Accurate 3D comparison of complex topography with terrestrial laser scanner: Application to the Rangitikei canyon (N-Z)
[Display omitted] Surveying techniques such as terrestrial laser scanner have recently been used to measure surface changes via 3D point cloud (PC) comparison. Two types of approaches have been pursued: 3D tracking of homologous parts of the surface to compute a displacement field, and distance calc...
Saved in:
Published in | ISPRS journal of photogrammetry and remote sensing Vol. 82; pp. 10 - 26 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Amsterdam
Elsevier B.V
01.08.2013
Elsevier |
Subjects | |
Online Access | Get full text |
ISSN | 0924-2716 1872-8235 |
DOI | 10.1016/j.isprsjprs.2013.04.009 |
Cover
Loading…
Abstract | [Display omitted]
Surveying techniques such as terrestrial laser scanner have recently been used to measure surface changes via 3D point cloud (PC) comparison. Two types of approaches have been pursued: 3D tracking of homologous parts of the surface to compute a displacement field, and distance calculation between two point clouds when homologous parts cannot be defined. This study deals with the second approach, typical of natural surfaces altered by erosion, sedimentation or vegetation between surveys. Current comparison methods are based on a closest point distance or require at least one of the PC to be meshed with severe limitations when surfaces present roughness elements at all scales. To solve these issues, we introduce a new algorithm performing a direct comparison of point clouds in 3D. The method has two steps: (1) surface normal estimation and orientation in 3D at a scale consistent with the local surface roughness; (2) measurement of the mean surface change along the normal direction with explicit calculation of a local confidence interval. Comparison with existing methods demonstrates the higher accuracy of our approach, as well as an easier workflow due to the absence of surface meshing or Digital Elevation Model (DEM) generation. Application of the method in a rapidly eroding, meandering bedrock river (Rangitikei River canyon) illustrates its ability to handle 3D differences in complex situations (flat and vertical surfaces on the same scene), to reduce uncertainty related to point cloud roughness by local averaging and to generate 3D maps of uncertainty levels. We also demonstrate that for high precision survey scanners, the total error budget on change detection is dominated by the point clouds registration error and the surface roughness. Combined with mm-range local georeferencing of the point clouds, levels of detection down to 6mm (defined at 95% confidence) can be routinely attained in situ over ranges of 50m. We provide evidence for the self-affine behaviour of different surfaces. We show how this impacts the calculation of normal vectors and demonstrate the scaling behaviour of the level of change detection. The algorithm has been implemented in a freely available open source software package. It operates in complex 3D cases and can also be used as a simpler and more robust alternative to DEM differencing for the 2D cases. |
---|---|
AbstractList | Surveying techniques such as terrestrial laser scanner have recently been used to measure surface changes via 3D point cloud (PC) comparison. Two types of approaches have been pursued: 3D tracking of homologous parts of the surface to compute a displacement field, and distance calculation between two point clouds when homologous parts cannot be defined. This study deals with the second approach, typical of natural surfaces altered by erosion, sedimentation or vegetation between surveys. Current comparison methods are based on a closest point distance or require at least one of the PC to be meshed with severe limitations when surfaces present roughness elements at all scales. To solve these issues, we introduce a new algorithm performing a direct comparison of point clouds in 3D. The method has two steps: (1) surface normal estimation and orientation in 3D at a scale consistent with the local surface roughness; (2) measurement of the mean surface change along the normal direction with explicit calculation of a local confidence interval. Comparison with existing methods demonstrates the higher accuracy of our approach, as well as an easier workflow due to the absence of surface meshing or Digital Elevation Model (DEM) generation. Application of the method in a rapidly eroding, meandering bedrock river (Rangitikei River canyon) illustrates its ability to handle 3D differences in complex situations (flat and vertical surfaces on the same scene), to reduce uncertainty related to point cloud roughness by local averaging and to generate 3D maps of uncertainty levels. We also demonstrate that for high precision survey scanners, the total error budget on change detection is dominated by the point clouds registration error and the surface roughness. Combined with mm-range local georeferencing of the point clouds, levels of detection down to 6mm (defined at 95% confidence) can be routinely attained in situ over ranges of 50m. We provide evidence for the self-affine behaviour of different surfaces. We show how this impacts the calculation of normal vectors and demonstrate the scaling behaviour of the level of change detection. The algorithm has been implemented in a freely available open source software package. It operates in complex 3D cases and can also be used as a simpler and more robust alternative to DEM differencing for the 2D cases. [Display omitted] Surveying techniques such as terrestrial laser scanner have recently been used to measure surface changes via 3D point cloud (PC) comparison. Two types of approaches have been pursued: 3D tracking of homologous parts of the surface to compute a displacement field, and distance calculation between two point clouds when homologous parts cannot be defined. This study deals with the second approach, typical of natural surfaces altered by erosion, sedimentation or vegetation between surveys. Current comparison methods are based on a closest point distance or require at least one of the PC to be meshed with severe limitations when surfaces present roughness elements at all scales. To solve these issues, we introduce a new algorithm performing a direct comparison of point clouds in 3D. The method has two steps: (1) surface normal estimation and orientation in 3D at a scale consistent with the local surface roughness; (2) measurement of the mean surface change along the normal direction with explicit calculation of a local confidence interval. Comparison with existing methods demonstrates the higher accuracy of our approach, as well as an easier workflow due to the absence of surface meshing or Digital Elevation Model (DEM) generation. Application of the method in a rapidly eroding, meandering bedrock river (Rangitikei River canyon) illustrates its ability to handle 3D differences in complex situations (flat and vertical surfaces on the same scene), to reduce uncertainty related to point cloud roughness by local averaging and to generate 3D maps of uncertainty levels. We also demonstrate that for high precision survey scanners, the total error budget on change detection is dominated by the point clouds registration error and the surface roughness. Combined with mm-range local georeferencing of the point clouds, levels of detection down to 6mm (defined at 95% confidence) can be routinely attained in situ over ranges of 50m. We provide evidence for the self-affine behaviour of different surfaces. We show how this impacts the calculation of normal vectors and demonstrate the scaling behaviour of the level of change detection. The algorithm has been implemented in a freely available open source software package. It operates in complex 3D cases and can also be used as a simpler and more robust alternative to DEM differencing for the 2D cases. Surveying techniques such as terrestrial laser scanner have recently been used to measure surface changes via 3D point cloud (PC) comparison. Two types of approaches have been pursued: 3D tracking of homologous parts of the surface to compute a displacement field, and distance calculation between two point clouds when homologous parts cannot be defined. This study deals with the second approach, typical of natural surfaces altered by erosion, sedimentation or vegetation between surveys. Current comparison methods are based on a closest point distance or require at least one of the PC to be meshed with severe limitations when surfaces present roughness elements at all scales. To solve these issues, we introduce a new algorithm performing a direct comparison of point clouds in 3D. The method has two steps: (1) surface normal estimation and orientation in 3D at a scale consistent with the local surface roughness; (2) measurement of the mean surface change along the normal direction with explicit calculation of a local confidence interval. Comparison with existing methods demonstrates the higher accuracy of our approach, as well as an easier workflow due to the absence of surface meshing or Digital Elevation Model (DEM) generation. Application of the method in a rapidly eroding, meandering bedrock river (Rangitikei River canyon) illustrates its ability to handle 3D differences in complex situations (flat and vertical surfaces on the same scene), to reduce uncertainty related to point cloud roughness by local averaging and to generate 3D maps of uncertainty levels. We also demonstrate that for high precision survey scanners, the total error budget on change detection is dominated by the point clouds registration error and the surface roughness. Combined with mm-range local georeferencing of the point clouds, levels of detection down to 6 mm (defined at 95% confidence) can be routinely attained in situ over ranges of 50 m. We provide evidence for the self-affine behaviour of different surfaces. We show how this impacts the calculation of normal vectors and demonstrate the scaling behaviour of the level of change detection. The algorithm has been implemented in a freely available open source software package. It operates in complex 3D cases and can also be used as a simpler and more robust alternative to DEM differencing for the 2D cases. Surveying techniques such as terrestrial laser scanner have recently been used to measure surface changes via 3D point cloud (PC) comparison. Two types of approaches have been pursued: 3D tracking of homologous parts of the surface to compute a displacement field, and distance calculation between two point clouds when homologous parts cannot be defined. This study deals with the second approach, typical of natural surfaces altered by erosion, sedimentation or vegetation between surveys. Current comparison methods are based on a closest point distance or require at least one of the PC to be meshed with severe limitations when surfaces present roughness elements at all scales. To solve these issues, we introduce a new algorithm performing a direct comparison of point clouds in 3D. The method has two steps: (1) surface normal estimation and orientation in 3D at a scale consistent with the local surface roughness; (2) measurement of the mean surface change along the normal direction with explicit calculation of a local confidence interval. Comparison with existing methods demonstrates the higher accuracy of our approach, as well as an easier workflow due to the absence of surface meshing or Digital Elevation Model (DEM) generation. Application of the method in a rapidly eroding, meandering bedrock river (Rangitikei River canyon) illustrates its ability to handle 3D differences in complex situations (flat and vertical surfaces on the same scene), to reduce uncertainty related to point cloud roughness by local averaging and to generate 3D maps of uncertainty levels. We also demonstrate that for high precision survey scanners, the total error budget on change detection is dominated by the point clouds registration error and the surface roughness. Combined with mm-range local georeferencing of the point clouds, levels of detection down to 6 mm (defined at 95% confidence) can be routinely attained in situ over ranges of 50 m. We provide evidence for the self-affine behaviour of different surfaces. We show how this impacts the calculation of normal vectors and demonstrate the scaling behaviour of the level of change detection. The algorithm has been implemented in a freely available open source software package. It operates in complex 3D cases and can also be used as a simpler and more robust alternative to DEM differencing for the 2D cases. 2013 International Society for Photogrammetry and Remote Sensing, Inc. (ISPRS) |
Author | Lague, Dimitri Brodu, Nicolas Leroux, Jérôme |
Author_xml | – sequence: 1 givenname: Dimitri surname: Lague fullname: Lague, Dimitri email: Dimitri.Lague@univ-rennes1.fr organization: Géosciences Rennes, Université Rennes 1, CNRS, Campus de Beaulieu, 35042 Rennes, France – sequence: 2 givenname: Nicolas surname: Brodu fullname: Brodu, Nicolas organization: Institut de Physique de Rennes, Université Rennes 1, CNRS, Campus de Beaulieu, 35042 Rennes, France – sequence: 3 givenname: Jérôme surname: Leroux fullname: Leroux, Jérôme organization: Géosciences Rennes, Université Rennes 1, CNRS, Campus de Beaulieu, 35042 Rennes, France |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=27502150$$DView record in Pascal Francis https://hal.science/hal-00854167$$DView record in HAL |
BookMark | eNqNks9v0zAUxyM0JLrB3zBfkLZDyrOdOCkSh2r8GFIFErALF-vVeWld0jjY7kb_e5x16oFLOViW_T7v9_c8O-tdT1l2yWHKgas3m6kNgw-bdKYCuJxCMQWYPcsmvK5EXgtZnmUTmIkiFxVXL7LzEDYAwEtVT7KHuTE7j5GYfM-M2w7obXA9c-3jq6M_LLrBrTwO6z17sHHNInlPIXqLHeswkGfBYN-Tf8vmw9BZg9GmCNGxuCb2DfuVjfYXWZaofTJcfcl_Xr_MnrfYBXr1dF9kdx8__Li5zRdfP32-mS9yLEUZ8wbrgle8MRzlUi0Ba5JSlg0BUVMVLTfQjkYoa6JZW8-gULVAWDYCFbRKXmTXh7hr7PTg7Rb9Xju0-na-0OMfQF0WXFX3PLFXB3bw7vcutai3NhjqOuzJ7YIWaWqgaq5mJ1GuCiFqyYU8jZZcFoVUZZXQ108oppF2rcfe2HAsW1QlCF5C4qoDZ7wLwVN7RDjoURR6o4-i0KMoNBSp07Hud_94Ghsf9xU92u4__C8P_i06jaukFX33PQFqnAxAMdY2PxCUtnpvyetgLPWGGuvJRN04ezLLX_wZ5Dc |
CitedBy_id | crossref_primary_10_1061__ASCE_CO_1943_7862_0001777 crossref_primary_10_5194_esurf_11_593_2023 crossref_primary_10_5194_tc_16_4701_2022 crossref_primary_10_1016_j_jag_2018_05_015 crossref_primary_10_1080_01431161_2016_1277045 crossref_primary_10_3390_land12020408 crossref_primary_10_1016_j_scitotenv_2025_178807 crossref_primary_10_1007_s12518_020_00326_3 crossref_primary_10_3390_rs16234610 crossref_primary_10_1017_jog_2017_47 crossref_primary_10_3390_rs14061485 crossref_primary_10_1017_jog_2017_48 crossref_primary_10_1016_j_geomorph_2024_109243 crossref_primary_10_1007_s12665_015_4650_x crossref_primary_10_3390_rs16244647 crossref_primary_10_3390_geosciences11020075 crossref_primary_10_3390_rs16244644 crossref_primary_10_3390_ijgi10030184 crossref_primary_10_1016_j_coastaleng_2016_03_011 crossref_primary_10_1109_TIV_2019_2938109 crossref_primary_10_1080_15481603_2020_1763048 crossref_primary_10_1007_s13349_021_00484_x crossref_primary_10_1515_jag_2018_0013 crossref_primary_10_1016_j_geomorph_2019_106883 crossref_primary_10_3390_s21062105 crossref_primary_10_3390_rs8020130 crossref_primary_10_3390_rs12182923 crossref_primary_10_1016_j_geomorph_2024_109492 crossref_primary_10_1080_22797254_2017_1300047 crossref_primary_10_1016_j_culher_2019_09_006 crossref_primary_10_3390_drones6090242 crossref_primary_10_1016_j_autcon_2020_103399 crossref_primary_10_26443_seismica_v3i1_1186 crossref_primary_10_1002_rra_3532 crossref_primary_10_1016_j_isprsjprs_2020_12_002 crossref_primary_10_1051_e3sconf_202016503010 crossref_primary_10_3389_frsen_2025_1397513 crossref_primary_10_1016_j_isprsjprs_2023_02_008 crossref_primary_10_3390_rs13081460 crossref_primary_10_3390_rs15020374 crossref_primary_10_1002_wat2_1222 crossref_primary_10_1007_s10346_024_02266_0 crossref_primary_10_1080_15623599_2022_2040078 crossref_primary_10_1016_j_geomorph_2020_107372 crossref_primary_10_1016_j_enggeo_2019_105326 crossref_primary_10_1080_00396265_2017_1361565 crossref_primary_10_1016_j_autcon_2019_102841 crossref_primary_10_3390_rs13081479 crossref_primary_10_3390_rs12213571 crossref_primary_10_3390_rs12142221 crossref_primary_10_1016_j_jag_2023_103396 crossref_primary_10_5194_esurf_8_753_2020 crossref_primary_10_3390_geosciences10090331 crossref_primary_10_1109_ACCESS_2020_3027205 crossref_primary_10_1177_03091333211065123 crossref_primary_10_3390_w15142584 crossref_primary_10_3390_rs14122767 crossref_primary_10_1007_s12518_018_0224_4 crossref_primary_10_1016_j_catena_2022_106359 crossref_primary_10_1016_j_jsames_2023_104379 crossref_primary_10_1007_s10346_020_01416_4 crossref_primary_10_3390_s22020521 crossref_primary_10_2112_JCOASTRES_D_16_00095_1 crossref_primary_10_3390_s24186045 crossref_primary_10_1038_s41598_021_01763_9 crossref_primary_10_1080_17538947_2019_1585975 crossref_primary_10_3390_ijgi9040240 crossref_primary_10_1007_s41064_023_00272_w crossref_primary_10_34133_2021_9892647 crossref_primary_10_1007_s12517_024_11897_5 crossref_primary_10_1016_j_scitotenv_2018_11_137 crossref_primary_10_1007_s10064_019_01680_2 crossref_primary_10_3390_rs12244064 crossref_primary_10_1260_2047_4970_3_2_287 crossref_primary_10_1016_j_isprsjprs_2023_10_022 crossref_primary_10_3390_rs15194880 crossref_primary_10_1002_esp_4078 crossref_primary_10_1007_s12665_024_11588_0 crossref_primary_10_1080_00140139_2019_1699952 crossref_primary_10_1111_tgis_12818 crossref_primary_10_1080_14634988_2020_1807299 crossref_primary_10_1515_jag_2020_0030 crossref_primary_10_5194_nhess_23_343_2023 crossref_primary_10_1016_j_geomorph_2024_109065 crossref_primary_10_1126_science_adm9247 crossref_primary_10_1051_e3sconf_202341503024 crossref_primary_10_1002_esp_4086 crossref_primary_10_3390_geomatics3040030 crossref_primary_10_1177_14780771211066876 crossref_primary_10_3390_drones8060268 crossref_primary_10_1002_esp_4502 crossref_primary_10_1016_j_precisioneng_2021_01_008 crossref_primary_10_3390_drones5040145 crossref_primary_10_1002_esp_4749 crossref_primary_10_1016_j_geomorph_2018_11_022 crossref_primary_10_1002_esp_4747 crossref_primary_10_1002_esp_4989 crossref_primary_10_1016_j_ejrs_2021_06_002 crossref_primary_10_1177_09544054241276035 crossref_primary_10_3390_drones8110610 crossref_primary_10_1007_s10346_020_01616_y crossref_primary_10_1093_gigascience_giae035 crossref_primary_10_1016_j_earscirev_2015_05_012 crossref_primary_10_3390_heritage4020043 crossref_primary_10_3390_rs10040575 crossref_primary_10_3390_rs13132494 crossref_primary_10_1016_j_jobe_2021_103274 crossref_primary_10_35595_2414_9179_2024_1_30_617_631 crossref_primary_10_3390_rs10040571 crossref_primary_10_36783_18069657rbcs20200076 crossref_primary_10_1051_e3sconf_202341501025 crossref_primary_10_1016_j_geomorph_2022_108434 crossref_primary_10_3390_rs14205139 crossref_primary_10_1080_15481603_2019_1687133 crossref_primary_10_1016_j_tust_2024_106325 crossref_primary_10_3390_rs13132485 crossref_primary_10_1016_j_cscm_2024_e03284 crossref_primary_10_1002_esp_5819 crossref_primary_10_1016_j_culher_2023_12_007 crossref_primary_10_3390_rs14236107 crossref_primary_10_1016_j_enggeo_2024_107500 crossref_primary_10_3390_s20144000 crossref_primary_10_1016_j_catena_2022_106701 crossref_primary_10_1080_01431161_2023_2274317 crossref_primary_10_3389_fmars_2020_00525 crossref_primary_10_5194_nhess_20_603_2020 crossref_primary_10_1016_j_autcon_2017_09_023 crossref_primary_10_3390_s21030922 crossref_primary_10_3390_s19194275 crossref_primary_10_1016_j_geomorph_2023_108956 crossref_primary_10_3390_s23031717 crossref_primary_10_1016_j_isprsjprs_2021_01_015 crossref_primary_10_3390_ijgi10030127 crossref_primary_10_3390_land10080828 crossref_primary_10_3390_w13152020 crossref_primary_10_3390_rs13061192 crossref_primary_10_1515_jag_2019_0002 crossref_primary_10_1139_cgj_2016_0178 crossref_primary_10_3390_rs15061480 crossref_primary_10_1002_lno_12234 crossref_primary_10_3390_rs11192225 crossref_primary_10_3390_ijgi10030157 crossref_primary_10_1016_j_autcon_2023_104928 crossref_primary_10_1029_2021GL092959 crossref_primary_10_1109_TGRS_2024_3417306 crossref_primary_10_3390_rs13122263 crossref_primary_10_3390_w12082221 crossref_primary_10_1016_j_geomorph_2023_108736 crossref_primary_10_1080_15583058_2023_2260769 crossref_primary_10_3390_en12071304 crossref_primary_10_1038_s43247_024_01353_3 crossref_primary_10_1016_j_measurement_2021_110447 crossref_primary_10_1109_TGRS_2025_3535558 crossref_primary_10_3390_rs13030452 crossref_primary_10_1016_j_ophoto_2023_100055 crossref_primary_10_3390_rs11192208 crossref_primary_10_3390_s17071489 crossref_primary_10_1002_2016JF003850 crossref_primary_10_1002_stc_1987 crossref_primary_10_3390_s21072553 crossref_primary_10_1007_s10980_024_01984_z crossref_primary_10_3390_rs11161940 crossref_primary_10_3390_heritage8010032 crossref_primary_10_1016_j_scitotenv_2020_138320 crossref_primary_10_1002_esp_4929 crossref_primary_10_5194_nhess_19_2745_2019 crossref_primary_10_1016_j_crte_2019_09_004 crossref_primary_10_1016_j_enggeo_2024_107703 crossref_primary_10_1016_j_rse_2020_111666 crossref_primary_10_1016_j_autcon_2025_106126 crossref_primary_10_3390_app11020754 crossref_primary_10_1007_s13349_022_00555_7 crossref_primary_10_1145_3476979 crossref_primary_10_3390_drones6070175 crossref_primary_10_5194_gc_5_101_2022 crossref_primary_10_3390_drones8110662 crossref_primary_10_1002_esp_4910 crossref_primary_10_3390_ma13163652 crossref_primary_10_5194_nhess_21_2881_2021 crossref_primary_10_1016_j_measurement_2021_109482 crossref_primary_10_3390_s22249627 crossref_primary_10_1515_jag_2019_0044 crossref_primary_10_1016_j_isprsjprs_2021_11_018 crossref_primary_10_3390_rs13030518 crossref_primary_10_3390_s24010286 crossref_primary_10_1061__ASCE_AE_1943_5568_0000397 crossref_primary_10_1109_TRO_2023_3258641 crossref_primary_10_3390_buildings13071749 crossref_primary_10_3390_rs12010015 crossref_primary_10_1186_s40703_023_00203_z crossref_primary_10_1016_j_measurement_2015_04_026 crossref_primary_10_1016_j_enggeo_2023_107286 crossref_primary_10_1007_s10346_021_01723_4 crossref_primary_10_4081_jae_2023_1521 crossref_primary_10_1016_j_enggeo_2015_05_012 crossref_primary_10_1029_2019JF005225 crossref_primary_10_5194_esurf_6_101_2018 crossref_primary_10_1016_j_enggeo_2018_11_003 crossref_primary_10_3390_s23125623 crossref_primary_10_1061_JHEND8_HYENG_14023 crossref_primary_10_1080_10106049_2022_2074147 crossref_primary_10_1002_2015JF003600 crossref_primary_10_3390_rs14133058 crossref_primary_10_1115_1_4066189 crossref_primary_10_1002_ece3_70238 crossref_primary_10_1080_22797254_2018_1522934 crossref_primary_10_1007_s10346_022_02006_2 crossref_primary_10_3390_drones8010030 crossref_primary_10_3390_rs10071005 crossref_primary_10_1186_s12302_024_00985_8 crossref_primary_10_3390_drones3010018 crossref_primary_10_1016_j_catena_2024_107885 crossref_primary_10_5194_esurf_8_729_2020 crossref_primary_10_1016_j_still_2024_106384 crossref_primary_10_1080_19475705_2017_1345796 crossref_primary_10_1144_qjegh2020_100 crossref_primary_10_1371_journal_pone_0277546 crossref_primary_10_1016_j_ecoinf_2024_102632 crossref_primary_10_1016_j_trpro_2021_07_156 crossref_primary_10_5623_cig2014_406 crossref_primary_10_3390_land12010191 crossref_primary_10_3390_rs12081240 crossref_primary_10_3390_rs15040996 crossref_primary_10_1007_s10346_023_02169_6 crossref_primary_10_1029_2019JF005487 crossref_primary_10_1088_1361_6501_acafff crossref_primary_10_1007_s12518_023_00529_4 crossref_primary_10_3390_app10082960 crossref_primary_10_3390_rs12020290 crossref_primary_10_1016_j_catena_2018_11_004 crossref_primary_10_1002_2016GL072070 crossref_primary_10_3389_feart_2024_1421705 crossref_primary_10_1007_s10706_024_02913_2 crossref_primary_10_1080_17538947_2020_1862318 crossref_primary_10_3390_s21227550 crossref_primary_10_1108_IJBPA_04_2021_0051 crossref_primary_10_1016_j_coastaleng_2018_04_008 crossref_primary_10_5194_nhess_19_2385_2019 crossref_primary_10_1016_j_jrmge_2023_04_022 crossref_primary_10_1007_s12518_014_0145_9 crossref_primary_10_1016_j_jvolgeores_2019_01_018 crossref_primary_10_3390_jimaging3040042 crossref_primary_10_1007_s10346_021_01647_z crossref_primary_10_1002_esp_5759 crossref_primary_10_1109_JSTARS_2020_3010069 crossref_primary_10_3390_drones7050298 crossref_primary_10_3390_rs14030490 crossref_primary_10_5026_jgeography_125_299 crossref_primary_10_1002_esp_4892 crossref_primary_10_3390_geosciences9070323 crossref_primary_10_3390_infrastructures5100087 crossref_primary_10_3390_geosciences14030075 crossref_primary_10_1016_j_isprsjprs_2018_10_002 crossref_primary_10_1007_s10346_017_0865_0 crossref_primary_10_3390_su12124975 crossref_primary_10_3390_drones6120429 crossref_primary_10_4000_geomorphologie_11559 crossref_primary_10_5194_hess_19_2881_2015 crossref_primary_10_1111_sed_12723 crossref_primary_10_1016_j_isprsjprs_2020_02_005 crossref_primary_10_1016_j_rse_2021_112683 crossref_primary_10_1029_2019JF005012 crossref_primary_10_5194_esurf_11_779_2023 crossref_primary_10_1002_esp_4643 crossref_primary_10_1016_j_epsl_2014_08_031 crossref_primary_10_1002_esp_4882 crossref_primary_10_1016_j_cities_2023_104644 crossref_primary_10_1016_j_scs_2015_09_010 crossref_primary_10_3390_rs13224584 crossref_primary_10_3390_rs5062813 crossref_primary_10_3390_rs71013029 crossref_primary_10_3390_jmse12091566 crossref_primary_10_3390_w12102748 crossref_primary_10_3390_drones7040258 crossref_primary_10_1002_esp_3787 crossref_primary_10_3390_rs9030189 crossref_primary_10_1016_j_geomorph_2017_12_039 crossref_primary_10_1002_esp_4878 crossref_primary_10_1007_s10921_025_01170_4 crossref_primary_10_3390_sym12121955 crossref_primary_10_1016_j_rse_2024_114022 crossref_primary_10_1088_1742_6596_1249_1_012019 crossref_primary_10_1016_j_ocecoaman_2019_104875 crossref_primary_10_1029_2021GL093415 crossref_primary_10_1109_OJIM_2024_3449936 crossref_primary_10_1016_j_srs_2024_100160 crossref_primary_10_3390_drones9040228 crossref_primary_10_1007_s41976_025_00214_7 crossref_primary_10_1111_sed_12942 crossref_primary_10_1080_02723646_2023_2212989 crossref_primary_10_1051_jnwpu_20234110047 crossref_primary_10_5721_EuJRS20154805 crossref_primary_10_1002_ece3_5443 crossref_primary_10_3390_app13031348 crossref_primary_10_1029_2023GL104626 crossref_primary_10_1080_10095020_2025_2451204 crossref_primary_10_1007_s12524_023_01699_9 crossref_primary_10_1016_j_catena_2023_107534 crossref_primary_10_1016_j_isprsjprs_2024_11_016 crossref_primary_10_1038_s41596_024_01024_9 crossref_primary_10_1007_s12517_022_09683_2 crossref_primary_10_1080_01431161_2025_2457129 crossref_primary_10_1007_s12665_018_7817_4 crossref_primary_10_1007_s00603_024_03772_2 crossref_primary_10_1007_s11859_015_1104_y crossref_primary_10_1515_jag_2023_0097 crossref_primary_10_2208_jscejj_23_22012 crossref_primary_10_3390_rs15040907 crossref_primary_10_1080_15481603_2024_2341557 crossref_primary_10_3390_jmse11061145 crossref_primary_10_1016_j_daach_2020_e00137 crossref_primary_10_1016_j_catena_2020_104895 crossref_primary_10_1016_j_fri_2021_200460 crossref_primary_10_1007_s11069_021_04556_5 crossref_primary_10_1016_j_geomorph_2021_107836 crossref_primary_10_1016_j_jenvman_2021_114262 crossref_primary_10_1098_rspb_2021_0329 crossref_primary_10_5194_nhess_22_2673_2022 crossref_primary_10_3390_ijgi8120585 crossref_primary_10_1109_MRA_2023_3321402 crossref_primary_10_1007_s12518_024_00561_y crossref_primary_10_1016_j_jag_2023_103258 crossref_primary_10_3390_rs15092314 crossref_primary_10_1007_s10346_018_1118_6 crossref_primary_10_1139_cgj_2023_0073 crossref_primary_10_5194_esurf_4_359_2016 crossref_primary_10_1080_00393630_2021_1937457 crossref_primary_10_1038_s41598_020_70476_2 crossref_primary_10_1111_phor_12346 crossref_primary_10_1051_geotech_2017009 crossref_primary_10_1016_j_daach_2020_e00156 crossref_primary_10_1016_j_geomorph_2020_107122 crossref_primary_10_1111_tgis_13274 crossref_primary_10_1080_13467581_2021_1973479 crossref_primary_10_1002_esp_5357 crossref_primary_10_1016_j_jobe_2023_107440 crossref_primary_10_1002_esp_4022 crossref_primary_10_1002_esp_5112 crossref_primary_10_1007_s10346_020_01437_z crossref_primary_10_1007_s10921_017_0444_2 crossref_primary_10_1016_j_mio_2016_04_001 crossref_primary_10_3390_rs13091674 crossref_primary_10_1109_ACCESS_2023_3311017 crossref_primary_10_1016_j_envsoft_2021_104962 crossref_primary_10_1080_15230430_2017_1415852 crossref_primary_10_1007_s10346_017_0801_3 crossref_primary_10_3390_rs14153528 crossref_primary_10_3390_s17102210 crossref_primary_10_1007_s12008_023_01428_z crossref_primary_10_1016_j_rse_2021_112299 crossref_primary_10_2298_IJGI2202133N crossref_primary_10_1051_e3sconf_20182900024 crossref_primary_10_1002_esp_4012 crossref_primary_10_3390_rs14153526 crossref_primary_10_1016_j_measurement_2023_112656 crossref_primary_10_3390_rs12010042 crossref_primary_10_1016_j_engstruct_2018_06_094 crossref_primary_10_1111_phor_12525 crossref_primary_10_1002_esp_5591 crossref_primary_10_1016_j_enggeo_2021_106424 crossref_primary_10_1109_JSTARS_2024_3462999 crossref_primary_10_3390_s22239179 crossref_primary_10_1002_esp_4007 crossref_primary_10_1007_s11852_022_00907_x crossref_primary_10_1002_esp_5333 crossref_primary_10_1016_j_scitotenv_2021_150165 crossref_primary_10_1080_01431161_2019_1706200 crossref_primary_10_1016_j_proeng_2017_05_251 crossref_primary_10_1109_JSTARS_2020_2997239 crossref_primary_10_1002_stc_2156 crossref_primary_10_3390_rs12152447 crossref_primary_10_1016_j_ecoleng_2021_106156 crossref_primary_10_1016_j_geoderma_2021_115369 crossref_primary_10_3390_ijgi10110774 crossref_primary_10_3390_rs13173353 crossref_primary_10_1051_e3sconf_202341506007 crossref_primary_10_3390_rs14225818 crossref_primary_10_1016_j_geomorph_2019_01_003 crossref_primary_10_1016_j_measurement_2020_108759 crossref_primary_10_3390_rs12121946 crossref_primary_10_1016_j_jhydrol_2018_06_019 crossref_primary_10_3390_heritage7040103 crossref_primary_10_1007_s10346_017_0921_9 crossref_primary_10_3390_rs15010263 crossref_primary_10_1515_jag_2023_0038 crossref_primary_10_3390_w11091846 crossref_primary_10_2113_EEG_D_22_00035 crossref_primary_10_3390_rs11131526 crossref_primary_10_3390_s22239391 crossref_primary_10_1007_s12518_025_00623_9 crossref_primary_10_1016_j_isprsjprs_2023_01_010 crossref_primary_10_3390_rs10091494 crossref_primary_10_3390_rs11172035 crossref_primary_10_3390_drones6020030 crossref_primary_10_3390_ijgi8050221 crossref_primary_10_5194_esurf_4_515_2016 crossref_primary_10_2112_JCOASTRES_D_21_00122_1 crossref_primary_10_1016_j_earscirev_2019_102929 crossref_primary_10_3390_rs16010066 crossref_primary_10_3389_fpls_2017_02144 crossref_primary_10_1016_j_iswcr_2022_12_003 crossref_primary_10_1038_s41598_019_44533_4 crossref_primary_10_1002_cepa_1553 crossref_primary_10_1126_science_aat4981 crossref_primary_10_3390_rs12030555 crossref_primary_10_1007_s41064_023_00260_0 crossref_primary_10_3390_drones8050172 crossref_primary_10_1016_j_jafrearsci_2016_04_010 crossref_primary_10_3390_rs13173519 crossref_primary_10_1080_01431161_2020_1752950 crossref_primary_10_3390_rs13204130 crossref_primary_10_1177_0309133315615805 crossref_primary_10_3390_rs14174289 crossref_primary_10_1080_00396265_2016_1266117 crossref_primary_10_3390_rs14030601 crossref_primary_10_5194_gh_74_59_2019 crossref_primary_10_1016_j_geomorph_2020_107069 crossref_primary_10_3390_heritage6020057 crossref_primary_10_1016_j_geomorph_2014_10_039 crossref_primary_10_1186_s40648_019_0148_8 crossref_primary_10_1016_j_isprsjprs_2021_06_011 crossref_primary_10_3390_rs10101547 crossref_primary_10_5194_tc_19_1335_2025 crossref_primary_10_1007_s10346_021_01761_y crossref_primary_10_3390_rs15225348 crossref_primary_10_37558_gec_v19i1_1002 crossref_primary_10_1016_j_culher_2019_02_011 crossref_primary_10_1016_j_isprsjprs_2019_01_020 crossref_primary_10_1016_j_jsv_2024_118523 crossref_primary_10_3390_geosciences14060165 crossref_primary_10_1007_s10064_021_02426_9 crossref_primary_10_1016_j_rse_2022_113218 crossref_primary_10_1109_LGRS_2022_3148920 crossref_primary_10_1177_14759217231168997 crossref_primary_10_1007_s42461_022_00664_3 crossref_primary_10_1016_j_measurement_2024_114311 crossref_primary_10_1017_jog_2016_54 crossref_primary_10_1080_17538947_2024_2312219 crossref_primary_10_5194_esurf_11_1223_2023 crossref_primary_10_1016_j_geomorph_2019_106994 crossref_primary_10_1080_04353676_2018_1542130 crossref_primary_10_3390_min11111192 crossref_primary_10_3390_s16101648 crossref_primary_10_1016_j_ocecoaman_2019_105004 crossref_primary_10_1007_s00170_021_07780_2 crossref_primary_10_3390_rs15041116 crossref_primary_10_1016_j_earscirev_2017_04_007 crossref_primary_10_1080_13467581_2024_2329351 crossref_primary_10_1016_j_optlaseng_2022_107399 crossref_primary_10_3390_rs14040847 crossref_primary_10_3390_ijgi10010026 crossref_primary_10_1590_0001_3765201820170296 crossref_primary_10_1016_j_ecolind_2020_107011 crossref_primary_10_5194_nhess_23_329_2023 crossref_primary_10_1080_00396265_2015_1133039 crossref_primary_10_3390_rs12101635 crossref_primary_10_5194_tc_13_2835_2019 crossref_primary_10_1029_2023GL103042 crossref_primary_10_1080_22797254_2019_1604082 crossref_primary_10_3389_frsen_2022_1027065 crossref_primary_10_1130_GES01017_1 crossref_primary_10_1016_j_jag_2023_103271 crossref_primary_10_1007_s12210_020_00902_0 crossref_primary_10_1016_j_autcon_2022_104700 crossref_primary_10_3390_rs14061315 crossref_primary_10_3390_drones7020085 crossref_primary_10_1016_j_scitotenv_2023_167494 crossref_primary_10_1016_S1003_6326_15_63947_4 crossref_primary_10_1016_j_geomorph_2017_01_039 crossref_primary_10_3390_rs13183551 crossref_primary_10_3390_rs15041138 crossref_primary_10_1002_wat2_1328 crossref_primary_10_5194_esurf_5_791_2017 crossref_primary_10_1109_JSTARS_2021_3117946 crossref_primary_10_1061_JSUED2_SUENG_1410 crossref_primary_10_1016_j_scitotenv_2020_141693 crossref_primary_10_3390_rs12101615 crossref_primary_10_1177_0309133318788964 crossref_primary_10_1038_s41597_022_01291_9 crossref_primary_10_1515_jag_2024_0089 crossref_primary_10_3390_rs12111885 crossref_primary_10_1080_15481603_2017_1408931 crossref_primary_10_1061__ASCE_SU_1943_5428_0000165 crossref_primary_10_1016_j_jag_2023_103293 crossref_primary_10_3390_s22249593 crossref_primary_10_1051_matecconf_202236405001 crossref_primary_10_3390_app122211335 crossref_primary_10_3390_constrmater2040020 crossref_primary_10_31436_iiumej_v25i2_3211 crossref_primary_10_5194_tc_15_2187_2021 crossref_primary_10_1016_j_geomorph_2016_03_007 crossref_primary_10_1109_TGRS_2024_3359484 crossref_primary_10_1111_2041_210X_13388 crossref_primary_10_3390_geosciences13020029 crossref_primary_10_1016_j_quascirev_2018_07_006 crossref_primary_10_1515_jag_2024_0011 crossref_primary_10_1109_JSTARS_2021_3104845 crossref_primary_10_1002_oa_2587 crossref_primary_10_1016_j_jrmge_2023_09_040 crossref_primary_10_1177_03611981231169530 crossref_primary_10_3390_rs11050586 crossref_primary_10_1016_j_autcon_2022_104731 crossref_primary_10_13168_AGG_2019_0032 crossref_primary_10_14712_23361980_2025_6 crossref_primary_10_1016_j_geomorph_2016_03_013 crossref_primary_10_3390_rs13030366 crossref_primary_10_5194_nhess_18_1055_2018 crossref_primary_10_1007_s00445_024_01709_9 crossref_primary_10_1038_s41598_017_09382_z crossref_primary_10_1016_j_aei_2017_07_002 crossref_primary_10_1002_gj_4905 crossref_primary_10_3390_app10134633 crossref_primary_10_1016_j_geomorph_2017_01_008 crossref_primary_10_1002_arp_1804 crossref_primary_10_1007_s00267_018_1070_1 crossref_primary_10_3390_rs14143366 crossref_primary_10_4995_raet_2024_21785 crossref_primary_10_1007_s12665_017_6409_z crossref_primary_10_1016_j_catena_2024_108573 crossref_primary_10_1029_2022EA002420 crossref_primary_10_1109_JSTARS_2024_3373505 crossref_primary_10_1002_2014JF003274 crossref_primary_10_1007_s10661_017_6402_8 crossref_primary_10_1038_s41598_023_46661_4 crossref_primary_10_1080_15583058_2019_1613454 crossref_primary_10_1029_2024EA003514 crossref_primary_10_1080_01431161_2019_1641241 crossref_primary_10_1016_j_daach_2024_e00380 crossref_primary_10_3390_rs12020322 crossref_primary_10_3390_rs70810269 crossref_primary_10_1139_dsa_2022_0036 crossref_primary_10_1016_j_enggeo_2018_12_004 crossref_primary_10_5194_esurf_9_19_2021 crossref_primary_10_1016_j_geomorph_2017_01_001 crossref_primary_10_1017_jog_2024_76 crossref_primary_10_1017_jog_2024_57 crossref_primary_10_1016_j_jag_2022_102781 crossref_primary_10_4081_jae_2021_1130 crossref_primary_10_1016_j_measurement_2024_114158 crossref_primary_10_3390_rs11161871 crossref_primary_10_1002_esp_4833 crossref_primary_10_3390_rs11161878 crossref_primary_10_48123_rsgis_983251 crossref_primary_10_5194_esurf_6_933_2018 crossref_primary_10_1029_2017JF004508 crossref_primary_10_1016_j_jvolgeores_2017_11_006 crossref_primary_10_3390_rs13061073 crossref_primary_10_3390_app13063417 crossref_primary_10_3390_rs15082060 crossref_primary_10_1002_esp_4821 crossref_primary_10_1061__ASCE_GT_1943_5606_0002800 crossref_primary_10_1515_jag_2022_0041 crossref_primary_10_3390_rs13193975 crossref_primary_10_1002_esp_4822 crossref_primary_10_1016_j_jsg_2019_01_001 crossref_primary_10_3390_s20102936 crossref_primary_10_5194_esurf_9_295_2021 crossref_primary_10_1007_s00190_020_01352_0 crossref_primary_10_1017_jog_2024_34 crossref_primary_10_1002_esp_3721 crossref_primary_10_1002_rob_21873 crossref_primary_10_3390_rs9111152 crossref_primary_10_1080_10106049_2023_2175916 crossref_primary_10_1088_1748_9326_ad8fbe crossref_primary_10_1016_j_ijleo_2022_169706 crossref_primary_10_1049_iet_cvi_2015_0446 crossref_primary_10_1002_stc_1872 crossref_primary_10_5194_esurf_9_1013_2021 crossref_primary_10_1130_GES02259_1 crossref_primary_10_3390_s20123403 crossref_primary_10_1016_j_jvolgeores_2023_107840 crossref_primary_10_1016_j_rse_2024_114522 crossref_primary_10_1515_jag_2022_0031 crossref_primary_10_1016_j_geomorph_2021_108053 crossref_primary_10_1016_j_geomorph_2022_108116 crossref_primary_10_1016_j_geomorph_2022_108356 crossref_primary_10_1080_09613218_2023_2227900 crossref_primary_10_3390_rs15051339 crossref_primary_10_3390_rs12172806 crossref_primary_10_3124_segj_69_297 crossref_primary_10_3390_rs11030239 crossref_primary_10_1080_01431161_2019_1630782 crossref_primary_10_1007_s10346_022_01974_9 crossref_primary_10_5194_tc_18_3253_2024 crossref_primary_10_3389_feart_2023_1183982 crossref_primary_10_1016_j_optlaseng_2020_106089 crossref_primary_10_1029_2022JF007026 crossref_primary_10_1016_j_measurement_2023_114055 crossref_primary_10_1111_arcm_12325 crossref_primary_10_1002_ldr_4712 crossref_primary_10_3390_s20226554 crossref_primary_10_1016_j_eng_2018_11_030 crossref_primary_10_1017_jog_2021_96 crossref_primary_10_1002_esp_5436 crossref_primary_10_1016_j_enggeo_2023_107170 crossref_primary_10_1016_j_jhydrol_2024_131497 crossref_primary_10_1016_j_isprsjprs_2021_03_017 crossref_primary_10_3390_app8030401 crossref_primary_10_5194_nhess_23_3285_2023 crossref_primary_10_1016_j_catena_2024_108622 crossref_primary_10_3846_gac_2024_20647 crossref_primary_10_3390_rs12050829 crossref_primary_10_1029_2023JF007504 crossref_primary_10_1080_04353676_2019_1588543 crossref_primary_10_1139_as_2018_0016 crossref_primary_10_1007_s10845_022_01933_0 crossref_primary_10_1111_phor_12297 crossref_primary_10_1080_00221686_2017_1372820 crossref_primary_10_1002_esp_5667 crossref_primary_10_1002_esp_5420 crossref_primary_10_3390_rs11121471 crossref_primary_10_1016_j_rama_2019_02_009 crossref_primary_10_1109_LGRS_2023_3343097 crossref_primary_10_1016_j_ecoinf_2023_102254 crossref_primary_10_1002_int_22557 crossref_primary_10_1111_phor_12288 crossref_primary_10_3390_w13081040 crossref_primary_10_1016_j_enggeo_2024_107450 crossref_primary_10_1016_j_autcon_2022_104551 crossref_primary_10_3390_rs13132526 crossref_primary_10_1029_2019WR025251 crossref_primary_10_3390_ijgi8080325 crossref_primary_10_5194_esurf_11_343_2023 crossref_primary_10_1007_s00603_021_02417_y crossref_primary_10_1061__ASCE_AS_1943_5525_0000885 crossref_primary_10_17645_up_v5i2_2885 crossref_primary_10_1002_esp_4571 crossref_primary_10_3390_sym13020335 crossref_primary_10_1002_esp_4796 crossref_primary_10_1016_j_measurement_2023_113684 crossref_primary_10_1016_j_engfailanal_2021_105391 crossref_primary_10_1016_j_jag_2023_103535 crossref_primary_10_3390_app12189374 crossref_primary_10_5194_tc_14_549_2020 crossref_primary_10_1002_esp_3462 crossref_primary_10_1002_esp_5881 crossref_primary_10_1080_13658816_2017_1402914 crossref_primary_10_1080_19475705_2022_2041108 crossref_primary_10_1007_s10661_024_13597_9 crossref_primary_10_1177_03611981231157730 crossref_primary_10_3390_drones7020101 crossref_primary_10_1016_j_est_2016_01_006 crossref_primary_10_1016_j_ophoto_2024_100058 crossref_primary_10_1016_j_geomorph_2023_108799 crossref_primary_10_5194_esurf_6_303_2018 crossref_primary_10_1080_22797254_2019_1686957 crossref_primary_10_3390_rs16061054 crossref_primary_10_1016_j_isprsjprs_2020_10_012 crossref_primary_10_3390_rs14041029 crossref_primary_10_1002_ldr_2967 crossref_primary_10_1007_s10346_022_02009_z crossref_primary_10_1002_esp_4308 crossref_primary_10_3390_rs10071154 crossref_primary_10_1088_1757_899X_737_1_012230 crossref_primary_10_1109_JSEN_2024_3375864 crossref_primary_10_5194_esurf_10_1211_2022 crossref_primary_10_1016_j_geomorph_2016_10_021 crossref_primary_10_1016_j_csr_2022_104799 crossref_primary_10_1080_22797254_2017_1313097 crossref_primary_10_3390_rs13132572 crossref_primary_10_3390_jmse10030358 crossref_primary_10_1016_j_isprsjprs_2022_12_014 crossref_primary_10_1098_rspb_2019_2383 crossref_primary_10_1109_JSTARS_2024_3382092 crossref_primary_10_3390_geomatics2040025 crossref_primary_10_1080_00393630_2018_1554934 crossref_primary_10_1029_2020WR028980 crossref_primary_10_1002_esp_5855 crossref_primary_10_1016_j_jvolgeores_2023_107918 crossref_primary_10_1109_TGRS_2025_3531495 crossref_primary_10_3390_ijgi7040142 crossref_primary_10_3390_rs12010112 crossref_primary_10_1016_j_conbuildmat_2017_05_075 crossref_primary_10_1109_JSTARS_2024_3522583 crossref_primary_10_1109_LRA_2024_3417113 crossref_primary_10_1007_s12518_019_00263_w crossref_primary_10_1139_juvs_2019_0006 crossref_primary_10_1016_j_gloplacha_2019_103057 crossref_primary_10_1007_s00603_023_03704_6 crossref_primary_10_1016_j_heliyon_2023_e20225 crossref_primary_10_1002_esp_4996 crossref_primary_10_1002_ppp_2004 crossref_primary_10_3390_rs13071354 crossref_primary_10_1016_j_tust_2023_105306 crossref_primary_10_1002_esp_5608 crossref_primary_10_1016_j_geomorph_2015_06_008 crossref_primary_10_3389_feart_2022_883259 crossref_primary_10_1002_rra_3183 crossref_primary_10_1016_j_geoderma_2022_116223 crossref_primary_10_1007_s41976_019_00021_x crossref_primary_10_3390_rs15061526 crossref_primary_10_1016_j_enggeo_2019_04_010 crossref_primary_10_1088_1361_6501_abd445 crossref_primary_10_1016_j_optlaseng_2020_106498 crossref_primary_10_3390_rs16152705 crossref_primary_10_3390_rs15071764 crossref_primary_10_3390_s19020427 crossref_primary_10_1155_2021_6628068 crossref_primary_10_1111_phor_12218 crossref_primary_10_3390_rs14174306 crossref_primary_10_1080_10106049_2022_2046870 crossref_primary_10_1016_j_geomorph_2016_11_017 crossref_primary_10_1007_s10346_017_0942_4 crossref_primary_10_1111_phor_12454 crossref_primary_10_5194_esurf_7_1009_2019 crossref_primary_10_1109_TGRS_2024_3353676 crossref_primary_10_1007_s12518_014_0151_y crossref_primary_10_3390_rs16050802 crossref_primary_10_3390_s17081886 crossref_primary_10_1017_jog_2022_114 crossref_primary_10_5194_esurf_5_293_2017 crossref_primary_10_1016_j_geomorph_2016_11_009 crossref_primary_10_1017_jog_2022_119 crossref_primary_10_1016_j_rse_2016_08_018 crossref_primary_10_1061__ASCE_SU_1943_5428_0000346 crossref_primary_10_1002_2014GL062534 crossref_primary_10_1007_s11852_020_00756_6 crossref_primary_10_1016_j_enggeo_2022_106614 crossref_primary_10_1029_2023GL104721 crossref_primary_10_3390_s19030450 crossref_primary_10_1002_bate_202200025 crossref_primary_10_3389_feart_2018_00152 crossref_primary_10_5194_esurf_7_563_2019 crossref_primary_10_1117_1_JRS_13_044523 crossref_primary_10_3390_s24113534 crossref_primary_10_1007_s00445_023_01673_w crossref_primary_10_1016_j_geomorph_2020_107474 crossref_primary_10_1016_j_ijrmms_2024_105655 crossref_primary_10_1038_s43247_020_00021_6 crossref_primary_10_1029_2020JF006053 crossref_primary_10_3390_s22114262 crossref_primary_10_1016_j_cageo_2015_06_021 crossref_primary_10_3390_rs11070878 crossref_primary_10_1080_17538947_2024_2375527 crossref_primary_10_3389_ffgc_2023_1224575 crossref_primary_10_1016_j_enggeo_2018_08_010 crossref_primary_10_1111_phor_12463 crossref_primary_10_1002_esp_5494 crossref_primary_10_1007_s13349_025_00916_y crossref_primary_10_3390_rs14071537 crossref_primary_10_1016_j_coldregions_2021_103344 crossref_primary_10_1016_j_jasrep_2018_06_003 crossref_primary_10_1007_s10346_019_01160_4 crossref_primary_10_1016_j_enggeo_2022_106836 crossref_primary_10_3390_s21124023 crossref_primary_10_1016_j_undsp_2024_07_002 crossref_primary_10_1038_s41598_024_59008_4 crossref_primary_10_3390_ijgi10060367 crossref_primary_10_1007_s10712_020_09611_7 crossref_primary_10_1038_s43247_022_00348_2 crossref_primary_10_1016_j_autcon_2021_103832 crossref_primary_10_2139_ssrn_4125929 crossref_primary_10_3389_fmars_2023_1245926 crossref_primary_10_1002_admi_202101012 crossref_primary_10_1016_j_jenvman_2020_110717 crossref_primary_10_1002_esp_4378 crossref_primary_10_3390_s24227247 crossref_primary_10_1155_2021_5564831 crossref_primary_10_1080_17480930_2023_2235845 crossref_primary_10_3390_rs16152758 crossref_primary_10_3390_ijgi8100430 crossref_primary_10_1016_j_measurement_2024_115905 crossref_primary_10_2166_nh_2013_121 crossref_primary_10_1080_2150704X_2018_1519641 crossref_primary_10_1016_j_isprsjprs_2019_11_025 crossref_primary_10_1117_1_JRS_10_026029 crossref_primary_10_5194_amt_15_6221_2022 crossref_primary_10_1016_j_promfg_2021_06_057 crossref_primary_10_1007_s11852_018_0621_1 crossref_primary_10_5194_tc_13_3117_2019 crossref_primary_10_1002_esp_4125 crossref_primary_10_1029_2019GC008889 crossref_primary_10_1061__ASCE_SU_1943_5428_0000333 crossref_primary_10_3390_rs11202415 crossref_primary_10_1111_mice_12656 crossref_primary_10_3390_rs12111806 crossref_primary_10_1007_s10346_021_01709_2 crossref_primary_10_1186_s40494_019_0257_y crossref_primary_10_1002_esp_5205 crossref_primary_10_1002_esp_5201 crossref_primary_10_3390_rs16010138 crossref_primary_10_3390_rs12183036 crossref_primary_10_3390_rs16010134 crossref_primary_10_1002_lno_11850 crossref_primary_10_1016_j_rineng_2024_101901 crossref_primary_10_1016_j_ifacol_2020_12_2376 crossref_primary_10_3389_fenvs_2024_1484169 crossref_primary_10_3389_fmars_2023_1305807 crossref_primary_10_1016_j_proeps_2015_08_114 crossref_primary_10_3390_su15010021 crossref_primary_10_3389_feart_2022_813813 crossref_primary_10_1080_19475705_2018_1523235 crossref_primary_10_1130_B35049_1 crossref_primary_10_1016_j_geomorph_2024_109343 |
Cites_doi | 10.1109/TPAMI.2008.116 10.1130/GES00110.1 10.1029/2005WR004674 10.1002/esp.1592 10.1016/j.geomorph.2007.09.003 10.1144/1470-9236/05-008 10.1016/j.geomorph.2009.03.021 10.1002/esp.1780 10.1002/esp.2098 10.1145/777792.777840 10.1061/(ASCE)0733-9453(2009)135:4(161) 10.1029/2005GL025038 10.1061/(ASCE)CP.1943-5487.0000028 10.1016/j.isprsjprs.2011.01.005 10.1002/1096-9837(200008)25:9<973::AID-ESP111>3.0.CO;2-Y 10.1109/34.121791 10.1002/esp.1886 10.5194/nhess-9-365-2009 10.1002/esp.483 10.1214/aos/1176344552 10.1016/j.cageo.2012.02.011 10.1016/j.imavis.2006.05.012 10.1016/j.isprsjprs.2012.01.006 10.1016/j.geomorph.2010.03.016 10.1016/j.isprsjprs.2007.07.008 10.1002/esp.1011 10.1111/1467-8659.00236 10.1002/esp.2206 10.1016/j.isprsjprs.2007.05.012 10.1061/(ASCE)0733-9453(2005)131:4(135) 10.1061/(ASCE)SU.1943-5428.0000030 10.1029/2011JF002161 10.1111/j.1365-3091.2009.01068.x 10.1023/A:1007686206695 10.1016/0262-8856(92)90066-C 10.1080/01431160601024234 10.1016/j.cag.2010.01.004 10.1016/j.isprsjprs.2010.01.001 |
ContentType | Journal Article |
Copyright | 2013 International Society for Photogrammetry and Remote Sensing, Inc. (ISPRS) 2014 INIST-CNRS Distributed under a Creative Commons Attribution 4.0 International License |
Copyright_xml | – notice: 2013 International Society for Photogrammetry and Remote Sensing, Inc. (ISPRS) – notice: 2014 INIST-CNRS – notice: Distributed under a Creative Commons Attribution 4.0 International License |
DBID | FBQ AAYXX CITATION IQODW 7QH 7UA C1K F1W H96 L.G 7SP 7U5 8FD FR3 H8D KR7 L7M 7S9 L.6 1XC |
DOI | 10.1016/j.isprsjprs.2013.04.009 |
DatabaseName | AGRIS CrossRef Pascal-Francis Aqualine Water Resources Abstracts Environmental Sciences and Pollution Management ASFA: Aquatic Sciences and Fisheries Abstracts Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Aquatic Science & Fisheries Abstracts (ASFA) Professional Electronics & Communications Abstracts Solid State and Superconductivity Abstracts Technology Research Database Engineering Research Database Aerospace Database Civil Engineering Abstracts Advanced Technologies Database with Aerospace AGRICOLA AGRICOLA - Academic Hyper Article en Ligne (HAL) |
DatabaseTitle | CrossRef Aquatic Science & Fisheries Abstracts (ASFA) Professional Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Aqualine ASFA: Aquatic Sciences and Fisheries Abstracts Water Resources Abstracts Environmental Sciences and Pollution Management Aerospace Database Civil Engineering Abstracts Technology Research Database Electronics & Communications Abstracts Solid State and Superconductivity Abstracts Engineering Research Database Advanced Technologies Database with Aerospace AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA Aerospace Database Aquatic Science & Fisheries Abstracts (ASFA) Professional |
Database_xml | – sequence: 1 dbid: FBQ name: AGRIS url: http://www.fao.org/agris/Centre.asp?Menu_1ID=DB&Menu_2ID=DB1&Language=EN&Content=http://www.fao.org/agris/search?Language=EN sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Geography Engineering |
EISSN | 1872-8235 |
EndPage | 26 |
ExternalDocumentID | oai_HAL_hal_00854167v1 27502150 10_1016_j_isprsjprs_2013_04_009 US201600060040 S0924271613001184 |
GeographicLocations | New Zealand, North I., Rangitikei R |
GeographicLocations_xml | – name: New Zealand, North I., Rangitikei R |
GroupedDBID | --K --M .~1 0R~ 1B1 1RT 1~. 1~5 29J 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AACTN AAEDT AAEDW AAIAV AAIKC AAIKJ AAKOC AALRI AAMNW AAOAW AAQFI AAQXK AAXUO AAYFN ABBOA ABFNM ABJNI ABMAC ABQEM ABQYD ABXDB ABYKQ ACDAQ ACGFS ACLVX ACNNM ACRLP ACSBN ACZNC ADBBV ADEZE ADJOM ADMUD AEBSH AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHZHX AIALX AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD ASPBG ATOGT AVWKF AXJTR AZFZN BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q G8K GBLVA GBOLZ HMA HVGLF HZ~ H~9 IHE IMUCA J1W KOM LY3 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG RNS ROL RPZ SDF SDG SEP SES SEW SPC SPCBC SSE SSV SSZ T5K T9H WUQ ZMT ~02 ~G- AAHBH AATTM AAXKI ABDPE ABWVN ACRPL ADNMO AEIPS AFJKZ AKRWK ANKPU BNPGV FBQ SSH AAYWO AAYXX ACVFH ADCNI AEUPX AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKYEP APXCP CITATION EFKBS IQODW 7QH 7UA C1K F1W H96 L.G 7SP 7U5 8FD FR3 H8D KR7 L7M 7S9 L.6 1XC |
ID | FETCH-LOGICAL-a525t-da84171dc1a3b6b0a8e3335de0eed74f1c0fdc1a058ee9f8904682a0bd2a60f63 |
IEDL.DBID | .~1 |
ISSN | 0924-2716 |
IngestDate | Wed Jul 02 06:31:53 EDT 2025 Fri Jul 11 15:25:17 EDT 2025 Fri Jul 11 01:03:42 EDT 2025 Fri Jul 11 09:45:10 EDT 2025 Mon Jul 21 09:16:30 EDT 2025 Tue Jul 01 03:46:32 EDT 2025 Thu Apr 24 23:07:33 EDT 2025 Thu Apr 03 09:45:36 EDT 2025 Fri Feb 23 02:28:04 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Surface roughness Point cloud Geomorphology 3D change detection Terrestrial laser scanner Self-affinity algorithms laser methods water wells accuracy vegetation bedrock roughness uncertainties rivers models orientation maps topography scanner methods three-dimensional models erosion confidence interval canyons errors |
Language | English |
License | CC BY 4.0 Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a525t-da84171dc1a3b6b0a8e3335de0eed74f1c0fdc1a058ee9f8904682a0bd2a60f63 |
Notes | http://dx.doi.org/10.1016/j.isprsjprs.2013.04.009 ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0002-8980-1415 |
PQID | 1513443657 |
PQPubID | 23462 |
PageCount | 17 |
ParticipantIDs | hal_primary_oai_HAL_hal_00854167v1 proquest_miscellaneous_2000068169 proquest_miscellaneous_1642283123 proquest_miscellaneous_1513443657 pascalfrancis_primary_27502150 crossref_primary_10_1016_j_isprsjprs_2013_04_009 crossref_citationtrail_10_1016_j_isprsjprs_2013_04_009 fao_agris_US201600060040 elsevier_sciencedirect_doi_10_1016_j_isprsjprs_2013_04_009 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2013-08-01 |
PublicationDateYYYYMMDD | 2013-08-01 |
PublicationDate_xml | – month: 08 year: 2013 text: 2013-08-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Amsterdam |
PublicationPlace_xml | – name: Amsterdam |
PublicationTitle | ISPRS journal of photogrammetry and remote sensing |
PublicationYear | 2013 |
Publisher | Elsevier B.V Elsevier |
Publisher_xml | – name: Elsevier B.V – name: Elsevier |
References | (Accessed 9.04.13). Abellán, Calvet, Vilaplana, Blanchard (b0010) 2010; 119 Cignoni, Rocchini (b0070) 1998; 17 Besl, McKay (b0040) 1992; 14 Yang, Medioni (b0260) 1992; 10 Hodge, Brasington, Richards (b0115) 2009; 34 Butler, Lane, Chandler (b0065) 2001; 33 Schürch, Densmore, Rosser, Lim, McArdell (b0215) 2011; 36 Soudarissanane, S., Van Ree, J., Bucksch, A., Lindenbergh, R., 2007. Error budget of terrestrial laser scanning: influence of the incidence angle on the scan quality. In: Proc. 3D-NordOst, pp. 1–8. Borradaile (b0050) 2003 Aberle, Nikora (b0015) 2006; 42 Lichti, Gordon, Tipdecho (b0150) 2005; 131 Heritage, Milan (b0105) 2009; 113 Lane, Westaway, Hicks (b0135) 2003; 28 Aryal, Brooks, Reid, Bawden, Pawlak (b0025) 2012; 117 Fuller, Large, Charlton, Heritage, Milan (b0090) 2003; 28 O’Neal, Pizzuto (b0190) 2011; 36 Hodge (b0110) 2010; 65 Lalonde, J.-F., Unnikrishnan, R., Vandapel, N., Hebert, M., 2005. Scale Selection for Classification of Point-sampled 3-D Surfaces. In: Proc. of the fifth international conference on 3-D digital imaging and modeling, pp. 285–292. Wheaton, Brasington, Darby, Sear (b0255) 2009; 35 Salvi, Matabosch, Fofi, Forest (b0210) 2007; 25 Bae, Lichti (b0035) 2008; 63 Brodu, Lague (b0060) 2012; 68 Rosser, Petley, Lim, Dunning, Allison (b0200) 2005; 38 Li, Schnabel, Klein, Cheng, Dang, Jin (b0145) 2010; 34 Abellán, Jaboyedoff, Oppikofer, Vilaplana (b0005) 2009; 9 Girardeau-Montaut, Roux, Marc, Thibault (b0095) 2005; 36 Milan, Heritage, Hetherington (b0160) 2007; 32 Wawrzyniec, McFadden, Ellwein, Meyer, Scuderi, McAuliffe, Fawcett (b0250) 2007; 3 Soudarissanane, Lindenbergh, Menenti, Teunissen (b0220) 2009; 38 Monserrat, Crosetto (b0170) 2008; 63 Olsen, Johnstone, Driscoll, Ashford, Kuester (b0175) 2009; 135 Soudarissanane, Lindenbergh, Menenti, Teunissen (b0225) 2011; 66 Boehler, Vicent, Marbs (b0045) 2003; 34 Gordon, S., Lichti, D., Stewart, M., 2001. Application of a high-resolution, ground-based laser scanner for deformation measurements. In: Proc. of the tenth International FIG Symposium on Deformation Measurements, Orange, California, USA, 19–22 March 2001, pp. 23–32. Teza, Galgaro, Zaltron, Genevois (b0235) 2007; 28 Efron (b0080) 1979; 7 Olsen, Kuester, Chang, Hutchinson (b0185) 2010; 24 Hodge, Brasington, Richards (b0120) 2009; 56 Leica, 2011. Cyclone 7.2 (last accessed 09.04.13). Van Gosliga, Lindenbergh, Pfeifer (b0245) 2006; 36 Brasington, Rumsby, McVey (b0055) 2000; 25 Alba, M., Fregonese, L., Prandi, F., Scaioni, M., Valgoi, P., 2006. Structural monitoring of a large dam by terrestrial laser scanning. International Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences 36 (Part 5) (on CD-ROM). Mechelke, K., Kersten, T.P., Lindstaedt, M., 2007. Comparative investigations into the accuracy behaviour of the new generation of Terrestrial Laser Scanning systems. In: Optical 3-D Measurement Techniques VIII, pp. 319–327. Teza, Pesci, Genevois, Galgaro (b0240) 2008; 97 Mitra, N.J., Nguyen, A., 2003. Estimating surface normals in noisy point cloud data. In: Proc. of the nineteenth conference on Computational geometry, pp. 322–328. Bae, Belton, Lichti (b0030) 2009; 31 Rychkov, Brasington, Vericat (b0205) 2012; 42 Feder (b0085) 1988 EDF R&D, T.P., 2011. CloudCompare (version 2.3) [GPL software]. Zeibak, Filin (b0265) 2007; 36 Olsen, Johnstone, Kuester, Driscoll, Ashford (b0180) 2011; 137 Renard, Voisin, Marsan, Schmittbuhl (b0195) 2006; 33 Kazhdan, M., Bolitho, M., Hoppe, H., 2006. Poisson Surface Reconstruction. In: Proc. of the fourth Eurographics Symposium on Geometry Processing, pp. 61–70. Fuller (10.1016/j.isprsjprs.2013.04.009_b0090) 2003; 28 Li (10.1016/j.isprsjprs.2013.04.009_b0145) 2010; 34 10.1016/j.isprsjprs.2013.04.009_b0075 10.1016/j.isprsjprs.2013.04.009_b0230 Van Gosliga (10.1016/j.isprsjprs.2013.04.009_b0245) 2006; 36 Schürch (10.1016/j.isprsjprs.2013.04.009_b0215) 2011; 36 Hodge (10.1016/j.isprsjprs.2013.04.009_b0115) 2009; 34 Borradaile (10.1016/j.isprsjprs.2013.04.009_b0050) 2003 Olsen (10.1016/j.isprsjprs.2013.04.009_b0180) 2011; 137 10.1016/j.isprsjprs.2013.04.009_b0100 Rosser (10.1016/j.isprsjprs.2013.04.009_b0200) 2005; 38 Aryal (10.1016/j.isprsjprs.2013.04.009_b0025) 2012; 117 Lichti (10.1016/j.isprsjprs.2013.04.009_b0150) 2005; 131 Feder (10.1016/j.isprsjprs.2013.04.009_b0085) 1988 Rychkov (10.1016/j.isprsjprs.2013.04.009_b0205) 2012; 42 Brodu (10.1016/j.isprsjprs.2013.04.009_b0060) 2012; 68 Milan (10.1016/j.isprsjprs.2013.04.009_b0160) 2007; 32 O’Neal (10.1016/j.isprsjprs.2013.04.009_b0190) 2011; 36 Cignoni (10.1016/j.isprsjprs.2013.04.009_b0070) 1998; 17 Heritage (10.1016/j.isprsjprs.2013.04.009_b0105) 2009; 113 Besl (10.1016/j.isprsjprs.2013.04.009_b0040) 1992; 14 Hodge (10.1016/j.isprsjprs.2013.04.009_b0120) 2009; 56 10.1016/j.isprsjprs.2013.04.009_b0155 Butler (10.1016/j.isprsjprs.2013.04.009_b0065) 2001; 33 Teza (10.1016/j.isprsjprs.2013.04.009_b0240) 2008; 97 Salvi (10.1016/j.isprsjprs.2013.04.009_b0210) 2007; 25 Brasington (10.1016/j.isprsjprs.2013.04.009_b0055) 2000; 25 Soudarissanane (10.1016/j.isprsjprs.2013.04.009_b0225) 2011; 66 10.1016/j.isprsjprs.2013.04.009_b0130 Olsen (10.1016/j.isprsjprs.2013.04.009_b0175) 2009; 135 Aberle (10.1016/j.isprsjprs.2013.04.009_b0015) 2006; 42 10.1016/j.isprsjprs.2013.04.009_b0165 Olsen (10.1016/j.isprsjprs.2013.04.009_b0185) 2010; 24 Lane (10.1016/j.isprsjprs.2013.04.009_b0135) 2003; 28 Abellán (10.1016/j.isprsjprs.2013.04.009_b0005) 2009; 9 10.1016/j.isprsjprs.2013.04.009_b0125 Abellán (10.1016/j.isprsjprs.2013.04.009_b0010) 2010; 119 Wheaton (10.1016/j.isprsjprs.2013.04.009_b0255) 2009; 35 Hodge (10.1016/j.isprsjprs.2013.04.009_b0110) 2010; 65 10.1016/j.isprsjprs.2013.04.009_b0140 10.1016/j.isprsjprs.2013.04.009_b0020 Bae (10.1016/j.isprsjprs.2013.04.009_b0035) 2008; 63 Girardeau-Montaut (10.1016/j.isprsjprs.2013.04.009_b0095) 2005; 36 Monserrat (10.1016/j.isprsjprs.2013.04.009_b0170) 2008; 63 Efron (10.1016/j.isprsjprs.2013.04.009_b0080) 1979; 7 Zeibak (10.1016/j.isprsjprs.2013.04.009_b0265) 2007; 36 Teza (10.1016/j.isprsjprs.2013.04.009_b0235) 2007; 28 Yang (10.1016/j.isprsjprs.2013.04.009_b0260) 1992; 10 Wawrzyniec (10.1016/j.isprsjprs.2013.04.009_b0250) 2007; 3 Bae (10.1016/j.isprsjprs.2013.04.009_b0030) 2009; 31 Renard (10.1016/j.isprsjprs.2013.04.009_b0195) 2006; 33 Boehler (10.1016/j.isprsjprs.2013.04.009_b0045) 2003; 34 Soudarissanane (10.1016/j.isprsjprs.2013.04.009_b0220) 2009; 38 |
References_xml | – volume: 17 start-page: 167 year: 1998 end-page: 174 ident: b0070 article-title: Metro: measuring error on simplified surfaces publication-title: Computer Graphics Forum – volume: 42 start-page: 1 year: 2006 end-page: 11 ident: b0015 article-title: Statistical properties of armored gravel bed surfaces publication-title: Water Resources Research – volume: 117 start-page: 1 year: 2012 end-page: 15 ident: b0025 article-title: Displacement fields from point cloud data: application of particle imaging velocimetry to landslide geodesy publication-title: Journal of Geophysical Research – volume: 63 start-page: 142 year: 2008 end-page: 154 ident: b0170 article-title: Deformation measurement using terrestrial laser scanning data and least squares 3D surface matching publication-title: ISPRS Journal of Photogrammetry and Remote Sensing – volume: 68 start-page: 121 year: 2012 end-page: 134 ident: b0060 article-title: 3D terrestrial lidar data classification of complex natural scenes using a multi-scale dimensionality criterion: applications in geomorphology publication-title: ISPRS Journal of Photogrammetry and Remote Sensing – volume: 28 start-page: 889 year: 2003 end-page: 903 ident: b0090 article-title: Reach-scale sediment transfers: an evaluation of two morphological budgeting approaches publication-title: Earth Surface Processes and Landforms – volume: 14 start-page: 239 year: 1992 end-page: 256 ident: b0040 article-title: A method for registration of 3-D shapes publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence – reference: Kazhdan, M., Bolitho, M., Hoppe, H., 2006. Poisson Surface Reconstruction. In: Proc. of the fourth Eurographics Symposium on Geometry Processing, pp. 61–70. – reference: > (last accessed 09.04.13). – volume: 56 start-page: 2024 year: 2009 end-page: 2043 ident: b0120 article-title: Analysing laser-scanned digital terrain models of gravel bed surfaces: linking morphology to sediment transport processes and hydraulics publication-title: Sedimentology – volume: 10 start-page: 145 year: 1992 end-page: 155 ident: b0260 article-title: Object modelling by registration of multiple range images publication-title: Image and Vision Computing – volume: 9 start-page: 365 year: 2009 end-page: 372 ident: b0005 article-title: Detection of millimetric deformation using a terrestrial laser scanner: experiment and application to a rockfall event publication-title: Natural Hazards and Earth System Science – volume: 36 start-page: 430 year: 2007 end-page: 435 ident: b0265 article-title: Change detection via terrestrial laser scanning publication-title: International Archives of Photogrammetry and Remote Sensing – reference: > (Accessed 9.04.13). – volume: 119 start-page: 162 year: 2010 end-page: 171 ident: b0010 article-title: Detection and spatial prediction of rockfalls by means of terrestrial laser scanner monitoring publication-title: Geomorphology – volume: 28 start-page: 249 year: 2003 end-page: 271 ident: b0135 article-title: Estimation of erosion and deposition volumes in a large, gravel-bed, braided river using synoptic remote sensing publication-title: Earth Surface Processes and Landforms – volume: 33 start-page: 301 year: 2001 end-page: 330 ident: b0065 article-title: Characterization of the structure of river-bed gravels using two-dimensional fractal analysis 1 publication-title: Mathematical Geology – reference: Leica, 2011. Cyclone 7.2: < – volume: 25 start-page: 578 year: 2007 end-page: 596 ident: b0210 article-title: A review of recent range image registration methods with accuracy evaluation publication-title: Image and Vision Computing – volume: 36 start-page: 1847 year: 2011 end-page: 1859 ident: b0215 article-title: Detection of surface change in complex topography using terrestrial laser scanning: application to the Illgraben debris-flow channel publication-title: Earth Surface Processes and Landforms – volume: 25 start-page: 973 year: 2000 end-page: 990 ident: b0055 article-title: Monitoring and modelling morphological change in a braided gravel-bed river using high resolution GPS-based survey publication-title: Earth Surface Processes and Landforms – volume: 65 start-page: 227 year: 2010 end-page: 240 ident: b0110 article-title: Using simulated terrestrial laser scanning to analyse errors in high-resolution scan data of irregular surfaces publication-title: ISPRS Journal of Photogrammetry and Remote Sensing – volume: 42 start-page: 64 year: 2012 end-page: 70 ident: b0205 article-title: Computational and methodological aspects of terrestrial surface analysis based on point clouds publication-title: Computers & Geosciences – volume: 7 start-page: 1 year: 1979 end-page: 26 ident: b0080 article-title: Bootstrap methods: another look at the jackknife publication-title: The Annals of Statistics – volume: 34 start-page: 954 year: 2009 end-page: 968 ident: b0115 article-title: In situ characterization of graine-scale fluvial morphology using terrestrial laser scanning publication-title: Earth Surface Processes and Landforms – volume: 35 start-page: 136 year: 2009 end-page: 156 ident: b0255 article-title: Accounting for uncertainty in DEMs from repeat topographic surveys: improved sediment budgets publication-title: Earth Surface Processes and Landforms – volume: 24 start-page: 264 year: 2010 end-page: 272 ident: b0185 article-title: Terrestrial laser scanning-based structural damage assessment publication-title: Journal of Computing in Civil Engineering – year: 1988 ident: b0085 article-title: Fractals – volume: 3 start-page: 550 year: 2007 ident: b0250 article-title: Chronotopographic analysis directly from point-cloud data: a method for detecting small, seasonal hill slope change, Black Mesa Escarpment, NE Arizona publication-title: Geosphere – volume: 28 start-page: 3425 year: 2007 end-page: 3446 ident: b0235 article-title: Terrestrial laser scanner to detect landslide displacement fields: a new approach publication-title: International Journal of Remote Sensing – volume: 97 start-page: 424 year: 2008 end-page: 437 ident: b0240 article-title: Characterization of landslide ground surface kinematics from terrestrial laser scanning and strain field computation publication-title: Geomorphology – volume: 113 start-page: 4 year: 2009 end-page: 11 ident: b0105 article-title: Terrestrial laser scanning of grain roughness in a gravel-bed river publication-title: Geomorphology – volume: 36 start-page: 30 year: 2005 end-page: 35 ident: b0095 article-title: Change detection on points cloud data acquired with a ground laser scanner publication-title: International Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences – volume: 36 year: 2006 ident: b0245 article-title: Deformation analysis of a bored tunnel by means of terrestrial laser scanning publication-title: International Archives of Photogrammetry, Remote Sensing and Spatial Information – reference: Soudarissanane, S., Van Ree, J., Bucksch, A., Lindenbergh, R., 2007. Error budget of terrestrial laser scanning: influence of the incidence angle on the scan quality. In: Proc. 3D-NordOst, pp. 1–8. – volume: 131 start-page: 135 year: 2005 end-page: 142 ident: b0150 article-title: Error models and propagation in directly georeferenced terrestrial laser scanner networks publication-title: Journal of Surveying Engineering – volume: 137 start-page: 14 year: 2011 end-page: 25 ident: b0180 article-title: New automated point-cloud alignment for ground-based light detection and ranging data of long coastal sections publication-title: Journal of Surveying Engineering – reference: Alba, M., Fregonese, L., Prandi, F., Scaioni, M., Valgoi, P., 2006. Structural monitoring of a large dam by terrestrial laser scanning. International Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences 36 (Part 5) (on CD-ROM). – reference: Gordon, S., Lichti, D., Stewart, M., 2001. Application of a high-resolution, ground-based laser scanner for deformation measurements. In: Proc. of the tenth International FIG Symposium on Deformation Measurements, Orange, California, USA, 19–22 March 2001, pp. 23–32. – volume: 135 start-page: 161 year: 2009 end-page: 169 ident: b0175 article-title: Terrestrial laser scanning of extended cliff sections in dynamic environments: parameter analysis publication-title: Journal of Surveying Engineering – volume: 34 start-page: 696 year: 2003 end-page: 701 ident: b0045 article-title: Investigating Laser Scanner Accuracy publication-title: The International Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences – reference: EDF R&D, T.P., 2011. CloudCompare (version 2.3) [GPL software]. < – reference: Lalonde, J.-F., Unnikrishnan, R., Vandapel, N., Hebert, M., 2005. Scale Selection for Classification of Point-sampled 3-D Surfaces. In: Proc. of the fifth international conference on 3-D digital imaging and modeling, pp. 285–292. – volume: 31 start-page: 577 year: 2009 end-page: 590 ident: b0030 article-title: A closed-form expression of the positional uncertainty for 3D point clouds publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence – volume: 38 start-page: 183 year: 2009 end-page: 188 ident: b0220 article-title: Incidence angle influence on the quality of terrestrial laser scanning points publication-title: International Archives of Photogrammetry, Remote Sensing and Spatial Information – volume: 34 start-page: 94 year: 2010 end-page: 106 ident: b0145 article-title: Robust normal estimation for point clouds with sharp features publication-title: Computers & Graphics – year: 2003 ident: b0050 article-title: Statistics of earth science data: their distribution in space, time, and orientation – reference: Mechelke, K., Kersten, T.P., Lindstaedt, M., 2007. Comparative investigations into the accuracy behaviour of the new generation of Terrestrial Laser Scanning systems. In: Optical 3-D Measurement Techniques VIII, pp. 319–327. – volume: 36 start-page: 695 year: 2011 end-page: 701 ident: b0190 article-title: The rates and spatial patterns of annual riverbank erosion revealed through terrestrial laser-scanner surveys of the South River, Virginia publication-title: Earth Surface Processes and Landforms – reference: Mitra, N.J., Nguyen, A., 2003. Estimating surface normals in noisy point cloud data. In: Proc. of the nineteenth conference on Computational geometry, pp. 322–328. – volume: 32 start-page: 1657 year: 2007 end-page: 1674 ident: b0160 article-title: Application of a 3D laser scanner in the assessment of erosion and deposition volumes and channel change in a proglacial river publication-title: Earth Surface Processes and Landforms – volume: 38 start-page: 363 year: 2005 end-page: 375 ident: b0200 article-title: Terrestrial laser scanning for monitoring the process of hard rock coastal cliff erosion publication-title: Quarterly Journal of Engineering Geology and Hydrogeology – volume: 63 start-page: 36 year: 2008 end-page: 54 ident: b0035 article-title: A method for automated registration of unorganised point clouds publication-title: ISPRS Journal of Photogrammetry and Remote Sensing – volume: 66 start-page: 389 year: 2011 end-page: 399 ident: b0225 article-title: Scanning geometry: influencing factor on the quality of terrestrial laser scanning points publication-title: ISPRS Journal of Photogrammetry and Remote Sensing – volume: 33 start-page: 33 year: 2006 end-page: 36 ident: b0195 article-title: High resolution 3D laser scanner measurements of a strike-slip fault quantify its morphological anisotropy at all scales publication-title: Geophysical Research Letters – volume: 31 start-page: 577 issue: 4 year: 2009 ident: 10.1016/j.isprsjprs.2013.04.009_b0030 article-title: A closed-form expression of the positional uncertainty for 3D point clouds publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence doi: 10.1109/TPAMI.2008.116 – volume: 3 start-page: 550 issue: 6 year: 2007 ident: 10.1016/j.isprsjprs.2013.04.009_b0250 article-title: Chronotopographic analysis directly from point-cloud data: a method for detecting small, seasonal hill slope change, Black Mesa Escarpment, NE Arizona publication-title: Geosphere doi: 10.1130/GES00110.1 – volume: 42 start-page: 1 issue: 11 year: 2006 ident: 10.1016/j.isprsjprs.2013.04.009_b0015 article-title: Statistical properties of armored gravel bed surfaces publication-title: Water Resources Research doi: 10.1029/2005WR004674 – volume: 32 start-page: 1657 issue: 11 year: 2007 ident: 10.1016/j.isprsjprs.2013.04.009_b0160 article-title: Application of a 3D laser scanner in the assessment of erosion and deposition volumes and channel change in a proglacial river publication-title: Earth Surface Processes and Landforms doi: 10.1002/esp.1592 – volume: 97 start-page: 424 issue: 3–4 year: 2008 ident: 10.1016/j.isprsjprs.2013.04.009_b0240 article-title: Characterization of landslide ground surface kinematics from terrestrial laser scanning and strain field computation publication-title: Geomorphology doi: 10.1016/j.geomorph.2007.09.003 – year: 1988 ident: 10.1016/j.isprsjprs.2013.04.009_b0085 – volume: 38 start-page: 363 issue: 4 year: 2005 ident: 10.1016/j.isprsjprs.2013.04.009_b0200 article-title: Terrestrial laser scanning for monitoring the process of hard rock coastal cliff erosion publication-title: Quarterly Journal of Engineering Geology and Hydrogeology doi: 10.1144/1470-9236/05-008 – ident: 10.1016/j.isprsjprs.2013.04.009_b0230 – volume: 113 start-page: 4 year: 2009 ident: 10.1016/j.isprsjprs.2013.04.009_b0105 article-title: Terrestrial laser scanning of grain roughness in a gravel-bed river publication-title: Geomorphology doi: 10.1016/j.geomorph.2009.03.021 – volume: 34 start-page: 954 year: 2009 ident: 10.1016/j.isprsjprs.2013.04.009_b0115 article-title: In situ characterization of graine-scale fluvial morphology using terrestrial laser scanning publication-title: Earth Surface Processes and Landforms doi: 10.1002/esp.1780 – ident: 10.1016/j.isprsjprs.2013.04.009_b0125 – volume: 36 start-page: 695 issue: 5 year: 2011 ident: 10.1016/j.isprsjprs.2013.04.009_b0190 article-title: The rates and spatial patterns of annual riverbank erosion revealed through terrestrial laser-scanner surveys of the South River, Virginia publication-title: Earth Surface Processes and Landforms doi: 10.1002/esp.2098 – ident: 10.1016/j.isprsjprs.2013.04.009_b0165 doi: 10.1145/777792.777840 – volume: 135 start-page: 161 issue: 4 year: 2009 ident: 10.1016/j.isprsjprs.2013.04.009_b0175 article-title: Terrestrial laser scanning of extended cliff sections in dynamic environments: parameter analysis publication-title: Journal of Surveying Engineering doi: 10.1061/(ASCE)0733-9453(2009)135:4(161) – ident: 10.1016/j.isprsjprs.2013.04.009_b0075 – volume: 33 start-page: 33 issue: 4 year: 2006 ident: 10.1016/j.isprsjprs.2013.04.009_b0195 article-title: High resolution 3D laser scanner measurements of a strike-slip fault quantify its morphological anisotropy at all scales publication-title: Geophysical Research Letters doi: 10.1029/2005GL025038 – volume: 24 start-page: 264 issue: 3 year: 2010 ident: 10.1016/j.isprsjprs.2013.04.009_b0185 article-title: Terrestrial laser scanning-based structural damage assessment publication-title: Journal of Computing in Civil Engineering doi: 10.1061/(ASCE)CP.1943-5487.0000028 – volume: 66 start-page: 389 issue: 4 year: 2011 ident: 10.1016/j.isprsjprs.2013.04.009_b0225 article-title: Scanning geometry: influencing factor on the quality of terrestrial laser scanning points publication-title: ISPRS Journal of Photogrammetry and Remote Sensing doi: 10.1016/j.isprsjprs.2011.01.005 – volume: 25 start-page: 973 issue: 9 year: 2000 ident: 10.1016/j.isprsjprs.2013.04.009_b0055 article-title: Monitoring and modelling morphological change in a braided gravel-bed river using high resolution GPS-based survey publication-title: Earth Surface Processes and Landforms doi: 10.1002/1096-9837(200008)25:9<973::AID-ESP111>3.0.CO;2-Y – volume: 14 start-page: 239 issue: 2 year: 1992 ident: 10.1016/j.isprsjprs.2013.04.009_b0040 article-title: A method for registration of 3-D shapes publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence doi: 10.1109/34.121791 – volume: 35 start-page: 136 issue: 2 year: 2009 ident: 10.1016/j.isprsjprs.2013.04.009_b0255 article-title: Accounting for uncertainty in DEMs from repeat topographic surveys: improved sediment budgets publication-title: Earth Surface Processes and Landforms doi: 10.1002/esp.1886 – volume: 9 start-page: 365 issue: 2 year: 2009 ident: 10.1016/j.isprsjprs.2013.04.009_b0005 article-title: Detection of millimetric deformation using a terrestrial laser scanner: experiment and application to a rockfall event publication-title: Natural Hazards and Earth System Science doi: 10.5194/nhess-9-365-2009 – volume: 28 start-page: 249 issue: 3 year: 2003 ident: 10.1016/j.isprsjprs.2013.04.009_b0135 article-title: Estimation of erosion and deposition volumes in a large, gravel-bed, braided river using synoptic remote sensing publication-title: Earth Surface Processes and Landforms doi: 10.1002/esp.483 – volume: 7 start-page: 1 issue: 1 year: 1979 ident: 10.1016/j.isprsjprs.2013.04.009_b0080 article-title: Bootstrap methods: another look at the jackknife publication-title: The Annals of Statistics doi: 10.1214/aos/1176344552 – volume: 42 start-page: 64 year: 2012 ident: 10.1016/j.isprsjprs.2013.04.009_b0205 article-title: Computational and methodological aspects of terrestrial surface analysis based on point clouds publication-title: Computers & Geosciences doi: 10.1016/j.cageo.2012.02.011 – volume: 36 start-page: 30 issue: Part 3 year: 2005 ident: 10.1016/j.isprsjprs.2013.04.009_b0095 article-title: Change detection on points cloud data acquired with a ground laser scanner publication-title: International Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences – volume: 25 start-page: 578 issue: 5 year: 2007 ident: 10.1016/j.isprsjprs.2013.04.009_b0210 article-title: A review of recent range image registration methods with accuracy evaluation publication-title: Image and Vision Computing doi: 10.1016/j.imavis.2006.05.012 – volume: 68 start-page: 121 issue: 2 year: 2012 ident: 10.1016/j.isprsjprs.2013.04.009_b0060 article-title: 3D terrestrial lidar data classification of complex natural scenes using a multi-scale dimensionality criterion: applications in geomorphology publication-title: ISPRS Journal of Photogrammetry and Remote Sensing doi: 10.1016/j.isprsjprs.2012.01.006 – volume: 119 start-page: 162 issue: 3–4 year: 2010 ident: 10.1016/j.isprsjprs.2013.04.009_b0010 article-title: Detection and spatial prediction of rockfalls by means of terrestrial laser scanner monitoring publication-title: Geomorphology doi: 10.1016/j.geomorph.2010.03.016 – volume: 36 start-page: 430 issue: 3 year: 2007 ident: 10.1016/j.isprsjprs.2013.04.009_b0265 article-title: Change detection via terrestrial laser scanning publication-title: International Archives of Photogrammetry and Remote Sensing – volume: 63 start-page: 142 issue: 1 year: 2008 ident: 10.1016/j.isprsjprs.2013.04.009_b0170 article-title: Deformation measurement using terrestrial laser scanning data and least squares 3D surface matching publication-title: ISPRS Journal of Photogrammetry and Remote Sensing doi: 10.1016/j.isprsjprs.2007.07.008 – volume: 28 start-page: 889 issue: 8 year: 2003 ident: 10.1016/j.isprsjprs.2013.04.009_b0090 article-title: Reach-scale sediment transfers: an evaluation of two morphological budgeting approaches publication-title: Earth Surface Processes and Landforms doi: 10.1002/esp.1011 – ident: 10.1016/j.isprsjprs.2013.04.009_b0100 – volume: 17 start-page: 167 issue: 2 year: 1998 ident: 10.1016/j.isprsjprs.2013.04.009_b0070 article-title: Metro: measuring error on simplified surfaces publication-title: Computer Graphics Forum doi: 10.1111/1467-8659.00236 – volume: 36 start-page: 1847 issue: 14 year: 2011 ident: 10.1016/j.isprsjprs.2013.04.009_b0215 article-title: Detection of surface change in complex topography using terrestrial laser scanning: application to the Illgraben debris-flow channel publication-title: Earth Surface Processes and Landforms doi: 10.1002/esp.2206 – volume: 63 start-page: 36 issue: 1 year: 2008 ident: 10.1016/j.isprsjprs.2013.04.009_b0035 article-title: A method for automated registration of unorganised point clouds publication-title: ISPRS Journal of Photogrammetry and Remote Sensing doi: 10.1016/j.isprsjprs.2007.05.012 – year: 2003 ident: 10.1016/j.isprsjprs.2013.04.009_b0050 – ident: 10.1016/j.isprsjprs.2013.04.009_b0020 – volume: 131 start-page: 135 issue: 4 year: 2005 ident: 10.1016/j.isprsjprs.2013.04.009_b0150 article-title: Error models and propagation in directly georeferenced terrestrial laser scanner networks publication-title: Journal of Surveying Engineering doi: 10.1061/(ASCE)0733-9453(2005)131:4(135) – volume: 137 start-page: 14 issue: 1 year: 2011 ident: 10.1016/j.isprsjprs.2013.04.009_b0180 article-title: New automated point-cloud alignment for ground-based light detection and ranging data of long coastal sections publication-title: Journal of Surveying Engineering doi: 10.1061/(ASCE)SU.1943-5428.0000030 – volume: 117 start-page: 1 issue: F1 year: 2012 ident: 10.1016/j.isprsjprs.2013.04.009_b0025 article-title: Displacement fields from point cloud data: application of particle imaging velocimetry to landslide geodesy publication-title: Journal of Geophysical Research doi: 10.1029/2011JF002161 – volume: 38 start-page: 183 issue: Part 3 year: 2009 ident: 10.1016/j.isprsjprs.2013.04.009_b0220 article-title: Incidence angle influence on the quality of terrestrial laser scanning points publication-title: International Archives of Photogrammetry, Remote Sensing and Spatial Information – ident: 10.1016/j.isprsjprs.2013.04.009_b0140 – ident: 10.1016/j.isprsjprs.2013.04.009_b0130 – volume: 56 start-page: 2024 issue: 7 year: 2009 ident: 10.1016/j.isprsjprs.2013.04.009_b0120 article-title: Analysing laser-scanned digital terrain models of gravel bed surfaces: linking morphology to sediment transport processes and hydraulics publication-title: Sedimentology doi: 10.1111/j.1365-3091.2009.01068.x – volume: 33 start-page: 301 issue: 3 year: 2001 ident: 10.1016/j.isprsjprs.2013.04.009_b0065 article-title: Characterization of the structure of river-bed gravels using two-dimensional fractal analysis 1 publication-title: Mathematical Geology doi: 10.1023/A:1007686206695 – volume: 10 start-page: 145 issue: 3 year: 1992 ident: 10.1016/j.isprsjprs.2013.04.009_b0260 article-title: Object modelling by registration of multiple range images publication-title: Image and Vision Computing doi: 10.1016/0262-8856(92)90066-C – volume: 36 issue: Part 5 year: 2006 ident: 10.1016/j.isprsjprs.2013.04.009_b0245 article-title: Deformation analysis of a bored tunnel by means of terrestrial laser scanning publication-title: International Archives of Photogrammetry, Remote Sensing and Spatial Information – volume: 34 start-page: 696 issue: Part 5 year: 2003 ident: 10.1016/j.isprsjprs.2013.04.009_b0045 article-title: Investigating Laser Scanner Accuracy publication-title: The International Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences – ident: 10.1016/j.isprsjprs.2013.04.009_b0155 – volume: 28 start-page: 3425 year: 2007 ident: 10.1016/j.isprsjprs.2013.04.009_b0235 article-title: Terrestrial laser scanner to detect landslide displacement fields: a new approach publication-title: International Journal of Remote Sensing doi: 10.1080/01431160601024234 – volume: 34 start-page: 94 issue: 2 year: 2010 ident: 10.1016/j.isprsjprs.2013.04.009_b0145 article-title: Robust normal estimation for point clouds with sharp features publication-title: Computers & Graphics doi: 10.1016/j.cag.2010.01.004 – volume: 65 start-page: 227 issue: 2 year: 2010 ident: 10.1016/j.isprsjprs.2013.04.009_b0110 article-title: Using simulated terrestrial laser scanning to analyse errors in high-resolution scan data of irregular surfaces publication-title: ISPRS Journal of Photogrammetry and Remote Sensing doi: 10.1016/j.isprsjprs.2010.01.001 |
SSID | ssj0001568 |
Score | 2.6029868 |
Snippet | [Display omitted]
Surveying techniques such as terrestrial laser scanner have recently been used to measure surface changes via 3D point cloud (PC) comparison.... Surveying techniques such as terrestrial laser scanner have recently been used to measure surface changes via 3D point cloud (PC) comparison. Two types of... |
SourceID | hal proquest pascalfrancis crossref fao elsevier |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 10 |
SubjectTerms | 3D change detection algorithms Animal, plant and microbial ecology Applied geophysics bedrock Biological and medical sciences Change detection computer software confidence interval digital elevation models Discrete element method Earth Sciences Earth, ocean, space Exact sciences and technology Freshwater Fundamental and applied biological sciences. Psychology General aspects. Techniques Geomorphology georeferencing Homology Internal geophysics Mathematical models Point cloud rivers Roughness Scanners Sciences of the Universe Self-affinity Surface roughness surveys Teledetection and vegetation maps Terrestrial laser scanner Three dimensional models topography uncertainty vegetation |
Title | Accurate 3D comparison of complex topography with terrestrial laser scanner: Application to the Rangitikei canyon (N-Z) |
URI | https://dx.doi.org/10.1016/j.isprsjprs.2013.04.009 https://www.proquest.com/docview/1513443657 https://www.proquest.com/docview/1642283123 https://www.proquest.com/docview/2000068169 https://hal.science/hal-00854167 |
Volume | 82 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELZKOQBCCApVF8rKIA5wCGvHduLtLSpUy2sPlJUqLpaTtWlKtYn2Ae2lv70zeZUVjx447EqbzETWzGT8eT3-hpAXEDapdnwYSKniQFoPedDGNhBaWiWFlSrEs8OfxtFoIt8fqaMNst-ehcGyyib31zm9ytbNlUFjzUGZ54NDBkuHEOA-bsgATEZOUGSvg5h-fXFV5sHr43AoHKD0Wo1XvijnixP4YI2XqDhPsTLxzzPUDW8L-D7Ggsm7pV2ADX3d_OK3PF5NTgf3yb0GVdKkHvgDsuFmW-TOL1yDW-RW0-78-Pwh-Zlk2Qo5Iqh4Q7OuEyEtfPXr1J3RZVE24hT_qqVgfuzigeFKAXC7OYWRYduuPZpc7YGDGgVEST9bbIOUf3c5BalzuPFyHHx99YhMDt5-2R8FTQeGwKpQLYOp1ZLHfJpxK9IoZVY7IYSaOgZTayw9z5jHm0xp54ZeD2G1rUPL0mloI-YjsU02Z8XM7RAKKzHhWRp7HnLseK1BOfVSO8tVKkTWI1FrdZM19OTYJePUtHVoJ6Zzl0F3GSYNuKtHWKdY1gwd16vstW41a8FmYB65XnkHAsHYb-AZMzkMkaIPWW0gG_bIc4iObhTI3D1KPhq8htAWsG_8g_dIfy14OnFk2gcABk951kaTgXcdN3DszBWrhQF0JqQUkYr_IRNVpG4ASP4uE1YoRfNo-Ph_LPGE3A6r5iBYDrlLNpfzlXsKEG2Z9qt3sE9uJu8-jMaX0aY6qA |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELba7aEghKBQdXkUgzjAIVo7tpNsb1GhSul2D7QrVVwsJ2vTlGoT7QPov2cmL1jx6IFDIiWZiSzPZPw5Hn9DyGtwmzSyfOhJqUJPGgdx0ITGE5E0SgojlY97h0_HQTKRHy7UxQY5bPfCYFplE_vrmF5F6-bOoOnNQZnngzMGUwcf4D4uyABMlptkC9mpZI9sxccnybgLyLzeEYfyHiqspXnli3K-uIID07xERXuKyYl_HqQ2nSngfIk5k_dKs4BudHX9i99CeTU-HT0g9xtgSeO67Q_Jhp3tkLu_0A3ukO2m4vnlzSPyLc6yFdJEUPGOZl0xQlq46urafqfLomzEKf6tpWABLOSBHksBc9s5hZZh5a4DGv9cBgc1CqCSfjRYCSn_YnMKUjfw4M3Y-_T2MZkcvT8_TLymCINnlK-W3tREkod8mnEj0iBlJrJCCDW1DEbXUDqeMYcPmYqsHbpoCBPuyDcsnfomYC4Qu6Q3K2Z2j1CYjAnH0tBxn2PR6wiUUycja7hKhcj6JGh7XWcNQzkWyrjWbSrale7MpdFcmkkN5uoT1imWNUnH7SoHrVn1mr9pGEpuV94DR9DmM1hGT858ZOlDYhsIiH3yCryjawWSdyfxSOM9RLcAf8OvvE_215ynE0eyfcBg8JaXrTdp-NxxDcfMbLFaaABoQkoRqPAfMkHF6waY5O8yfgVUIh4Mn_xPT7wg28n56UiPjscnT8kdv6oVgtmRz0hvOV_Z54DYlul-80X-AHi-PVk |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Accurate+3D+comparison+of+complex+topography+with+terrestrial+laser+scanner%3A+Application+to+the+Rangitikei+canyon+%28N-Z%29&rft.jtitle=ISPRS+journal+of+photogrammetry+and+remote+sensing&rft.au=Lague%2C+Dimitri&rft.au=Brodu%2C+Nicolas&rft.au=Leroux%2C+J%C3%A9r%C3%B4me&rft.date=2013-08-01&rft.issn=0924-2716&rft.volume=82+p.10-26&rft.spage=10&rft.epage=26&rft_id=info:doi/10.1016%2Fj.isprsjprs.2013.04.009&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0924-2716&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0924-2716&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0924-2716&client=summon |