscellaneous_1766263258 pubmed_primary_26836273 crossref_citationtrail_10_1021_jacs_5b12515 crossref_primary_10_1021_jacs_5b12515 acs_journals_10_1021_jacs_5b12515 |
ProviderPackageCode | JG~ 55A AABXI GNL VF5 7~N ACJ VG9 W1F ACS AEESW AFEFF .K2 ABMVS ABUCX IH9 BAANH AQSVZ ED~ UI2 CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2016-02-17 |
PublicationDateYYYYMMDD | 2016-02-17 |
PublicationDate_xml | – month: 02 year: 2016 text: 2016-02-17 day: 17 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Journal of the American Chemical Society |
PublicationTitleAlternate | J. Am. Chem. Soc |
PublicationYear | 2016 |
Publisher | American Chemical Society American Chemical Society (ACS) |
Publisher_xml | – name: American Chemical Society – name: American Chemical Society (ACS) |
References | Deutschmann O. (ref3/cit3) 2012 ref9/cit9 ref6/cit6 ref27/cit27 ref18/cit18 ref11/cit11 ref25/cit25 ref16/cit16 ref32/cit32 ref23/cit23 ref14/cit14 ref8/cit8 ref5/cit5 ref31/cit31 ref2/cit2 ref28/cit28 ref20/cit20 ref17/cit17 ref10/cit10 ref19/cit19 ref21/cit21 ref12/cit12 ref15/cit15 Somorjai G. A. (ref26/cit26) 2010 ref22/cit22 ref13/cit13 ref33/cit33 Andreasen A. (ref29/cit29) 2004 ref4/cit4 ref30/cit30 ref1/cit1 ref24/cit24 ref7/cit7 |
References_xml | – ident: ref15/cit15 doi: 10.1039/b807083k – volume-title: Ullmann’s Encyclopedia of Industrial Chemistry year: 2012 ident: ref3/cit3 – volume-title: Predicting Formation Enthalpies of Metal Hydrides year: 2004 ident: ref29/cit29 – ident: ref13/cit13 doi: 10.1021/cr200324t – ident: ref30/cit30 doi: 10.1021/ar050040d – ident: ref11/cit11 doi: 10.1039/b802256a – ident: ref27/cit27 doi: 10.1016/0021-9517(74)90238-3 – ident: ref25/cit25 doi: 10.1039/c4cy00305e – ident: ref23/cit23 doi: 10.1021/jz501899j – ident: ref18/cit18 doi: 10.1039/C4CS00067F – ident: ref17/cit17 doi: 10.1038/natrevmats.2015.18 – ident: ref28/cit28 doi: 10.1016/S0144-2449(82)80050-X – ident: ref33/cit33 doi: 10.1021/acsnano.5b03429 – ident: ref7/cit7 doi: 10.1038/nchem.444 – ident: ref14/cit14 doi: 10.1039/b807080f – ident: ref5/cit5 doi: 10.1016/S0021-9517(02)00034-9 – ident: ref24/cit24 doi: 10.1021/acs.chemmater.5b01560 – ident: ref9/cit9 doi: 10.1039/B618320B – ident: ref21/cit21 doi: 10.1021/cr900056b – ident: ref12/cit12 doi: 10.1038/nature14327 – ident: ref20/cit20 doi: 10.1002/ejic.201000473 – ident: ref16/cit16 doi: 10.1002/anie.201108565 – ident: ref31/cit31 doi: 10.1021/cs401189a – ident: ref10/cit10 doi: 10.1126/science.1230444 – ident: ref1/cit1 doi: 10.1146/annurev-chembioeng-062011-080939 – ident: ref22/cit22 doi: 10.1021/ja4050828 – ident: ref4/cit4 doi: 10.1016/0016-2361(86)90120-1 – ident: ref19/cit19 doi: 10.1021/ja310173e – ident: ref8/cit8 doi: 10.1039/C4CS00230J – ident: ref2/cit2 doi: 10.1002/anie.200462473 – volume-title: Introduction to Surface Chemistry and Catalysis year: 2010 ident: ref26/cit26 – ident: ref6/cit6 doi: 10.1038/nature01650 – ident: ref32/cit32 doi: 10.1038/nmat1000 |
SSID | ssj0004281 |
Score | 2.611042 |
Snippet | Developing supported single-site catalysts is an important goal in heterogeneous catalysis since the well-defined active sites afford opportunities for... Developing supported single-site catalysts is an important goal in heterogeneous catalysis, since the well-defined active sites afford opportunities for... |
SourceID | osti proquest pubmed crossref acs |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 1977 |
SubjectTerms | active sites Catalysis catalysts catalytic activity ethylene gases Hydrogenation ions Models, Molecular nickel Nickel - chemistry oligomerization Organic Chemicals - chemistry prediction standard operating procedures X-Ray Absorption Spectroscopy |
Title | Sintering-Resistant Single-Site Nickel Catalyst Supported by Metal–Organic Framework |
URI | http://dx.doi.org/10.1021/jacs.5b12515 https://www.ncbi.nlm.nih.gov/pubmed/26836273 https://www.proquest.com/docview/1766263258 https://www.proquest.com/docview/2000356767 https://www.osti.gov/biblio/1255383 |
Volume | 138 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT9wwELbocmgvLVAeWx4KUnuqvIpfsfeIViyoEhzYUnGLbMfhsKssItkDPfEf-If8EmbyABW0orfImUiOZ-z57Jn5TMh3ZU2QQ8ZplhhBZSIz6piPKXgrw_NcW6ux3vnsPDm9lL-u1NVLguzrCD5HfiBfDpRDR6w-kFWeGI2brKPR5KX-kRvWwVxtEtEmuL_-Gh2QL_9xQL05TKTl4LJ2MuMv5KQr1WlyS6aDReUG_u9b5sZ3-r9GPrc4MzpqDGOdrIRig3wcdde7fSV_JsgUgad69CKUiCKLKoK261mgE8ChEdjINMyiEZ7v3JXwbnFTk6BnkbuLzgK0Pt4_NKWcPhp3OV6b5HJ8_Ht0SttLFqhVXFU0F4rBes2ZdI6xMOTGBW390OaZyL3XMKVh8y2DTlSITW6ZzTG1DZ4BLMRBiy3SK-ZF2CFRLJyXTsrMaiF9oq3y1uUutioz1ivXJ4cwFmk7Scq0jn9z2H9gaztCffKz007qW5ZyvCxjtkT6x7P0TcPOsURuFxWdAqpAalyPOUS-SuEdrPcC-tXpPwUlYMTEFmG-gB7qBNl6uDLLZXgdjUXeuz7ZboznuS9grAAQtPj2H3--Sz4BGKszwpneI73qdhH2AfBU7qC29ieB8_q3 |
linkProvider | American Chemical Society |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07b9swED607pAuSZu-3PShAOlUMBApUqTHwKjhtrGHOCmyCSRFZYghB5E8JFP-Q_9hfknvZMlBAxjIJlAn4fg43kfy7iPAgbImyAEXLE9NwmQqc-a4jxl6KyOKQlurKd95Mk3HZ_LXuTpvk9UpFwaVqPBPVXOI_8AuQDRBWKgc-WP1HF4gDhG01joazh7SIIXhHdrVJk3aOPfHX5Mf8tV_fqi3QHvajDEbXzPagelayybE5PJwWbtDf_uIwPHJ1XgF2y3qjI5Ww-Q1PAvlLmwNu8ve3sCfGfFG0B4fOwkVYcqyjrDsYh7YDFFphCPmMsyjIe323FT4bnnVUKLnkbuJJgFL7-_-rhI7fTTqIr7ewtnox-lwzNorF5hVQtWsSBTH2Vtw6RznYSCMC9r6gS3ypPBeo4HjUlwGnaoQm8JyW1CgGz4jdIiDTt5Br1yU4QNEceK8dFLmVifSp9oqb13hYqtyY71yfdjHtshak6my5jRc4GqEStsW6sP3rpMy33KW09UZ8w3S39bSVyuujg1ye9TfGWIMIsr1FFHk6wzf4eyfoF7dMMiwE-j8xJZhsUQNdUrcPUKZzTKiOZslFrw-vF-NobUuAs0hRbj48Qk1_wpb49PJcXb8c_p7D14iTGtixbn-BL36ehk-IxSq3ZfGAP4B5DkDJw |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB6VRYJeKM92KY8gwQm5ih079h6rhVV5tEJdinqLbMfm0FV21WQP5cR_4B_ySzqTTRZRaSW4RbYTjR-T-eyZ-QzwWlkT5IgLVuYmYzKXJXPcpwytlRExams15Tsfn-RHZ_LjuTrfAt7nwqAQNX6pbp34pNWLMnYMA0QVhBXKkU1Wt-A2eexov3U4nv5JhRSG94hXmzzrYt1vvk22yNd_2aLBHHVqM85s7c1kB07XkrZhJhcHy8Yd-B83SBz_qyv34V6HPpPD1XJ5AFuhegh3x_2lb4_g25T4I-isj52GmrBl1SRY9n0W2BTRaYIr5yLMkjGd-lzVWLdctNToZeKukuOApb9__lolePpk0kd-PYazyfuv4yPWXb3ArBKqYTFTHP_igkvnOA8jYVzQ1o9sLLPovUZFxy25DDpXITXRchsp4A2fEUKkQWdPYFDNq7AHSZo5L52UpdWZ9Lm2ylsXXWpVaaxXbgivcCyKTnXqovWKC9yVUGk3QkN4209U4TvucrpCY7ah9Zt168WKs2NDu32a8wKxBhHmeoos8k2BdWgFMpSrXwoFTgL5UWwV5kuUUOfE4SOU2dxGtD5aYsMbwu5qHa1lEagWOcLGp__Q85dw58u7SfH5w8mnfdhGtNaGjHP9DAbN5TI8R0TUuBetDlwDR04Fqg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Sintering-Resistant+Single-Site+Nickel+Catalyst+Supported+by+Metal%E2%80%93Organic+Framework&rft.jtitle=Journal+of+the+American+Chemical+Society&rft.au=Li%2C+Zhanyong&rft.au=Schweitzer%2C+Neil+M&rft.au=League%2C+Aaron+B&rft.au=Bernales%2C+Varinia&rft.date=2016-02-17&rft.issn=1520-5126&rft.volume=138&rft.issue=6+p.1977-1982&rft.spage=1977&rft.epage=1982&rft_id=info:doi/10.1021%2Fjacs.5b12515&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0002-7863&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0002-7863&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0002-7863&client=summon |