Accurate 3D comparison of complex topography with terrestrial laser scanner: Application to the Rangitikei canyon (N-Z)

[Display omitted] Surveying techniques such as terrestrial laser scanner have recently been used to measure surface changes via 3D point cloud (PC) comparison. Two types of approaches have been pursued: 3D tracking of homologous parts of the surface to compute a displacement field, and distance calc...

Full description

Saved in:
Bibliographic Details
Published inISPRS journal of photogrammetry and remote sensing Vol. 82; pp. 10 - 26
Main Authors Lague, Dimitri, Brodu, Nicolas, Leroux, Jérôme
Format Journal Article
LanguageEnglish
Published Amsterdam Elsevier B.V 01.08.2013
Elsevier
Subjects
Online AccessGet full text
ISSN0924-2716
1872-8235
DOI10.1016/j.isprsjprs.2013.04.009

Cover

Loading…
Abstract [Display omitted] Surveying techniques such as terrestrial laser scanner have recently been used to measure surface changes via 3D point cloud (PC) comparison. Two types of approaches have been pursued: 3D tracking of homologous parts of the surface to compute a displacement field, and distance calculation between two point clouds when homologous parts cannot be defined. This study deals with the second approach, typical of natural surfaces altered by erosion, sedimentation or vegetation between surveys. Current comparison methods are based on a closest point distance or require at least one of the PC to be meshed with severe limitations when surfaces present roughness elements at all scales. To solve these issues, we introduce a new algorithm performing a direct comparison of point clouds in 3D. The method has two steps: (1) surface normal estimation and orientation in 3D at a scale consistent with the local surface roughness; (2) measurement of the mean surface change along the normal direction with explicit calculation of a local confidence interval. Comparison with existing methods demonstrates the higher accuracy of our approach, as well as an easier workflow due to the absence of surface meshing or Digital Elevation Model (DEM) generation. Application of the method in a rapidly eroding, meandering bedrock river (Rangitikei River canyon) illustrates its ability to handle 3D differences in complex situations (flat and vertical surfaces on the same scene), to reduce uncertainty related to point cloud roughness by local averaging and to generate 3D maps of uncertainty levels. We also demonstrate that for high precision survey scanners, the total error budget on change detection is dominated by the point clouds registration error and the surface roughness. Combined with mm-range local georeferencing of the point clouds, levels of detection down to 6mm (defined at 95% confidence) can be routinely attained in situ over ranges of 50m. We provide evidence for the self-affine behaviour of different surfaces. We show how this impacts the calculation of normal vectors and demonstrate the scaling behaviour of the level of change detection. The algorithm has been implemented in a freely available open source software package. It operates in complex 3D cases and can also be used as a simpler and more robust alternative to DEM differencing for the 2D cases.
AbstractList Surveying techniques such as terrestrial laser scanner have recently been used to measure surface changes via 3D point cloud (PC) comparison. Two types of approaches have been pursued: 3D tracking of homologous parts of the surface to compute a displacement field, and distance calculation between two point clouds when homologous parts cannot be defined. This study deals with the second approach, typical of natural surfaces altered by erosion, sedimentation or vegetation between surveys. Current comparison methods are based on a closest point distance or require at least one of the PC to be meshed with severe limitations when surfaces present roughness elements at all scales. To solve these issues, we introduce a new algorithm performing a direct comparison of point clouds in 3D. The method has two steps: (1) surface normal estimation and orientation in 3D at a scale consistent with the local surface roughness; (2) measurement of the mean surface change along the normal direction with explicit calculation of a local confidence interval. Comparison with existing methods demonstrates the higher accuracy of our approach, as well as an easier workflow due to the absence of surface meshing or Digital Elevation Model (DEM) generation. Application of the method in a rapidly eroding, meandering bedrock river (Rangitikei River canyon) illustrates its ability to handle 3D differences in complex situations (flat and vertical surfaces on the same scene), to reduce uncertainty related to point cloud roughness by local averaging and to generate 3D maps of uncertainty levels. We also demonstrate that for high precision survey scanners, the total error budget on change detection is dominated by the point clouds registration error and the surface roughness. Combined with mm-range local georeferencing of the point clouds, levels of detection down to 6mm (defined at 95% confidence) can be routinely attained in situ over ranges of 50m. We provide evidence for the self-affine behaviour of different surfaces. We show how this impacts the calculation of normal vectors and demonstrate the scaling behaviour of the level of change detection. The algorithm has been implemented in a freely available open source software package. It operates in complex 3D cases and can also be used as a simpler and more robust alternative to DEM differencing for the 2D cases.
[Display omitted] Surveying techniques such as terrestrial laser scanner have recently been used to measure surface changes via 3D point cloud (PC) comparison. Two types of approaches have been pursued: 3D tracking of homologous parts of the surface to compute a displacement field, and distance calculation between two point clouds when homologous parts cannot be defined. This study deals with the second approach, typical of natural surfaces altered by erosion, sedimentation or vegetation between surveys. Current comparison methods are based on a closest point distance or require at least one of the PC to be meshed with severe limitations when surfaces present roughness elements at all scales. To solve these issues, we introduce a new algorithm performing a direct comparison of point clouds in 3D. The method has two steps: (1) surface normal estimation and orientation in 3D at a scale consistent with the local surface roughness; (2) measurement of the mean surface change along the normal direction with explicit calculation of a local confidence interval. Comparison with existing methods demonstrates the higher accuracy of our approach, as well as an easier workflow due to the absence of surface meshing or Digital Elevation Model (DEM) generation. Application of the method in a rapidly eroding, meandering bedrock river (Rangitikei River canyon) illustrates its ability to handle 3D differences in complex situations (flat and vertical surfaces on the same scene), to reduce uncertainty related to point cloud roughness by local averaging and to generate 3D maps of uncertainty levels. We also demonstrate that for high precision survey scanners, the total error budget on change detection is dominated by the point clouds registration error and the surface roughness. Combined with mm-range local georeferencing of the point clouds, levels of detection down to 6mm (defined at 95% confidence) can be routinely attained in situ over ranges of 50m. We provide evidence for the self-affine behaviour of different surfaces. We show how this impacts the calculation of normal vectors and demonstrate the scaling behaviour of the level of change detection. The algorithm has been implemented in a freely available open source software package. It operates in complex 3D cases and can also be used as a simpler and more robust alternative to DEM differencing for the 2D cases.
Surveying techniques such as terrestrial laser scanner have recently been used to measure surface changes via 3D point cloud (PC) comparison. Two types of approaches have been pursued: 3D tracking of homologous parts of the surface to compute a displacement field, and distance calculation between two point clouds when homologous parts cannot be defined. This study deals with the second approach, typical of natural surfaces altered by erosion, sedimentation or vegetation between surveys. Current comparison methods are based on a closest point distance or require at least one of the PC to be meshed with severe limitations when surfaces present roughness elements at all scales. To solve these issues, we introduce a new algorithm performing a direct comparison of point clouds in 3D. The method has two steps: (1) surface normal estimation and orientation in 3D at a scale consistent with the local surface roughness; (2) measurement of the mean surface change along the normal direction with explicit calculation of a local confidence interval. Comparison with existing methods demonstrates the higher accuracy of our approach, as well as an easier workflow due to the absence of surface meshing or Digital Elevation Model (DEM) generation. Application of the method in a rapidly eroding, meandering bedrock river (Rangitikei River canyon) illustrates its ability to handle 3D differences in complex situations (flat and vertical surfaces on the same scene), to reduce uncertainty related to point cloud roughness by local averaging and to generate 3D maps of uncertainty levels. We also demonstrate that for high precision survey scanners, the total error budget on change detection is dominated by the point clouds registration error and the surface roughness. Combined with mm-range local georeferencing of the point clouds, levels of detection down to 6 mm (defined at 95% confidence) can be routinely attained in situ over ranges of 50 m. We provide evidence for the self-affine behaviour of different surfaces. We show how this impacts the calculation of normal vectors and demonstrate the scaling behaviour of the level of change detection. The algorithm has been implemented in a freely available open source software package. It operates in complex 3D cases and can also be used as a simpler and more robust alternative to DEM differencing for the 2D cases.
Surveying techniques such as terrestrial laser scanner have recently been used to measure surface changes via 3D point cloud (PC) comparison. Two types of approaches have been pursued: 3D tracking of homologous parts of the surface to compute a displacement field, and distance calculation between two point clouds when homologous parts cannot be defined. This study deals with the second approach, typical of natural surfaces altered by erosion, sedimentation or vegetation between surveys. Current comparison methods are based on a closest point distance or require at least one of the PC to be meshed with severe limitations when surfaces present roughness elements at all scales. To solve these issues, we introduce a new algorithm performing a direct comparison of point clouds in 3D. The method has two steps: (1) surface normal estimation and orientation in 3D at a scale consistent with the local surface roughness; (2) measurement of the mean surface change along the normal direction with explicit calculation of a local confidence interval. Comparison with existing methods demonstrates the higher accuracy of our approach, as well as an easier workflow due to the absence of surface meshing or Digital Elevation Model (DEM) generation. Application of the method in a rapidly eroding, meandering bedrock river (Rangitikei River canyon) illustrates its ability to handle 3D differences in complex situations (flat and vertical surfaces on the same scene), to reduce uncertainty related to point cloud roughness by local averaging and to generate 3D maps of uncertainty levels. We also demonstrate that for high precision survey scanners, the total error budget on change detection is dominated by the point clouds registration error and the surface roughness. Combined with mm-range local georeferencing of the point clouds, levels of detection down to 6 mm (defined at 95% confidence) can be routinely attained in situ over ranges of 50 m. We provide evidence for the self-affine behaviour of different surfaces. We show how this impacts the calculation of normal vectors and demonstrate the scaling behaviour of the level of change detection. The algorithm has been implemented in a freely available open source software package. It operates in complex 3D cases and can also be used as a simpler and more robust alternative to DEM differencing for the 2D cases. 2013 International Society for Photogrammetry and Remote Sensing, Inc. (ISPRS)
Author Lague, Dimitri
Brodu, Nicolas
Leroux, Jérôme
Author_xml – sequence: 1
  givenname: Dimitri
  surname: Lague
  fullname: Lague, Dimitri
  email: Dimitri.Lague@univ-rennes1.fr
  organization: Géosciences Rennes, Université Rennes 1, CNRS, Campus de Beaulieu, 35042 Rennes, France
– sequence: 2
  givenname: Nicolas
  surname: Brodu
  fullname: Brodu, Nicolas
  organization: Institut de Physique de Rennes, Université Rennes 1, CNRS, Campus de Beaulieu, 35042 Rennes, France
– sequence: 3
  givenname: Jérôme
  surname: Leroux
  fullname: Leroux, Jérôme
  organization: Géosciences Rennes, Université Rennes 1, CNRS, Campus de Beaulieu, 35042 Rennes, France
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=27502150$$DView record in Pascal Francis
https://hal.science/hal-00854167$$DView record in HAL
BookMark eNqNks9v0zAUxyM0JLrB3zBfkLZDyrOdOCkSh2r8GFIFErALF-vVeWld0jjY7kb_e5x16oFLOViW_T7v9_c8O-tdT1l2yWHKgas3m6kNgw-bdKYCuJxCMQWYPcsmvK5EXgtZnmUTmIkiFxVXL7LzEDYAwEtVT7KHuTE7j5GYfM-M2w7obXA9c-3jq6M_LLrBrTwO6z17sHHNInlPIXqLHeswkGfBYN-Tf8vmw9BZg9GmCNGxuCb2DfuVjfYXWZaofTJcfcl_Xr_MnrfYBXr1dF9kdx8__Li5zRdfP32-mS9yLEUZ8wbrgle8MRzlUi0Ba5JSlg0BUVMVLTfQjkYoa6JZW8-gULVAWDYCFbRKXmTXh7hr7PTg7Rb9Xju0-na-0OMfQF0WXFX3PLFXB3bw7vcutai3NhjqOuzJ7YIWaWqgaq5mJ1GuCiFqyYU8jZZcFoVUZZXQ108oppF2rcfe2HAsW1QlCF5C4qoDZ7wLwVN7RDjoURR6o4-i0KMoNBSp07Hud_94Ghsf9xU92u4__C8P_i06jaukFX33PQFqnAxAMdY2PxCUtnpvyetgLPWGGuvJRN04ezLLX_wZ5Dc
CitedBy_id crossref_primary_10_1061__ASCE_CO_1943_7862_0001777
crossref_primary_10_5194_esurf_11_593_2023
crossref_primary_10_5194_tc_16_4701_2022
crossref_primary_10_1016_j_jag_2018_05_015
crossref_primary_10_1080_01431161_2016_1277045
crossref_primary_10_3390_land12020408
crossref_primary_10_1016_j_scitotenv_2025_178807
crossref_primary_10_1007_s12518_020_00326_3
crossref_primary_10_3390_rs16234610
crossref_primary_10_1017_jog_2017_47
crossref_primary_10_3390_rs14061485
crossref_primary_10_1017_jog_2017_48
crossref_primary_10_1016_j_geomorph_2024_109243
crossref_primary_10_1007_s12665_015_4650_x
crossref_primary_10_3390_rs16244647
crossref_primary_10_3390_geosciences11020075
crossref_primary_10_3390_rs16244644
crossref_primary_10_3390_ijgi10030184
crossref_primary_10_1016_j_coastaleng_2016_03_011
crossref_primary_10_1109_TIV_2019_2938109
crossref_primary_10_1080_15481603_2020_1763048
crossref_primary_10_1007_s13349_021_00484_x
crossref_primary_10_1515_jag_2018_0013
crossref_primary_10_1016_j_geomorph_2019_106883
crossref_primary_10_3390_s21062105
crossref_primary_10_3390_rs8020130
crossref_primary_10_3390_rs12182923
crossref_primary_10_1016_j_geomorph_2024_109492
crossref_primary_10_1080_22797254_2017_1300047
crossref_primary_10_1016_j_culher_2019_09_006
crossref_primary_10_3390_drones6090242
crossref_primary_10_1016_j_autcon_2020_103399
crossref_primary_10_26443_seismica_v3i1_1186
crossref_primary_10_1002_rra_3532
crossref_primary_10_1016_j_isprsjprs_2020_12_002
crossref_primary_10_1051_e3sconf_202016503010
crossref_primary_10_3389_frsen_2025_1397513
crossref_primary_10_1016_j_isprsjprs_2023_02_008
crossref_primary_10_3390_rs13081460
crossref_primary_10_3390_rs15020374
crossref_primary_10_1002_wat2_1222
crossref_primary_10_1007_s10346_024_02266_0
crossref_primary_10_1080_15623599_2022_2040078
crossref_primary_10_1016_j_geomorph_2020_107372
crossref_primary_10_1016_j_enggeo_2019_105326
crossref_primary_10_1080_00396265_2017_1361565
crossref_primary_10_1016_j_autcon_2019_102841
crossref_primary_10_3390_rs13081479
crossref_primary_10_3390_rs12213571
crossref_primary_10_3390_rs12142221
crossref_primary_10_1016_j_jag_2023_103396
crossref_primary_10_5194_esurf_8_753_2020
crossref_primary_10_3390_geosciences10090331
crossref_primary_10_1109_ACCESS_2020_3027205
crossref_primary_10_1177_03091333211065123
crossref_primary_10_3390_w15142584
crossref_primary_10_3390_rs14122767
crossref_primary_10_1007_s12518_018_0224_4
crossref_primary_10_1016_j_catena_2022_106359
crossref_primary_10_1016_j_jsames_2023_104379
crossref_primary_10_1007_s10346_020_01416_4
crossref_primary_10_3390_s22020521
crossref_primary_10_2112_JCOASTRES_D_16_00095_1
crossref_primary_10_3390_s24186045
crossref_primary_10_1038_s41598_021_01763_9
crossref_primary_10_1080_17538947_2019_1585975
crossref_primary_10_3390_ijgi9040240
crossref_primary_10_1007_s41064_023_00272_w
crossref_primary_10_34133_2021_9892647
crossref_primary_10_1007_s12517_024_11897_5
crossref_primary_10_1016_j_scitotenv_2018_11_137
crossref_primary_10_1007_s10064_019_01680_2
crossref_primary_10_3390_rs12244064
crossref_primary_10_1260_2047_4970_3_2_287
crossref_primary_10_1016_j_isprsjprs_2023_10_022
crossref_primary_10_3390_rs15194880
crossref_primary_10_1002_esp_4078
crossref_primary_10_1007_s12665_024_11588_0
crossref_primary_10_1080_00140139_2019_1699952
crossref_primary_10_1111_tgis_12818
crossref_primary_10_1080_14634988_2020_1807299
crossref_primary_10_1515_jag_2020_0030
crossref_primary_10_5194_nhess_23_343_2023
crossref_primary_10_1016_j_geomorph_2024_109065
crossref_primary_10_1126_science_adm9247
crossref_primary_10_1051_e3sconf_202341503024
crossref_primary_10_1002_esp_4086
crossref_primary_10_3390_geomatics3040030
crossref_primary_10_1177_14780771211066876
crossref_primary_10_3390_drones8060268
crossref_primary_10_1002_esp_4502
crossref_primary_10_1016_j_precisioneng_2021_01_008
crossref_primary_10_3390_drones5040145
crossref_primary_10_1002_esp_4749
crossref_primary_10_1016_j_geomorph_2018_11_022
crossref_primary_10_1002_esp_4747
crossref_primary_10_1002_esp_4989
crossref_primary_10_1016_j_ejrs_2021_06_002
crossref_primary_10_1177_09544054241276035
crossref_primary_10_3390_drones8110610
crossref_primary_10_1007_s10346_020_01616_y
crossref_primary_10_1093_gigascience_giae035
crossref_primary_10_1016_j_earscirev_2015_05_012
crossref_primary_10_3390_heritage4020043
crossref_primary_10_3390_rs10040575
crossref_primary_10_3390_rs13132494
crossref_primary_10_1016_j_jobe_2021_103274
crossref_primary_10_35595_2414_9179_2024_1_30_617_631
crossref_primary_10_3390_rs10040571
crossref_primary_10_36783_18069657rbcs20200076
crossref_primary_10_1051_e3sconf_202341501025
crossref_primary_10_1016_j_geomorph_2022_108434
crossref_primary_10_3390_rs14205139
crossref_primary_10_1080_15481603_2019_1687133
crossref_primary_10_1016_j_tust_2024_106325
crossref_primary_10_3390_rs13132485
crossref_primary_10_1016_j_cscm_2024_e03284
crossref_primary_10_1002_esp_5819
crossref_primary_10_1016_j_culher_2023_12_007
crossref_primary_10_3390_rs14236107
crossref_primary_10_1016_j_enggeo_2024_107500
crossref_primary_10_3390_s20144000
crossref_primary_10_1016_j_catena_2022_106701
crossref_primary_10_1080_01431161_2023_2274317
crossref_primary_10_3389_fmars_2020_00525
crossref_primary_10_5194_nhess_20_603_2020
crossref_primary_10_1016_j_autcon_2017_09_023
crossref_primary_10_3390_s21030922
crossref_primary_10_3390_s19194275
crossref_primary_10_1016_j_geomorph_2023_108956
crossref_primary_10_3390_s23031717
crossref_primary_10_1016_j_isprsjprs_2021_01_015
crossref_primary_10_3390_ijgi10030127
crossref_primary_10_3390_land10080828
crossref_primary_10_3390_w13152020
crossref_primary_10_3390_rs13061192
crossref_primary_10_1515_jag_2019_0002
crossref_primary_10_1139_cgj_2016_0178
crossref_primary_10_3390_rs15061480
crossref_primary_10_1002_lno_12234
crossref_primary_10_3390_rs11192225
crossref_primary_10_3390_ijgi10030157
crossref_primary_10_1016_j_autcon_2023_104928
crossref_primary_10_1029_2021GL092959
crossref_primary_10_1109_TGRS_2024_3417306
crossref_primary_10_3390_rs13122263
crossref_primary_10_3390_w12082221
crossref_primary_10_1016_j_geomorph_2023_108736
crossref_primary_10_1080_15583058_2023_2260769
crossref_primary_10_3390_en12071304
crossref_primary_10_1038_s43247_024_01353_3
crossref_primary_10_1016_j_measurement_2021_110447
crossref_primary_10_1109_TGRS_2025_3535558
crossref_primary_10_3390_rs13030452
crossref_primary_10_1016_j_ophoto_2023_100055
crossref_primary_10_3390_rs11192208
crossref_primary_10_3390_s17071489
crossref_primary_10_1002_2016JF003850
crossref_primary_10_1002_stc_1987
crossref_primary_10_3390_s21072553
crossref_primary_10_1007_s10980_024_01984_z
crossref_primary_10_3390_rs11161940
crossref_primary_10_3390_heritage8010032
crossref_primary_10_1016_j_scitotenv_2020_138320
crossref_primary_10_1002_esp_4929
crossref_primary_10_5194_nhess_19_2745_2019
crossref_primary_10_1016_j_crte_2019_09_004
crossref_primary_10_1016_j_enggeo_2024_107703
crossref_primary_10_1016_j_rse_2020_111666
crossref_primary_10_1016_j_autcon_2025_106126
crossref_primary_10_3390_app11020754
crossref_primary_10_1007_s13349_022_00555_7
crossref_primary_10_1145_3476979
crossref_primary_10_3390_drones6070175
crossref_primary_10_5194_gc_5_101_2022
crossref_primary_10_3390_drones8110662
crossref_primary_10_1002_esp_4910
crossref_primary_10_3390_ma13163652
crossref_primary_10_5194_nhess_21_2881_2021
crossref_primary_10_1016_j_measurement_2021_109482
crossref_primary_10_3390_s22249627
crossref_primary_10_1515_jag_2019_0044
crossref_primary_10_1016_j_isprsjprs_2021_11_018
crossref_primary_10_3390_rs13030518
crossref_primary_10_3390_s24010286
crossref_primary_10_1061__ASCE_AE_1943_5568_0000397
crossref_primary_10_1109_TRO_2023_3258641
crossref_primary_10_3390_buildings13071749
crossref_primary_10_3390_rs12010015
crossref_primary_10_1186_s40703_023_00203_z
crossref_primary_10_1016_j_measurement_2015_04_026
crossref_primary_10_1016_j_enggeo_2023_107286
crossref_primary_10_1007_s10346_021_01723_4
crossref_primary_10_4081_jae_2023_1521
crossref_primary_10_1016_j_enggeo_2015_05_012
crossref_primary_10_1029_2019JF005225
crossref_primary_10_5194_esurf_6_101_2018
crossref_primary_10_1016_j_enggeo_2018_11_003
crossref_primary_10_3390_s23125623
crossref_primary_10_1061_JHEND8_HYENG_14023
crossref_primary_10_1080_10106049_2022_2074147
crossref_primary_10_1002_2015JF003600
crossref_primary_10_3390_rs14133058
crossref_primary_10_1115_1_4066189
crossref_primary_10_1002_ece3_70238
crossref_primary_10_1080_22797254_2018_1522934
crossref_primary_10_1007_s10346_022_02006_2
crossref_primary_10_3390_drones8010030
crossref_primary_10_3390_rs10071005
crossref_primary_10_1186_s12302_024_00985_8
crossref_primary_10_3390_drones3010018
crossref_primary_10_1016_j_catena_2024_107885
crossref_primary_10_5194_esurf_8_729_2020
crossref_primary_10_1016_j_still_2024_106384
crossref_primary_10_1080_19475705_2017_1345796
crossref_primary_10_1144_qjegh2020_100
crossref_primary_10_1371_journal_pone_0277546
crossref_primary_10_1016_j_ecoinf_2024_102632
crossref_primary_10_1016_j_trpro_2021_07_156
crossref_primary_10_5623_cig2014_406
crossref_primary_10_3390_land12010191
crossref_primary_10_3390_rs12081240
crossref_primary_10_3390_rs15040996
crossref_primary_10_1007_s10346_023_02169_6
crossref_primary_10_1029_2019JF005487
crossref_primary_10_1088_1361_6501_acafff
crossref_primary_10_1007_s12518_023_00529_4
crossref_primary_10_3390_app10082960
crossref_primary_10_3390_rs12020290
crossref_primary_10_1016_j_catena_2018_11_004
crossref_primary_10_1002_2016GL072070
crossref_primary_10_3389_feart_2024_1421705
crossref_primary_10_1007_s10706_024_02913_2
crossref_primary_10_1080_17538947_2020_1862318
crossref_primary_10_3390_s21227550
crossref_primary_10_1108_IJBPA_04_2021_0051
crossref_primary_10_1016_j_coastaleng_2018_04_008
crossref_primary_10_5194_nhess_19_2385_2019
crossref_primary_10_1016_j_jrmge_2023_04_022
crossref_primary_10_1007_s12518_014_0145_9
crossref_primary_10_1016_j_jvolgeores_2019_01_018
crossref_primary_10_3390_jimaging3040042
crossref_primary_10_1007_s10346_021_01647_z
crossref_primary_10_1002_esp_5759
crossref_primary_10_1109_JSTARS_2020_3010069
crossref_primary_10_3390_drones7050298
crossref_primary_10_3390_rs14030490
crossref_primary_10_5026_jgeography_125_299
crossref_primary_10_1002_esp_4892
crossref_primary_10_3390_geosciences9070323
crossref_primary_10_3390_infrastructures5100087
crossref_primary_10_3390_geosciences14030075
crossref_primary_10_1016_j_isprsjprs_2018_10_002
crossref_primary_10_1007_s10346_017_0865_0
crossref_primary_10_3390_su12124975
crossref_primary_10_3390_drones6120429
crossref_primary_10_4000_geomorphologie_11559
crossref_primary_10_5194_hess_19_2881_2015
crossref_primary_10_1111_sed_12723
crossref_primary_10_1016_j_isprsjprs_2020_02_005
crossref_primary_10_1016_j_rse_2021_112683
crossref_primary_10_1029_2019JF005012
crossref_primary_10_5194_esurf_11_779_2023
crossref_primary_10_1002_esp_4643
crossref_primary_10_1016_j_epsl_2014_08_031
crossref_primary_10_1002_esp_4882
crossref_primary_10_1016_j_cities_2023_104644
crossref_primary_10_1016_j_scs_2015_09_010
crossref_primary_10_3390_rs13224584
crossref_primary_10_3390_rs5062813
crossref_primary_10_3390_rs71013029
crossref_primary_10_3390_jmse12091566
crossref_primary_10_3390_w12102748
crossref_primary_10_3390_drones7040258
crossref_primary_10_1002_esp_3787
crossref_primary_10_3390_rs9030189
crossref_primary_10_1016_j_geomorph_2017_12_039
crossref_primary_10_1002_esp_4878
crossref_primary_10_1007_s10921_025_01170_4
crossref_primary_10_3390_sym12121955
crossref_primary_10_1016_j_rse_2024_114022
crossref_primary_10_1088_1742_6596_1249_1_012019
crossref_primary_10_1016_j_ocecoaman_2019_104875
crossref_primary_10_1029_2021GL093415
crossref_primary_10_1109_OJIM_2024_3449936
crossref_primary_10_1016_j_srs_2024_100160
crossref_primary_10_3390_drones9040228
crossref_primary_10_1007_s41976_025_00214_7
crossref_primary_10_1111_sed_12942
crossref_primary_10_1080_02723646_2023_2212989
crossref_primary_10_1051_jnwpu_20234110047
crossref_primary_10_5721_EuJRS20154805
crossref_primary_10_1002_ece3_5443
crossref_primary_10_3390_app13031348
crossref_primary_10_1029_2023GL104626
crossref_primary_10_1080_10095020_2025_2451204
crossref_primary_10_1007_s12524_023_01699_9
crossref_primary_10_1016_j_catena_2023_107534
crossref_primary_10_1016_j_isprsjprs_2024_11_016
crossref_primary_10_1038_s41596_024_01024_9
crossref_primary_10_1007_s12517_022_09683_2
crossref_primary_10_1080_01431161_2025_2457129
crossref_primary_10_1007_s12665_018_7817_4
crossref_primary_10_1007_s00603_024_03772_2
crossref_primary_10_1007_s11859_015_1104_y
crossref_primary_10_1515_jag_2023_0097
crossref_primary_10_2208_jscejj_23_22012
crossref_primary_10_3390_rs15040907
crossref_primary_10_1080_15481603_2024_2341557
crossref_primary_10_3390_jmse11061145
crossref_primary_10_1016_j_daach_2020_e00137
crossref_primary_10_1016_j_catena_2020_104895
crossref_primary_10_1016_j_fri_2021_200460
crossref_primary_10_1007_s11069_021_04556_5
crossref_primary_10_1016_j_geomorph_2021_107836
crossref_primary_10_1016_j_jenvman_2021_114262
crossref_primary_10_1098_rspb_2021_0329
crossref_primary_10_5194_nhess_22_2673_2022
crossref_primary_10_3390_ijgi8120585
crossref_primary_10_1109_MRA_2023_3321402
crossref_primary_10_1007_s12518_024_00561_y
crossref_primary_10_1016_j_jag_2023_103258
crossref_primary_10_3390_rs15092314
crossref_primary_10_1007_s10346_018_1118_6
crossref_primary_10_1139_cgj_2023_0073
crossref_primary_10_5194_esurf_4_359_2016
crossref_primary_10_1080_00393630_2021_1937457
crossref_primary_10_1038_s41598_020_70476_2
crossref_primary_10_1111_phor_12346
crossref_primary_10_1051_geotech_2017009
crossref_primary_10_1016_j_daach_2020_e00156
crossref_primary_10_1016_j_geomorph_2020_107122
crossref_primary_10_1111_tgis_13274
crossref_primary_10_1080_13467581_2021_1973479
crossref_primary_10_1002_esp_5357
crossref_primary_10_1016_j_jobe_2023_107440
crossref_primary_10_1002_esp_4022
crossref_primary_10_1002_esp_5112
crossref_primary_10_1007_s10346_020_01437_z
crossref_primary_10_1007_s10921_017_0444_2
crossref_primary_10_1016_j_mio_2016_04_001
crossref_primary_10_3390_rs13091674
crossref_primary_10_1109_ACCESS_2023_3311017
crossref_primary_10_1016_j_envsoft_2021_104962
crossref_primary_10_1080_15230430_2017_1415852
crossref_primary_10_1007_s10346_017_0801_3
crossref_primary_10_3390_rs14153528
crossref_primary_10_3390_s17102210
crossref_primary_10_1007_s12008_023_01428_z
crossref_primary_10_1016_j_rse_2021_112299
crossref_primary_10_2298_IJGI2202133N
crossref_primary_10_1051_e3sconf_20182900024
crossref_primary_10_1002_esp_4012
crossref_primary_10_3390_rs14153526
crossref_primary_10_1016_j_measurement_2023_112656
crossref_primary_10_3390_rs12010042
crossref_primary_10_1016_j_engstruct_2018_06_094
crossref_primary_10_1111_phor_12525
crossref_primary_10_1002_esp_5591
crossref_primary_10_1016_j_enggeo_2021_106424
crossref_primary_10_1109_JSTARS_2024_3462999
crossref_primary_10_3390_s22239179
crossref_primary_10_1002_esp_4007
crossref_primary_10_1007_s11852_022_00907_x
crossref_primary_10_1002_esp_5333
crossref_primary_10_1016_j_scitotenv_2021_150165
crossref_primary_10_1080_01431161_2019_1706200
crossref_primary_10_1016_j_proeng_2017_05_251
crossref_primary_10_1109_JSTARS_2020_2997239
crossref_primary_10_1002_stc_2156
crossref_primary_10_3390_rs12152447
crossref_primary_10_1016_j_ecoleng_2021_106156
crossref_primary_10_1016_j_geoderma_2021_115369
crossref_primary_10_3390_ijgi10110774
crossref_primary_10_3390_rs13173353
crossref_primary_10_1051_e3sconf_202341506007
crossref_primary_10_3390_rs14225818
crossref_primary_10_1016_j_geomorph_2019_01_003
crossref_primary_10_1016_j_measurement_2020_108759
crossref_primary_10_3390_rs12121946
crossref_primary_10_1016_j_jhydrol_2018_06_019
crossref_primary_10_3390_heritage7040103
crossref_primary_10_1007_s10346_017_0921_9
crossref_primary_10_3390_rs15010263
crossref_primary_10_1515_jag_2023_0038
crossref_primary_10_3390_w11091846
crossref_primary_10_2113_EEG_D_22_00035
crossref_primary_10_3390_rs11131526
crossref_primary_10_3390_s22239391
crossref_primary_10_1007_s12518_025_00623_9
crossref_primary_10_1016_j_isprsjprs_2023_01_010
crossref_primary_10_3390_rs10091494
crossref_primary_10_3390_rs11172035
crossref_primary_10_3390_drones6020030
crossref_primary_10_3390_ijgi8050221
crossref_primary_10_5194_esurf_4_515_2016
crossref_primary_10_2112_JCOASTRES_D_21_00122_1
crossref_primary_10_1016_j_earscirev_2019_102929
crossref_primary_10_3390_rs16010066
crossref_primary_10_3389_fpls_2017_02144
crossref_primary_10_1016_j_iswcr_2022_12_003
crossref_primary_10_1038_s41598_019_44533_4
crossref_primary_10_1002_cepa_1553
crossref_primary_10_1126_science_aat4981
crossref_primary_10_3390_rs12030555
crossref_primary_10_1007_s41064_023_00260_0
crossref_primary_10_3390_drones8050172
crossref_primary_10_1016_j_jafrearsci_2016_04_010
crossref_primary_10_3390_rs13173519
crossref_primary_10_1080_01431161_2020_1752950
crossref_primary_10_3390_rs13204130
crossref_primary_10_1177_0309133315615805
crossref_primary_10_3390_rs14174289
crossref_primary_10_1080_00396265_2016_1266117
crossref_primary_10_3390_rs14030601
crossref_primary_10_5194_gh_74_59_2019
crossref_primary_10_1016_j_geomorph_2020_107069
crossref_primary_10_3390_heritage6020057
crossref_primary_10_1016_j_geomorph_2014_10_039
crossref_primary_10_1186_s40648_019_0148_8
crossref_primary_10_1016_j_isprsjprs_2021_06_011
crossref_primary_10_3390_rs10101547
crossref_primary_10_5194_tc_19_1335_2025
crossref_primary_10_1007_s10346_021_01761_y
crossref_primary_10_3390_rs15225348
crossref_primary_10_37558_gec_v19i1_1002
crossref_primary_10_1016_j_culher_2019_02_011
crossref_primary_10_1016_j_isprsjprs_2019_01_020
crossref_primary_10_1016_j_jsv_2024_118523
crossref_primary_10_3390_geosciences14060165
crossref_primary_10_1007_s10064_021_02426_9
crossref_primary_10_1016_j_rse_2022_113218
crossref_primary_10_1109_LGRS_2022_3148920
crossref_primary_10_1177_14759217231168997
crossref_primary_10_1007_s42461_022_00664_3
crossref_primary_10_1016_j_measurement_2024_114311
crossref_primary_10_1017_jog_2016_54
crossref_primary_10_1080_17538947_2024_2312219
crossref_primary_10_5194_esurf_11_1223_2023
crossref_primary_10_1016_j_geomorph_2019_106994
crossref_primary_10_1080_04353676_2018_1542130
crossref_primary_10_3390_min11111192
crossref_primary_10_3390_s16101648
crossref_primary_10_1016_j_ocecoaman_2019_105004
crossref_primary_10_1007_s00170_021_07780_2
crossref_primary_10_3390_rs15041116
crossref_primary_10_1016_j_earscirev_2017_04_007
crossref_primary_10_1080_13467581_2024_2329351
crossref_primary_10_1016_j_optlaseng_2022_107399
crossref_primary_10_3390_rs14040847
crossref_primary_10_3390_ijgi10010026
crossref_primary_10_1590_0001_3765201820170296
crossref_primary_10_1016_j_ecolind_2020_107011
crossref_primary_10_5194_nhess_23_329_2023
crossref_primary_10_1080_00396265_2015_1133039
crossref_primary_10_3390_rs12101635
crossref_primary_10_5194_tc_13_2835_2019
crossref_primary_10_1029_2023GL103042
crossref_primary_10_1080_22797254_2019_1604082
crossref_primary_10_3389_frsen_2022_1027065
crossref_primary_10_1130_GES01017_1
crossref_primary_10_1016_j_jag_2023_103271
crossref_primary_10_1007_s12210_020_00902_0
crossref_primary_10_1016_j_autcon_2022_104700
crossref_primary_10_3390_rs14061315
crossref_primary_10_3390_drones7020085
crossref_primary_10_1016_j_scitotenv_2023_167494
crossref_primary_10_1016_S1003_6326_15_63947_4
crossref_primary_10_1016_j_geomorph_2017_01_039
crossref_primary_10_3390_rs13183551
crossref_primary_10_3390_rs15041138
crossref_primary_10_1002_wat2_1328
crossref_primary_10_5194_esurf_5_791_2017
crossref_primary_10_1109_JSTARS_2021_3117946
crossref_primary_10_1061_JSUED2_SUENG_1410
crossref_primary_10_1016_j_scitotenv_2020_141693
crossref_primary_10_3390_rs12101615
crossref_primary_10_1177_0309133318788964
crossref_primary_10_1038_s41597_022_01291_9
crossref_primary_10_1515_jag_2024_0089
crossref_primary_10_3390_rs12111885
crossref_primary_10_1080_15481603_2017_1408931
crossref_primary_10_1061__ASCE_SU_1943_5428_0000165
crossref_primary_10_1016_j_jag_2023_103293
crossref_primary_10_3390_s22249593
crossref_primary_10_1051_matecconf_202236405001
crossref_primary_10_3390_app122211335
crossref_primary_10_3390_constrmater2040020
crossref_primary_10_31436_iiumej_v25i2_3211
crossref_primary_10_5194_tc_15_2187_2021
crossref_primary_10_1016_j_geomorph_2016_03_007
crossref_primary_10_1109_TGRS_2024_3359484
crossref_primary_10_1111_2041_210X_13388
crossref_primary_10_3390_geosciences13020029
crossref_primary_10_1016_j_quascirev_2018_07_006
crossref_primary_10_1515_jag_2024_0011
crossref_primary_10_1109_JSTARS_2021_3104845
crossref_primary_10_1002_oa_2587
crossref_primary_10_1016_j_jrmge_2023_09_040
crossref_primary_10_1177_03611981231169530
crossref_primary_10_3390_rs11050586
crossref_primary_10_1016_j_autcon_2022_104731
crossref_primary_10_13168_AGG_2019_0032
crossref_primary_10_14712_23361980_2025_6
crossref_primary_10_1016_j_geomorph_2016_03_013
crossref_primary_10_3390_rs13030366
crossref_primary_10_5194_nhess_18_1055_2018
crossref_primary_10_1007_s00445_024_01709_9
crossref_primary_10_1038_s41598_017_09382_z
crossref_primary_10_1016_j_aei_2017_07_002
crossref_primary_10_1002_gj_4905
crossref_primary_10_3390_app10134633
crossref_primary_10_1016_j_geomorph_2017_01_008
crossref_primary_10_1002_arp_1804
crossref_primary_10_1007_s00267_018_1070_1
crossref_primary_10_3390_rs14143366
crossref_primary_10_4995_raet_2024_21785
crossref_primary_10_1007_s12665_017_6409_z
crossref_primary_10_1016_j_catena_2024_108573
crossref_primary_10_1029_2022EA002420
crossref_primary_10_1109_JSTARS_2024_3373505
crossref_primary_10_1002_2014JF003274
crossref_primary_10_1007_s10661_017_6402_8
crossref_primary_10_1038_s41598_023_46661_4
crossref_primary_10_1080_15583058_2019_1613454
crossref_primary_10_1029_2024EA003514
crossref_primary_10_1080_01431161_2019_1641241
crossref_primary_10_1016_j_daach_2024_e00380
crossref_primary_10_3390_rs12020322
crossref_primary_10_3390_rs70810269
crossref_primary_10_1139_dsa_2022_0036
crossref_primary_10_1016_j_enggeo_2018_12_004
crossref_primary_10_5194_esurf_9_19_2021
crossref_primary_10_1016_j_geomorph_2017_01_001
crossref_primary_10_1017_jog_2024_76
crossref_primary_10_1017_jog_2024_57
crossref_primary_10_1016_j_jag_2022_102781
crossref_primary_10_4081_jae_2021_1130
crossref_primary_10_1016_j_measurement_2024_114158
crossref_primary_10_3390_rs11161871
crossref_primary_10_1002_esp_4833
crossref_primary_10_3390_rs11161878
crossref_primary_10_48123_rsgis_983251
crossref_primary_10_5194_esurf_6_933_2018
crossref_primary_10_1029_2017JF004508
crossref_primary_10_1016_j_jvolgeores_2017_11_006
crossref_primary_10_3390_rs13061073
crossref_primary_10_3390_app13063417
crossref_primary_10_3390_rs15082060
crossref_primary_10_1002_esp_4821
crossref_primary_10_1061__ASCE_GT_1943_5606_0002800
crossref_primary_10_1515_jag_2022_0041
crossref_primary_10_3390_rs13193975
crossref_primary_10_1002_esp_4822
crossref_primary_10_1016_j_jsg_2019_01_001
crossref_primary_10_3390_s20102936
crossref_primary_10_5194_esurf_9_295_2021
crossref_primary_10_1007_s00190_020_01352_0
crossref_primary_10_1017_jog_2024_34
crossref_primary_10_1002_esp_3721
crossref_primary_10_1002_rob_21873
crossref_primary_10_3390_rs9111152
crossref_primary_10_1080_10106049_2023_2175916
crossref_primary_10_1088_1748_9326_ad8fbe
crossref_primary_10_1016_j_ijleo_2022_169706
crossref_primary_10_1049_iet_cvi_2015_0446
crossref_primary_10_1002_stc_1872
crossref_primary_10_5194_esurf_9_1013_2021
crossref_primary_10_1130_GES02259_1
crossref_primary_10_3390_s20123403
crossref_primary_10_1016_j_jvolgeores_2023_107840
crossref_primary_10_1016_j_rse_2024_114522
crossref_primary_10_1515_jag_2022_0031
crossref_primary_10_1016_j_geomorph_2021_108053
crossref_primary_10_1016_j_geomorph_2022_108116
crossref_primary_10_1016_j_geomorph_2022_108356
crossref_primary_10_1080_09613218_2023_2227900
crossref_primary_10_3390_rs15051339
crossref_primary_10_3390_rs12172806
crossref_primary_10_3124_segj_69_297
crossref_primary_10_3390_rs11030239
crossref_primary_10_1080_01431161_2019_1630782
crossref_primary_10_1007_s10346_022_01974_9
crossref_primary_10_5194_tc_18_3253_2024
crossref_primary_10_3389_feart_2023_1183982
crossref_primary_10_1016_j_optlaseng_2020_106089
crossref_primary_10_1029_2022JF007026
crossref_primary_10_1016_j_measurement_2023_114055
crossref_primary_10_1111_arcm_12325
crossref_primary_10_1002_ldr_4712
crossref_primary_10_3390_s20226554
crossref_primary_10_1016_j_eng_2018_11_030
crossref_primary_10_1017_jog_2021_96
crossref_primary_10_1002_esp_5436
crossref_primary_10_1016_j_enggeo_2023_107170
crossref_primary_10_1016_j_jhydrol_2024_131497
crossref_primary_10_1016_j_isprsjprs_2021_03_017
crossref_primary_10_3390_app8030401
crossref_primary_10_5194_nhess_23_3285_2023
crossref_primary_10_1016_j_catena_2024_108622
crossref_primary_10_3846_gac_2024_20647
crossref_primary_10_3390_rs12050829
crossref_primary_10_1029_2023JF007504
crossref_primary_10_1080_04353676_2019_1588543
crossref_primary_10_1139_as_2018_0016
crossref_primary_10_1007_s10845_022_01933_0
crossref_primary_10_1111_phor_12297
crossref_primary_10_1080_00221686_2017_1372820
crossref_primary_10_1002_esp_5667
crossref_primary_10_1002_esp_5420
crossref_primary_10_3390_rs11121471
crossref_primary_10_1016_j_rama_2019_02_009
crossref_primary_10_1109_LGRS_2023_3343097
crossref_primary_10_1016_j_ecoinf_2023_102254
crossref_primary_10_1002_int_22557
crossref_primary_10_1111_phor_12288
crossref_primary_10_3390_w13081040
crossref_primary_10_1016_j_enggeo_2024_107450
crossref_primary_10_1016_j_autcon_2022_104551
crossref_primary_10_3390_rs13132526
crossref_primary_10_1029_2019WR025251
crossref_primary_10_3390_ijgi8080325
crossref_primary_10_5194_esurf_11_343_2023
crossref_primary_10_1007_s00603_021_02417_y
crossref_primary_10_1061__ASCE_AS_1943_5525_0000885
crossref_primary_10_17645_up_v5i2_2885
crossref_primary_10_1002_esp_4571
crossref_primary_10_3390_sym13020335
crossref_primary_10_1002_esp_4796
crossref_primary_10_1016_j_measurement_2023_113684
crossref_primary_10_1016_j_engfailanal_2021_105391
crossref_primary_10_1016_j_jag_2023_103535
crossref_primary_10_3390_app12189374
crossref_primary_10_5194_tc_14_549_2020
crossref_primary_10_1002_esp_3462
crossref_primary_10_1002_esp_5881
crossref_primary_10_1080_13658816_2017_1402914
crossref_primary_10_1080_19475705_2022_2041108
crossref_primary_10_1007_s10661_024_13597_9
crossref_primary_10_1177_03611981231157730
crossref_primary_10_3390_drones7020101
crossref_primary_10_1016_j_est_2016_01_006
crossref_primary_10_1016_j_ophoto_2024_100058
crossref_primary_10_1016_j_geomorph_2023_108799
crossref_primary_10_5194_esurf_6_303_2018
crossref_primary_10_1080_22797254_2019_1686957
crossref_primary_10_3390_rs16061054
crossref_primary_10_1016_j_isprsjprs_2020_10_012
crossref_primary_10_3390_rs14041029
crossref_primary_10_1002_ldr_2967
crossref_primary_10_1007_s10346_022_02009_z
crossref_primary_10_1002_esp_4308
crossref_primary_10_3390_rs10071154
crossref_primary_10_1088_1757_899X_737_1_012230
crossref_primary_10_1109_JSEN_2024_3375864
crossref_primary_10_5194_esurf_10_1211_2022
crossref_primary_10_1016_j_geomorph_2016_10_021
crossref_primary_10_1016_j_csr_2022_104799
crossref_primary_10_1080_22797254_2017_1313097
crossref_primary_10_3390_rs13132572
crossref_primary_10_3390_jmse10030358
crossref_primary_10_1016_j_isprsjprs_2022_12_014
crossref_primary_10_1098_rspb_2019_2383
crossref_primary_10_1109_JSTARS_2024_3382092
crossref_primary_10_3390_geomatics2040025
crossref_primary_10_1080_00393630_2018_1554934
crossref_primary_10_1029_2020WR028980
crossref_primary_10_1002_esp_5855
crossref_primary_10_1016_j_jvolgeores_2023_107918
crossref_primary_10_1109_TGRS_2025_3531495
crossref_primary_10_3390_ijgi7040142
crossref_primary_10_3390_rs12010112
crossref_primary_10_1016_j_conbuildmat_2017_05_075
crossref_primary_10_1109_JSTARS_2024_3522583
crossref_primary_10_1109_LRA_2024_3417113
crossref_primary_10_1007_s12518_019_00263_w
crossref_primary_10_1139_juvs_2019_0006
crossref_primary_10_1016_j_gloplacha_2019_103057
crossref_primary_10_1007_s00603_023_03704_6
crossref_primary_10_1016_j_heliyon_2023_e20225
crossref_primary_10_1002_esp_4996
crossref_primary_10_1002_ppp_2004
crossref_primary_10_3390_rs13071354
crossref_primary_10_1016_j_tust_2023_105306
crossref_primary_10_1002_esp_5608
crossref_primary_10_1016_j_geomorph_2015_06_008
crossref_primary_10_3389_feart_2022_883259
crossref_primary_10_1002_rra_3183
crossref_primary_10_1016_j_geoderma_2022_116223
crossref_primary_10_1007_s41976_019_00021_x
crossref_primary_10_3390_rs15061526
crossref_primary_10_1016_j_enggeo_2019_04_010
crossref_primary_10_1088_1361_6501_abd445
crossref_primary_10_1016_j_optlaseng_2020_106498
crossref_primary_10_3390_rs16152705
crossref_primary_10_3390_rs15071764
crossref_primary_10_3390_s19020427
crossref_primary_10_1155_2021_6628068
crossref_primary_10_1111_phor_12218
crossref_primary_10_3390_rs14174306
crossref_primary_10_1080_10106049_2022_2046870
crossref_primary_10_1016_j_geomorph_2016_11_017
crossref_primary_10_1007_s10346_017_0942_4
crossref_primary_10_1111_phor_12454
crossref_primary_10_5194_esurf_7_1009_2019
crossref_primary_10_1109_TGRS_2024_3353676
crossref_primary_10_1007_s12518_014_0151_y
crossref_primary_10_3390_rs16050802
crossref_primary_10_3390_s17081886
crossref_primary_10_1017_jog_2022_114
crossref_primary_10_5194_esurf_5_293_2017
crossref_primary_10_1016_j_geomorph_2016_11_009
crossref_primary_10_1017_jog_2022_119
crossref_primary_10_1016_j_rse_2016_08_018
crossref_primary_10_1061__ASCE_SU_1943_5428_0000346
crossref_primary_10_1002_2014GL062534
crossref_primary_10_1007_s11852_020_00756_6
crossref_primary_10_1016_j_enggeo_2022_106614
crossref_primary_10_1029_2023GL104721
crossref_primary_10_3390_s19030450
crossref_primary_10_1002_bate_202200025
crossref_primary_10_3389_feart_2018_00152
crossref_primary_10_5194_esurf_7_563_2019
crossref_primary_10_1117_1_JRS_13_044523
crossref_primary_10_3390_s24113534
crossref_primary_10_1007_s00445_023_01673_w
crossref_primary_10_1016_j_geomorph_2020_107474
crossref_primary_10_1016_j_ijrmms_2024_105655
crossref_primary_10_1038_s43247_020_00021_6
crossref_primary_10_1029_2020JF006053
crossref_primary_10_3390_s22114262
crossref_primary_10_1016_j_cageo_2015_06_021
crossref_primary_10_3390_rs11070878
crossref_primary_10_1080_17538947_2024_2375527
crossref_primary_10_3389_ffgc_2023_1224575
crossref_primary_10_1016_j_enggeo_2018_08_010
crossref_primary_10_1111_phor_12463
crossref_primary_10_1002_esp_5494
crossref_primary_10_1007_s13349_025_00916_y
crossref_primary_10_3390_rs14071537
crossref_primary_10_1016_j_coldregions_2021_103344
crossref_primary_10_1016_j_jasrep_2018_06_003
crossref_primary_10_1007_s10346_019_01160_4
crossref_primary_10_1016_j_enggeo_2022_106836
crossref_primary_10_3390_s21124023
crossref_primary_10_1016_j_undsp_2024_07_002
crossref_primary_10_1038_s41598_024_59008_4
crossref_primary_10_3390_ijgi10060367
crossref_primary_10_1007_s10712_020_09611_7
crossref_primary_10_1038_s43247_022_00348_2
crossref_primary_10_1016_j_autcon_2021_103832
crossref_primary_10_2139_ssrn_4125929
crossref_primary_10_3389_fmars_2023_1245926
crossref_primary_10_1002_admi_202101012
crossref_primary_10_1016_j_jenvman_2020_110717
crossref_primary_10_1002_esp_4378
crossref_primary_10_3390_s24227247
crossref_primary_10_1155_2021_5564831
crossref_primary_10_1080_17480930_2023_2235845
crossref_primary_10_3390_rs16152758
crossref_primary_10_3390_ijgi8100430
crossref_primary_10_1016_j_measurement_2024_115905
crossref_primary_10_2166_nh_2013_121
crossref_primary_10_1080_2150704X_2018_1519641
crossref_primary_10_1016_j_isprsjprs_2019_11_025
crossref_primary_10_1117_1_JRS_10_026029
crossref_primary_10_5194_amt_15_6221_2022
crossref_primary_10_1016_j_promfg_2021_06_057
crossref_primary_10_1007_s11852_018_0621_1
crossref_primary_10_5194_tc_13_3117_2019
crossref_primary_10_1002_esp_4125
crossref_primary_10_1029_2019GC008889
crossref_primary_10_1061__ASCE_SU_1943_5428_0000333
crossref_primary_10_3390_rs11202415
crossref_primary_10_1111_mice_12656
crossref_primary_10_3390_rs12111806
crossref_primary_10_1007_s10346_021_01709_2
crossref_primary_10_1186_s40494_019_0257_y
crossref_primary_10_1002_esp_5205
crossref_primary_10_1002_esp_5201
crossref_primary_10_3390_rs16010138
crossref_primary_10_3390_rs12183036
crossref_primary_10_3390_rs16010134
crossref_primary_10_1002_lno_11850
crossref_primary_10_1016_j_rineng_2024_101901
crossref_primary_10_1016_j_ifacol_2020_12_2376
crossref_primary_10_3389_fenvs_2024_1484169
crossref_primary_10_3389_fmars_2023_1305807
crossref_primary_10_1016_j_proeps_2015_08_114
crossref_primary_10_3390_su15010021
crossref_primary_10_3389_feart_2022_813813
crossref_primary_10_1080_19475705_2018_1523235
crossref_primary_10_1130_B35049_1
crossref_primary_10_1016_j_geomorph_2024_109343
Cites_doi 10.1109/TPAMI.2008.116
10.1130/GES00110.1
10.1029/2005WR004674
10.1002/esp.1592
10.1016/j.geomorph.2007.09.003
10.1144/1470-9236/05-008
10.1016/j.geomorph.2009.03.021
10.1002/esp.1780
10.1002/esp.2098
10.1145/777792.777840
10.1061/(ASCE)0733-9453(2009)135:4(161)
10.1029/2005GL025038
10.1061/(ASCE)CP.1943-5487.0000028
10.1016/j.isprsjprs.2011.01.005
10.1002/1096-9837(200008)25:9<973::AID-ESP111>3.0.CO;2-Y
10.1109/34.121791
10.1002/esp.1886
10.5194/nhess-9-365-2009
10.1002/esp.483
10.1214/aos/1176344552
10.1016/j.cageo.2012.02.011
10.1016/j.imavis.2006.05.012
10.1016/j.isprsjprs.2012.01.006
10.1016/j.geomorph.2010.03.016
10.1016/j.isprsjprs.2007.07.008
10.1002/esp.1011
10.1111/1467-8659.00236
10.1002/esp.2206
10.1016/j.isprsjprs.2007.05.012
10.1061/(ASCE)0733-9453(2005)131:4(135)
10.1061/(ASCE)SU.1943-5428.0000030
10.1029/2011JF002161
10.1111/j.1365-3091.2009.01068.x
10.1023/A:1007686206695
10.1016/0262-8856(92)90066-C
10.1080/01431160601024234
10.1016/j.cag.2010.01.004
10.1016/j.isprsjprs.2010.01.001
ContentType Journal Article
Copyright 2013 International Society for Photogrammetry and Remote Sensing, Inc. (ISPRS)
2014 INIST-CNRS
Distributed under a Creative Commons Attribution 4.0 International License
Copyright_xml – notice: 2013 International Society for Photogrammetry and Remote Sensing, Inc. (ISPRS)
– notice: 2014 INIST-CNRS
– notice: Distributed under a Creative Commons Attribution 4.0 International License
DBID FBQ
AAYXX
CITATION
IQODW
7QH
7UA
C1K
F1W
H96
L.G
7SP
7U5
8FD
FR3
H8D
KR7
L7M
7S9
L.6
1XC
DOI 10.1016/j.isprsjprs.2013.04.009
DatabaseName AGRIS
CrossRef
Pascal-Francis
Aqualine
Water Resources Abstracts
Environmental Sciences and Pollution Management
ASFA: Aquatic Sciences and Fisheries Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Electronics & Communications Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Engineering Research Database
Aerospace Database
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
AGRICOLA
AGRICOLA - Academic
Hyper Article en Ligne (HAL)
DatabaseTitle CrossRef
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Aqualine
ASFA: Aquatic Sciences and Fisheries Abstracts
Water Resources Abstracts
Environmental Sciences and Pollution Management
Aerospace Database
Civil Engineering Abstracts
Technology Research Database
Electronics & Communications Abstracts
Solid State and Superconductivity Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList AGRICOLA


Aerospace Database

Aquatic Science & Fisheries Abstracts (ASFA) Professional
Database_xml – sequence: 1
  dbid: FBQ
  name: AGRIS
  url: http://www.fao.org/agris/Centre.asp?Menu_1ID=DB&Menu_2ID=DB1&Language=EN&Content=http://www.fao.org/agris/search?Language=EN
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Geography
Engineering
EISSN 1872-8235
EndPage 26
ExternalDocumentID oai_HAL_hal_00854167v1
27502150
10_1016_j_isprsjprs_2013_04_009
US201600060040
S0924271613001184
GeographicLocations New Zealand, North I., Rangitikei R
GeographicLocations_xml – name: New Zealand, North I., Rangitikei R
GroupedDBID --K
--M
.~1
0R~
1B1
1RT
1~.
1~5
29J
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AACTN
AAEDT
AAEDW
AAIAV
AAIKC
AAIKJ
AAKOC
AALRI
AAMNW
AAOAW
AAQFI
AAQXK
AAXUO
AAYFN
ABBOA
ABFNM
ABJNI
ABMAC
ABQEM
ABQYD
ABXDB
ABYKQ
ACDAQ
ACGFS
ACLVX
ACNNM
ACRLP
ACSBN
ACZNC
ADBBV
ADEZE
ADJOM
ADMUD
AEBSH
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
ASPBG
ATOGT
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
G8K
GBLVA
GBOLZ
HMA
HVGLF
HZ~
H~9
IHE
IMUCA
J1W
KOM
LY3
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
SDF
SDG
SEP
SES
SEW
SPC
SPCBC
SSE
SSV
SSZ
T5K
T9H
WUQ
ZMT
~02
~G-
AAHBH
AATTM
AAXKI
ABDPE
ABWVN
ACRPL
ADNMO
AEIPS
AFJKZ
AKRWK
ANKPU
BNPGV
FBQ
SSH
AAYWO
AAYXX
ACVFH
ADCNI
AEUPX
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKYEP
APXCP
CITATION
EFKBS
IQODW
7QH
7UA
C1K
F1W
H96
L.G
7SP
7U5
8FD
FR3
H8D
KR7
L7M
7S9
L.6
1XC
ID FETCH-LOGICAL-a525t-da84171dc1a3b6b0a8e3335de0eed74f1c0fdc1a058ee9f8904682a0bd2a60f63
IEDL.DBID .~1
ISSN 0924-2716
IngestDate Wed Jul 02 06:31:53 EDT 2025
Fri Jul 11 15:25:17 EDT 2025
Fri Jul 11 01:03:42 EDT 2025
Fri Jul 11 09:45:10 EDT 2025
Mon Jul 21 09:16:30 EDT 2025
Tue Jul 01 03:46:32 EDT 2025
Thu Apr 24 23:07:33 EDT 2025
Thu Apr 03 09:45:36 EDT 2025
Fri Feb 23 02:28:04 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Surface roughness
Point cloud
Geomorphology
3D change detection
Terrestrial laser scanner
Self-affinity
algorithms
laser methods
water wells
accuracy
vegetation
bedrock
roughness
uncertainties
rivers
models
orientation
maps
topography
scanner methods
three-dimensional models
erosion
confidence interval
canyons
errors
Language English
License CC BY 4.0
Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a525t-da84171dc1a3b6b0a8e3335de0eed74f1c0fdc1a058ee9f8904682a0bd2a60f63
Notes http://dx.doi.org/10.1016/j.isprsjprs.2013.04.009
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-8980-1415
PQID 1513443657
PQPubID 23462
PageCount 17
ParticipantIDs hal_primary_oai_HAL_hal_00854167v1
proquest_miscellaneous_2000068169
proquest_miscellaneous_1642283123
proquest_miscellaneous_1513443657
pascalfrancis_primary_27502150
crossref_primary_10_1016_j_isprsjprs_2013_04_009
crossref_citationtrail_10_1016_j_isprsjprs_2013_04_009
fao_agris_US201600060040
elsevier_sciencedirect_doi_10_1016_j_isprsjprs_2013_04_009
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2013-08-01
PublicationDateYYYYMMDD 2013-08-01
PublicationDate_xml – month: 08
  year: 2013
  text: 2013-08-01
  day: 01
PublicationDecade 2010
PublicationPlace Amsterdam
PublicationPlace_xml – name: Amsterdam
PublicationTitle ISPRS journal of photogrammetry and remote sensing
PublicationYear 2013
Publisher Elsevier B.V
Elsevier
Publisher_xml – name: Elsevier B.V
– name: Elsevier
References (Accessed 9.04.13).
Abellán, Calvet, Vilaplana, Blanchard (b0010) 2010; 119
Cignoni, Rocchini (b0070) 1998; 17
Besl, McKay (b0040) 1992; 14
Yang, Medioni (b0260) 1992; 10
Hodge, Brasington, Richards (b0115) 2009; 34
Butler, Lane, Chandler (b0065) 2001; 33
Schürch, Densmore, Rosser, Lim, McArdell (b0215) 2011; 36
Soudarissanane, S., Van Ree, J., Bucksch, A., Lindenbergh, R., 2007. Error budget of terrestrial laser scanning: influence of the incidence angle on the scan quality. In: Proc. 3D-NordOst, pp. 1–8.
Borradaile (b0050) 2003
Aberle, Nikora (b0015) 2006; 42
Lichti, Gordon, Tipdecho (b0150) 2005; 131
Heritage, Milan (b0105) 2009; 113
Lane, Westaway, Hicks (b0135) 2003; 28
Aryal, Brooks, Reid, Bawden, Pawlak (b0025) 2012; 117
Fuller, Large, Charlton, Heritage, Milan (b0090) 2003; 28
O’Neal, Pizzuto (b0190) 2011; 36
Hodge (b0110) 2010; 65
Lalonde, J.-F., Unnikrishnan, R., Vandapel, N., Hebert, M., 2005. Scale Selection for Classification of Point-sampled 3-D Surfaces. In: Proc. of the fifth international conference on 3-D digital imaging and modeling, pp. 285–292.
Wheaton, Brasington, Darby, Sear (b0255) 2009; 35
Salvi, Matabosch, Fofi, Forest (b0210) 2007; 25
Bae, Lichti (b0035) 2008; 63
Brodu, Lague (b0060) 2012; 68
Rosser, Petley, Lim, Dunning, Allison (b0200) 2005; 38
Li, Schnabel, Klein, Cheng, Dang, Jin (b0145) 2010; 34
Abellán, Jaboyedoff, Oppikofer, Vilaplana (b0005) 2009; 9
Girardeau-Montaut, Roux, Marc, Thibault (b0095) 2005; 36
Milan, Heritage, Hetherington (b0160) 2007; 32
Wawrzyniec, McFadden, Ellwein, Meyer, Scuderi, McAuliffe, Fawcett (b0250) 2007; 3
Soudarissanane, Lindenbergh, Menenti, Teunissen (b0220) 2009; 38
Monserrat, Crosetto (b0170) 2008; 63
Olsen, Johnstone, Driscoll, Ashford, Kuester (b0175) 2009; 135
Soudarissanane, Lindenbergh, Menenti, Teunissen (b0225) 2011; 66
Boehler, Vicent, Marbs (b0045) 2003; 34
Gordon, S., Lichti, D., Stewart, M., 2001. Application of a high-resolution, ground-based laser scanner for deformation measurements. In: Proc. of the tenth International FIG Symposium on Deformation Measurements, Orange, California, USA, 19–22 March 2001, pp. 23–32.
Teza, Galgaro, Zaltron, Genevois (b0235) 2007; 28
Efron (b0080) 1979; 7
Olsen, Kuester, Chang, Hutchinson (b0185) 2010; 24
Hodge, Brasington, Richards (b0120) 2009; 56
Leica, 2011. Cyclone 7.2
(last accessed 09.04.13).
Van Gosliga, Lindenbergh, Pfeifer (b0245) 2006; 36
Brasington, Rumsby, McVey (b0055) 2000; 25
Alba, M., Fregonese, L., Prandi, F., Scaioni, M., Valgoi, P., 2006. Structural monitoring of a large dam by terrestrial laser scanning. International Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences 36 (Part 5) (on CD-ROM).
Mechelke, K., Kersten, T.P., Lindstaedt, M., 2007. Comparative investigations into the accuracy behaviour of the new generation of Terrestrial Laser Scanning systems. In: Optical 3-D Measurement Techniques VIII, pp. 319–327.
Teza, Pesci, Genevois, Galgaro (b0240) 2008; 97
Mitra, N.J., Nguyen, A., 2003. Estimating surface normals in noisy point cloud data. In: Proc. of the nineteenth conference on Computational geometry, pp. 322–328.
Bae, Belton, Lichti (b0030) 2009; 31
Rychkov, Brasington, Vericat (b0205) 2012; 42
Feder (b0085) 1988
EDF R&D, T.P., 2011. CloudCompare (version 2.3) [GPL software].
Zeibak, Filin (b0265) 2007; 36
Olsen, Johnstone, Kuester, Driscoll, Ashford (b0180) 2011; 137
Renard, Voisin, Marsan, Schmittbuhl (b0195) 2006; 33
Kazhdan, M., Bolitho, M., Hoppe, H., 2006. Poisson Surface Reconstruction. In: Proc. of the fourth Eurographics Symposium on Geometry Processing, pp. 61–70.
Fuller (10.1016/j.isprsjprs.2013.04.009_b0090) 2003; 28
Li (10.1016/j.isprsjprs.2013.04.009_b0145) 2010; 34
10.1016/j.isprsjprs.2013.04.009_b0075
10.1016/j.isprsjprs.2013.04.009_b0230
Van Gosliga (10.1016/j.isprsjprs.2013.04.009_b0245) 2006; 36
Schürch (10.1016/j.isprsjprs.2013.04.009_b0215) 2011; 36
Hodge (10.1016/j.isprsjprs.2013.04.009_b0115) 2009; 34
Borradaile (10.1016/j.isprsjprs.2013.04.009_b0050) 2003
Olsen (10.1016/j.isprsjprs.2013.04.009_b0180) 2011; 137
10.1016/j.isprsjprs.2013.04.009_b0100
Rosser (10.1016/j.isprsjprs.2013.04.009_b0200) 2005; 38
Aryal (10.1016/j.isprsjprs.2013.04.009_b0025) 2012; 117
Lichti (10.1016/j.isprsjprs.2013.04.009_b0150) 2005; 131
Feder (10.1016/j.isprsjprs.2013.04.009_b0085) 1988
Rychkov (10.1016/j.isprsjprs.2013.04.009_b0205) 2012; 42
Brodu (10.1016/j.isprsjprs.2013.04.009_b0060) 2012; 68
Milan (10.1016/j.isprsjprs.2013.04.009_b0160) 2007; 32
O’Neal (10.1016/j.isprsjprs.2013.04.009_b0190) 2011; 36
Cignoni (10.1016/j.isprsjprs.2013.04.009_b0070) 1998; 17
Heritage (10.1016/j.isprsjprs.2013.04.009_b0105) 2009; 113
Besl (10.1016/j.isprsjprs.2013.04.009_b0040) 1992; 14
Hodge (10.1016/j.isprsjprs.2013.04.009_b0120) 2009; 56
10.1016/j.isprsjprs.2013.04.009_b0155
Butler (10.1016/j.isprsjprs.2013.04.009_b0065) 2001; 33
Teza (10.1016/j.isprsjprs.2013.04.009_b0240) 2008; 97
Salvi (10.1016/j.isprsjprs.2013.04.009_b0210) 2007; 25
Brasington (10.1016/j.isprsjprs.2013.04.009_b0055) 2000; 25
Soudarissanane (10.1016/j.isprsjprs.2013.04.009_b0225) 2011; 66
10.1016/j.isprsjprs.2013.04.009_b0130
Olsen (10.1016/j.isprsjprs.2013.04.009_b0175) 2009; 135
Aberle (10.1016/j.isprsjprs.2013.04.009_b0015) 2006; 42
10.1016/j.isprsjprs.2013.04.009_b0165
Olsen (10.1016/j.isprsjprs.2013.04.009_b0185) 2010; 24
Lane (10.1016/j.isprsjprs.2013.04.009_b0135) 2003; 28
Abellán (10.1016/j.isprsjprs.2013.04.009_b0005) 2009; 9
10.1016/j.isprsjprs.2013.04.009_b0125
Abellán (10.1016/j.isprsjprs.2013.04.009_b0010) 2010; 119
Wheaton (10.1016/j.isprsjprs.2013.04.009_b0255) 2009; 35
Hodge (10.1016/j.isprsjprs.2013.04.009_b0110) 2010; 65
10.1016/j.isprsjprs.2013.04.009_b0140
10.1016/j.isprsjprs.2013.04.009_b0020
Bae (10.1016/j.isprsjprs.2013.04.009_b0035) 2008; 63
Girardeau-Montaut (10.1016/j.isprsjprs.2013.04.009_b0095) 2005; 36
Monserrat (10.1016/j.isprsjprs.2013.04.009_b0170) 2008; 63
Efron (10.1016/j.isprsjprs.2013.04.009_b0080) 1979; 7
Zeibak (10.1016/j.isprsjprs.2013.04.009_b0265) 2007; 36
Teza (10.1016/j.isprsjprs.2013.04.009_b0235) 2007; 28
Yang (10.1016/j.isprsjprs.2013.04.009_b0260) 1992; 10
Wawrzyniec (10.1016/j.isprsjprs.2013.04.009_b0250) 2007; 3
Bae (10.1016/j.isprsjprs.2013.04.009_b0030) 2009; 31
Renard (10.1016/j.isprsjprs.2013.04.009_b0195) 2006; 33
Boehler (10.1016/j.isprsjprs.2013.04.009_b0045) 2003; 34
Soudarissanane (10.1016/j.isprsjprs.2013.04.009_b0220) 2009; 38
References_xml – volume: 17
  start-page: 167
  year: 1998
  end-page: 174
  ident: b0070
  article-title: Metro: measuring error on simplified surfaces
  publication-title: Computer Graphics Forum
– volume: 42
  start-page: 1
  year: 2006
  end-page: 11
  ident: b0015
  article-title: Statistical properties of armored gravel bed surfaces
  publication-title: Water Resources Research
– volume: 117
  start-page: 1
  year: 2012
  end-page: 15
  ident: b0025
  article-title: Displacement fields from point cloud data: application of particle imaging velocimetry to landslide geodesy
  publication-title: Journal of Geophysical Research
– volume: 63
  start-page: 142
  year: 2008
  end-page: 154
  ident: b0170
  article-title: Deformation measurement using terrestrial laser scanning data and least squares 3D surface matching
  publication-title: ISPRS Journal of Photogrammetry and Remote Sensing
– volume: 68
  start-page: 121
  year: 2012
  end-page: 134
  ident: b0060
  article-title: 3D terrestrial lidar data classification of complex natural scenes using a multi-scale dimensionality criterion: applications in geomorphology
  publication-title: ISPRS Journal of Photogrammetry and Remote Sensing
– volume: 28
  start-page: 889
  year: 2003
  end-page: 903
  ident: b0090
  article-title: Reach-scale sediment transfers: an evaluation of two morphological budgeting approaches
  publication-title: Earth Surface Processes and Landforms
– volume: 14
  start-page: 239
  year: 1992
  end-page: 256
  ident: b0040
  article-title: A method for registration of 3-D shapes
  publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence
– reference: Kazhdan, M., Bolitho, M., Hoppe, H., 2006. Poisson Surface Reconstruction. In: Proc. of the fourth Eurographics Symposium on Geometry Processing, pp. 61–70.
– reference: > (last accessed 09.04.13).
– volume: 56
  start-page: 2024
  year: 2009
  end-page: 2043
  ident: b0120
  article-title: Analysing laser-scanned digital terrain models of gravel bed surfaces: linking morphology to sediment transport processes and hydraulics
  publication-title: Sedimentology
– volume: 10
  start-page: 145
  year: 1992
  end-page: 155
  ident: b0260
  article-title: Object modelling by registration of multiple range images
  publication-title: Image and Vision Computing
– volume: 9
  start-page: 365
  year: 2009
  end-page: 372
  ident: b0005
  article-title: Detection of millimetric deformation using a terrestrial laser scanner: experiment and application to a rockfall event
  publication-title: Natural Hazards and Earth System Science
– volume: 36
  start-page: 430
  year: 2007
  end-page: 435
  ident: b0265
  article-title: Change detection via terrestrial laser scanning
  publication-title: International Archives of Photogrammetry and Remote Sensing
– reference: > (Accessed 9.04.13).
– volume: 119
  start-page: 162
  year: 2010
  end-page: 171
  ident: b0010
  article-title: Detection and spatial prediction of rockfalls by means of terrestrial laser scanner monitoring
  publication-title: Geomorphology
– volume: 28
  start-page: 249
  year: 2003
  end-page: 271
  ident: b0135
  article-title: Estimation of erosion and deposition volumes in a large, gravel-bed, braided river using synoptic remote sensing
  publication-title: Earth Surface Processes and Landforms
– volume: 33
  start-page: 301
  year: 2001
  end-page: 330
  ident: b0065
  article-title: Characterization of the structure of river-bed gravels using two-dimensional fractal analysis 1
  publication-title: Mathematical Geology
– reference: Leica, 2011. Cyclone 7.2: <
– volume: 25
  start-page: 578
  year: 2007
  end-page: 596
  ident: b0210
  article-title: A review of recent range image registration methods with accuracy evaluation
  publication-title: Image and Vision Computing
– volume: 36
  start-page: 1847
  year: 2011
  end-page: 1859
  ident: b0215
  article-title: Detection of surface change in complex topography using terrestrial laser scanning: application to the Illgraben debris-flow channel
  publication-title: Earth Surface Processes and Landforms
– volume: 25
  start-page: 973
  year: 2000
  end-page: 990
  ident: b0055
  article-title: Monitoring and modelling morphological change in a braided gravel-bed river using high resolution GPS-based survey
  publication-title: Earth Surface Processes and Landforms
– volume: 65
  start-page: 227
  year: 2010
  end-page: 240
  ident: b0110
  article-title: Using simulated terrestrial laser scanning to analyse errors in high-resolution scan data of irregular surfaces
  publication-title: ISPRS Journal of Photogrammetry and Remote Sensing
– volume: 42
  start-page: 64
  year: 2012
  end-page: 70
  ident: b0205
  article-title: Computational and methodological aspects of terrestrial surface analysis based on point clouds
  publication-title: Computers & Geosciences
– volume: 7
  start-page: 1
  year: 1979
  end-page: 26
  ident: b0080
  article-title: Bootstrap methods: another look at the jackknife
  publication-title: The Annals of Statistics
– volume: 34
  start-page: 954
  year: 2009
  end-page: 968
  ident: b0115
  article-title: In situ characterization of graine-scale fluvial morphology using terrestrial laser scanning
  publication-title: Earth Surface Processes and Landforms
– volume: 35
  start-page: 136
  year: 2009
  end-page: 156
  ident: b0255
  article-title: Accounting for uncertainty in DEMs from repeat topographic surveys: improved sediment budgets
  publication-title: Earth Surface Processes and Landforms
– volume: 24
  start-page: 264
  year: 2010
  end-page: 272
  ident: b0185
  article-title: Terrestrial laser scanning-based structural damage assessment
  publication-title: Journal of Computing in Civil Engineering
– year: 1988
  ident: b0085
  article-title: Fractals
– volume: 3
  start-page: 550
  year: 2007
  ident: b0250
  article-title: Chronotopographic analysis directly from point-cloud data: a method for detecting small, seasonal hill slope change, Black Mesa Escarpment, NE Arizona
  publication-title: Geosphere
– volume: 28
  start-page: 3425
  year: 2007
  end-page: 3446
  ident: b0235
  article-title: Terrestrial laser scanner to detect landslide displacement fields: a new approach
  publication-title: International Journal of Remote Sensing
– volume: 97
  start-page: 424
  year: 2008
  end-page: 437
  ident: b0240
  article-title: Characterization of landslide ground surface kinematics from terrestrial laser scanning and strain field computation
  publication-title: Geomorphology
– volume: 113
  start-page: 4
  year: 2009
  end-page: 11
  ident: b0105
  article-title: Terrestrial laser scanning of grain roughness in a gravel-bed river
  publication-title: Geomorphology
– volume: 36
  start-page: 30
  year: 2005
  end-page: 35
  ident: b0095
  article-title: Change detection on points cloud data acquired with a ground laser scanner
  publication-title: International Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences
– volume: 36
  year: 2006
  ident: b0245
  article-title: Deformation analysis of a bored tunnel by means of terrestrial laser scanning
  publication-title: International Archives of Photogrammetry, Remote Sensing and Spatial Information
– reference: Soudarissanane, S., Van Ree, J., Bucksch, A., Lindenbergh, R., 2007. Error budget of terrestrial laser scanning: influence of the incidence angle on the scan quality. In: Proc. 3D-NordOst, pp. 1–8.
– volume: 131
  start-page: 135
  year: 2005
  end-page: 142
  ident: b0150
  article-title: Error models and propagation in directly georeferenced terrestrial laser scanner networks
  publication-title: Journal of Surveying Engineering
– volume: 137
  start-page: 14
  year: 2011
  end-page: 25
  ident: b0180
  article-title: New automated point-cloud alignment for ground-based light detection and ranging data of long coastal sections
  publication-title: Journal of Surveying Engineering
– reference: Alba, M., Fregonese, L., Prandi, F., Scaioni, M., Valgoi, P., 2006. Structural monitoring of a large dam by terrestrial laser scanning. International Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences 36 (Part 5) (on CD-ROM).
– reference: Gordon, S., Lichti, D., Stewart, M., 2001. Application of a high-resolution, ground-based laser scanner for deformation measurements. In: Proc. of the tenth International FIG Symposium on Deformation Measurements, Orange, California, USA, 19–22 March 2001, pp. 23–32.
– volume: 135
  start-page: 161
  year: 2009
  end-page: 169
  ident: b0175
  article-title: Terrestrial laser scanning of extended cliff sections in dynamic environments: parameter analysis
  publication-title: Journal of Surveying Engineering
– volume: 34
  start-page: 696
  year: 2003
  end-page: 701
  ident: b0045
  article-title: Investigating Laser Scanner Accuracy
  publication-title: The International Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences
– reference: EDF R&D, T.P., 2011. CloudCompare (version 2.3) [GPL software]. <
– reference: Lalonde, J.-F., Unnikrishnan, R., Vandapel, N., Hebert, M., 2005. Scale Selection for Classification of Point-sampled 3-D Surfaces. In: Proc. of the fifth international conference on 3-D digital imaging and modeling, pp. 285–292.
– volume: 31
  start-page: 577
  year: 2009
  end-page: 590
  ident: b0030
  article-title: A closed-form expression of the positional uncertainty for 3D point clouds
  publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence
– volume: 38
  start-page: 183
  year: 2009
  end-page: 188
  ident: b0220
  article-title: Incidence angle influence on the quality of terrestrial laser scanning points
  publication-title: International Archives of Photogrammetry, Remote Sensing and Spatial Information
– volume: 34
  start-page: 94
  year: 2010
  end-page: 106
  ident: b0145
  article-title: Robust normal estimation for point clouds with sharp features
  publication-title: Computers & Graphics
– year: 2003
  ident: b0050
  article-title: Statistics of earth science data: their distribution in space, time, and orientation
– reference: Mechelke, K., Kersten, T.P., Lindstaedt, M., 2007. Comparative investigations into the accuracy behaviour of the new generation of Terrestrial Laser Scanning systems. In: Optical 3-D Measurement Techniques VIII, pp. 319–327.
– volume: 36
  start-page: 695
  year: 2011
  end-page: 701
  ident: b0190
  article-title: The rates and spatial patterns of annual riverbank erosion revealed through terrestrial laser-scanner surveys of the South River, Virginia
  publication-title: Earth Surface Processes and Landforms
– reference: Mitra, N.J., Nguyen, A., 2003. Estimating surface normals in noisy point cloud data. In: Proc. of the nineteenth conference on Computational geometry, pp. 322–328.
– volume: 32
  start-page: 1657
  year: 2007
  end-page: 1674
  ident: b0160
  article-title: Application of a 3D laser scanner in the assessment of erosion and deposition volumes and channel change in a proglacial river
  publication-title: Earth Surface Processes and Landforms
– volume: 38
  start-page: 363
  year: 2005
  end-page: 375
  ident: b0200
  article-title: Terrestrial laser scanning for monitoring the process of hard rock coastal cliff erosion
  publication-title: Quarterly Journal of Engineering Geology and Hydrogeology
– volume: 63
  start-page: 36
  year: 2008
  end-page: 54
  ident: b0035
  article-title: A method for automated registration of unorganised point clouds
  publication-title: ISPRS Journal of Photogrammetry and Remote Sensing
– volume: 66
  start-page: 389
  year: 2011
  end-page: 399
  ident: b0225
  article-title: Scanning geometry: influencing factor on the quality of terrestrial laser scanning points
  publication-title: ISPRS Journal of Photogrammetry and Remote Sensing
– volume: 33
  start-page: 33
  year: 2006
  end-page: 36
  ident: b0195
  article-title: High resolution 3D laser scanner measurements of a strike-slip fault quantify its morphological anisotropy at all scales
  publication-title: Geophysical Research Letters
– volume: 31
  start-page: 577
  issue: 4
  year: 2009
  ident: 10.1016/j.isprsjprs.2013.04.009_b0030
  article-title: A closed-form expression of the positional uncertainty for 3D point clouds
  publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence
  doi: 10.1109/TPAMI.2008.116
– volume: 3
  start-page: 550
  issue: 6
  year: 2007
  ident: 10.1016/j.isprsjprs.2013.04.009_b0250
  article-title: Chronotopographic analysis directly from point-cloud data: a method for detecting small, seasonal hill slope change, Black Mesa Escarpment, NE Arizona
  publication-title: Geosphere
  doi: 10.1130/GES00110.1
– volume: 42
  start-page: 1
  issue: 11
  year: 2006
  ident: 10.1016/j.isprsjprs.2013.04.009_b0015
  article-title: Statistical properties of armored gravel bed surfaces
  publication-title: Water Resources Research
  doi: 10.1029/2005WR004674
– volume: 32
  start-page: 1657
  issue: 11
  year: 2007
  ident: 10.1016/j.isprsjprs.2013.04.009_b0160
  article-title: Application of a 3D laser scanner in the assessment of erosion and deposition volumes and channel change in a proglacial river
  publication-title: Earth Surface Processes and Landforms
  doi: 10.1002/esp.1592
– volume: 97
  start-page: 424
  issue: 3–4
  year: 2008
  ident: 10.1016/j.isprsjprs.2013.04.009_b0240
  article-title: Characterization of landslide ground surface kinematics from terrestrial laser scanning and strain field computation
  publication-title: Geomorphology
  doi: 10.1016/j.geomorph.2007.09.003
– year: 1988
  ident: 10.1016/j.isprsjprs.2013.04.009_b0085
– volume: 38
  start-page: 363
  issue: 4
  year: 2005
  ident: 10.1016/j.isprsjprs.2013.04.009_b0200
  article-title: Terrestrial laser scanning for monitoring the process of hard rock coastal cliff erosion
  publication-title: Quarterly Journal of Engineering Geology and Hydrogeology
  doi: 10.1144/1470-9236/05-008
– ident: 10.1016/j.isprsjprs.2013.04.009_b0230
– volume: 113
  start-page: 4
  year: 2009
  ident: 10.1016/j.isprsjprs.2013.04.009_b0105
  article-title: Terrestrial laser scanning of grain roughness in a gravel-bed river
  publication-title: Geomorphology
  doi: 10.1016/j.geomorph.2009.03.021
– volume: 34
  start-page: 954
  year: 2009
  ident: 10.1016/j.isprsjprs.2013.04.009_b0115
  article-title: In situ characterization of graine-scale fluvial morphology using terrestrial laser scanning
  publication-title: Earth Surface Processes and Landforms
  doi: 10.1002/esp.1780
– ident: 10.1016/j.isprsjprs.2013.04.009_b0125
– volume: 36
  start-page: 695
  issue: 5
  year: 2011
  ident: 10.1016/j.isprsjprs.2013.04.009_b0190
  article-title: The rates and spatial patterns of annual riverbank erosion revealed through terrestrial laser-scanner surveys of the South River, Virginia
  publication-title: Earth Surface Processes and Landforms
  doi: 10.1002/esp.2098
– ident: 10.1016/j.isprsjprs.2013.04.009_b0165
  doi: 10.1145/777792.777840
– volume: 135
  start-page: 161
  issue: 4
  year: 2009
  ident: 10.1016/j.isprsjprs.2013.04.009_b0175
  article-title: Terrestrial laser scanning of extended cliff sections in dynamic environments: parameter analysis
  publication-title: Journal of Surveying Engineering
  doi: 10.1061/(ASCE)0733-9453(2009)135:4(161)
– ident: 10.1016/j.isprsjprs.2013.04.009_b0075
– volume: 33
  start-page: 33
  issue: 4
  year: 2006
  ident: 10.1016/j.isprsjprs.2013.04.009_b0195
  article-title: High resolution 3D laser scanner measurements of a strike-slip fault quantify its morphological anisotropy at all scales
  publication-title: Geophysical Research Letters
  doi: 10.1029/2005GL025038
– volume: 24
  start-page: 264
  issue: 3
  year: 2010
  ident: 10.1016/j.isprsjprs.2013.04.009_b0185
  article-title: Terrestrial laser scanning-based structural damage assessment
  publication-title: Journal of Computing in Civil Engineering
  doi: 10.1061/(ASCE)CP.1943-5487.0000028
– volume: 66
  start-page: 389
  issue: 4
  year: 2011
  ident: 10.1016/j.isprsjprs.2013.04.009_b0225
  article-title: Scanning geometry: influencing factor on the quality of terrestrial laser scanning points
  publication-title: ISPRS Journal of Photogrammetry and Remote Sensing
  doi: 10.1016/j.isprsjprs.2011.01.005
– volume: 25
  start-page: 973
  issue: 9
  year: 2000
  ident: 10.1016/j.isprsjprs.2013.04.009_b0055
  article-title: Monitoring and modelling morphological change in a braided gravel-bed river using high resolution GPS-based survey
  publication-title: Earth Surface Processes and Landforms
  doi: 10.1002/1096-9837(200008)25:9<973::AID-ESP111>3.0.CO;2-Y
– volume: 14
  start-page: 239
  issue: 2
  year: 1992
  ident: 10.1016/j.isprsjprs.2013.04.009_b0040
  article-title: A method for registration of 3-D shapes
  publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence
  doi: 10.1109/34.121791
– volume: 35
  start-page: 136
  issue: 2
  year: 2009
  ident: 10.1016/j.isprsjprs.2013.04.009_b0255
  article-title: Accounting for uncertainty in DEMs from repeat topographic surveys: improved sediment budgets
  publication-title: Earth Surface Processes and Landforms
  doi: 10.1002/esp.1886
– volume: 9
  start-page: 365
  issue: 2
  year: 2009
  ident: 10.1016/j.isprsjprs.2013.04.009_b0005
  article-title: Detection of millimetric deformation using a terrestrial laser scanner: experiment and application to a rockfall event
  publication-title: Natural Hazards and Earth System Science
  doi: 10.5194/nhess-9-365-2009
– volume: 28
  start-page: 249
  issue: 3
  year: 2003
  ident: 10.1016/j.isprsjprs.2013.04.009_b0135
  article-title: Estimation of erosion and deposition volumes in a large, gravel-bed, braided river using synoptic remote sensing
  publication-title: Earth Surface Processes and Landforms
  doi: 10.1002/esp.483
– volume: 7
  start-page: 1
  issue: 1
  year: 1979
  ident: 10.1016/j.isprsjprs.2013.04.009_b0080
  article-title: Bootstrap methods: another look at the jackknife
  publication-title: The Annals of Statistics
  doi: 10.1214/aos/1176344552
– volume: 42
  start-page: 64
  year: 2012
  ident: 10.1016/j.isprsjprs.2013.04.009_b0205
  article-title: Computational and methodological aspects of terrestrial surface analysis based on point clouds
  publication-title: Computers & Geosciences
  doi: 10.1016/j.cageo.2012.02.011
– volume: 36
  start-page: 30
  issue: Part 3
  year: 2005
  ident: 10.1016/j.isprsjprs.2013.04.009_b0095
  article-title: Change detection on points cloud data acquired with a ground laser scanner
  publication-title: International Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences
– volume: 25
  start-page: 578
  issue: 5
  year: 2007
  ident: 10.1016/j.isprsjprs.2013.04.009_b0210
  article-title: A review of recent range image registration methods with accuracy evaluation
  publication-title: Image and Vision Computing
  doi: 10.1016/j.imavis.2006.05.012
– volume: 68
  start-page: 121
  issue: 2
  year: 2012
  ident: 10.1016/j.isprsjprs.2013.04.009_b0060
  article-title: 3D terrestrial lidar data classification of complex natural scenes using a multi-scale dimensionality criterion: applications in geomorphology
  publication-title: ISPRS Journal of Photogrammetry and Remote Sensing
  doi: 10.1016/j.isprsjprs.2012.01.006
– volume: 119
  start-page: 162
  issue: 3–4
  year: 2010
  ident: 10.1016/j.isprsjprs.2013.04.009_b0010
  article-title: Detection and spatial prediction of rockfalls by means of terrestrial laser scanner monitoring
  publication-title: Geomorphology
  doi: 10.1016/j.geomorph.2010.03.016
– volume: 36
  start-page: 430
  issue: 3
  year: 2007
  ident: 10.1016/j.isprsjprs.2013.04.009_b0265
  article-title: Change detection via terrestrial laser scanning
  publication-title: International Archives of Photogrammetry and Remote Sensing
– volume: 63
  start-page: 142
  issue: 1
  year: 2008
  ident: 10.1016/j.isprsjprs.2013.04.009_b0170
  article-title: Deformation measurement using terrestrial laser scanning data and least squares 3D surface matching
  publication-title: ISPRS Journal of Photogrammetry and Remote Sensing
  doi: 10.1016/j.isprsjprs.2007.07.008
– volume: 28
  start-page: 889
  issue: 8
  year: 2003
  ident: 10.1016/j.isprsjprs.2013.04.009_b0090
  article-title: Reach-scale sediment transfers: an evaluation of two morphological budgeting approaches
  publication-title: Earth Surface Processes and Landforms
  doi: 10.1002/esp.1011
– ident: 10.1016/j.isprsjprs.2013.04.009_b0100
– volume: 17
  start-page: 167
  issue: 2
  year: 1998
  ident: 10.1016/j.isprsjprs.2013.04.009_b0070
  article-title: Metro: measuring error on simplified surfaces
  publication-title: Computer Graphics Forum
  doi: 10.1111/1467-8659.00236
– volume: 36
  start-page: 1847
  issue: 14
  year: 2011
  ident: 10.1016/j.isprsjprs.2013.04.009_b0215
  article-title: Detection of surface change in complex topography using terrestrial laser scanning: application to the Illgraben debris-flow channel
  publication-title: Earth Surface Processes and Landforms
  doi: 10.1002/esp.2206
– volume: 63
  start-page: 36
  issue: 1
  year: 2008
  ident: 10.1016/j.isprsjprs.2013.04.009_b0035
  article-title: A method for automated registration of unorganised point clouds
  publication-title: ISPRS Journal of Photogrammetry and Remote Sensing
  doi: 10.1016/j.isprsjprs.2007.05.012
– year: 2003
  ident: 10.1016/j.isprsjprs.2013.04.009_b0050
– ident: 10.1016/j.isprsjprs.2013.04.009_b0020
– volume: 131
  start-page: 135
  issue: 4
  year: 2005
  ident: 10.1016/j.isprsjprs.2013.04.009_b0150
  article-title: Error models and propagation in directly georeferenced terrestrial laser scanner networks
  publication-title: Journal of Surveying Engineering
  doi: 10.1061/(ASCE)0733-9453(2005)131:4(135)
– volume: 137
  start-page: 14
  issue: 1
  year: 2011
  ident: 10.1016/j.isprsjprs.2013.04.009_b0180
  article-title: New automated point-cloud alignment for ground-based light detection and ranging data of long coastal sections
  publication-title: Journal of Surveying Engineering
  doi: 10.1061/(ASCE)SU.1943-5428.0000030
– volume: 117
  start-page: 1
  issue: F1
  year: 2012
  ident: 10.1016/j.isprsjprs.2013.04.009_b0025
  article-title: Displacement fields from point cloud data: application of particle imaging velocimetry to landslide geodesy
  publication-title: Journal of Geophysical Research
  doi: 10.1029/2011JF002161
– volume: 38
  start-page: 183
  issue: Part 3
  year: 2009
  ident: 10.1016/j.isprsjprs.2013.04.009_b0220
  article-title: Incidence angle influence on the quality of terrestrial laser scanning points
  publication-title: International Archives of Photogrammetry, Remote Sensing and Spatial Information
– ident: 10.1016/j.isprsjprs.2013.04.009_b0140
– ident: 10.1016/j.isprsjprs.2013.04.009_b0130
– volume: 56
  start-page: 2024
  issue: 7
  year: 2009
  ident: 10.1016/j.isprsjprs.2013.04.009_b0120
  article-title: Analysing laser-scanned digital terrain models of gravel bed surfaces: linking morphology to sediment transport processes and hydraulics
  publication-title: Sedimentology
  doi: 10.1111/j.1365-3091.2009.01068.x
– volume: 33
  start-page: 301
  issue: 3
  year: 2001
  ident: 10.1016/j.isprsjprs.2013.04.009_b0065
  article-title: Characterization of the structure of river-bed gravels using two-dimensional fractal analysis 1
  publication-title: Mathematical Geology
  doi: 10.1023/A:1007686206695
– volume: 10
  start-page: 145
  issue: 3
  year: 1992
  ident: 10.1016/j.isprsjprs.2013.04.009_b0260
  article-title: Object modelling by registration of multiple range images
  publication-title: Image and Vision Computing
  doi: 10.1016/0262-8856(92)90066-C
– volume: 36
  issue: Part 5
  year: 2006
  ident: 10.1016/j.isprsjprs.2013.04.009_b0245
  article-title: Deformation analysis of a bored tunnel by means of terrestrial laser scanning
  publication-title: International Archives of Photogrammetry, Remote Sensing and Spatial Information
– volume: 34
  start-page: 696
  issue: Part 5
  year: 2003
  ident: 10.1016/j.isprsjprs.2013.04.009_b0045
  article-title: Investigating Laser Scanner Accuracy
  publication-title: The International Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences
– ident: 10.1016/j.isprsjprs.2013.04.009_b0155
– volume: 28
  start-page: 3425
  year: 2007
  ident: 10.1016/j.isprsjprs.2013.04.009_b0235
  article-title: Terrestrial laser scanner to detect landslide displacement fields: a new approach
  publication-title: International Journal of Remote Sensing
  doi: 10.1080/01431160601024234
– volume: 34
  start-page: 94
  issue: 2
  year: 2010
  ident: 10.1016/j.isprsjprs.2013.04.009_b0145
  article-title: Robust normal estimation for point clouds with sharp features
  publication-title: Computers & Graphics
  doi: 10.1016/j.cag.2010.01.004
– volume: 65
  start-page: 227
  issue: 2
  year: 2010
  ident: 10.1016/j.isprsjprs.2013.04.009_b0110
  article-title: Using simulated terrestrial laser scanning to analyse errors in high-resolution scan data of irregular surfaces
  publication-title: ISPRS Journal of Photogrammetry and Remote Sensing
  doi: 10.1016/j.isprsjprs.2010.01.001
SSID ssj0001568
Score 2.6029868
Snippet [Display omitted] Surveying techniques such as terrestrial laser scanner have recently been used to measure surface changes via 3D point cloud (PC) comparison....
Surveying techniques such as terrestrial laser scanner have recently been used to measure surface changes via 3D point cloud (PC) comparison. Two types of...
SourceID hal
proquest
pascalfrancis
crossref
fao
elsevier
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 10
SubjectTerms 3D change detection
algorithms
Animal, plant and microbial ecology
Applied geophysics
bedrock
Biological and medical sciences
Change detection
computer software
confidence interval
digital elevation models
Discrete element method
Earth Sciences
Earth, ocean, space
Exact sciences and technology
Freshwater
Fundamental and applied biological sciences. Psychology
General aspects. Techniques
Geomorphology
georeferencing
Homology
Internal geophysics
Mathematical models
Point cloud
rivers
Roughness
Scanners
Sciences of the Universe
Self-affinity
Surface roughness
surveys
Teledetection and vegetation maps
Terrestrial laser scanner
Three dimensional models
topography
uncertainty
vegetation
Title Accurate 3D comparison of complex topography with terrestrial laser scanner: Application to the Rangitikei canyon (N-Z)
URI https://dx.doi.org/10.1016/j.isprsjprs.2013.04.009
https://www.proquest.com/docview/1513443657
https://www.proquest.com/docview/1642283123
https://www.proquest.com/docview/2000068169
https://hal.science/hal-00854167
Volume 82
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELZKOQBCCApVF8rKIA5wCGvHduLtLSpUy2sPlJUqLpaTtWlKtYn2Ae2lv70zeZUVjx447EqbzETWzGT8eT3-hpAXEDapdnwYSKniQFoPedDGNhBaWiWFlSrEs8OfxtFoIt8fqaMNst-ehcGyyib31zm9ytbNlUFjzUGZ54NDBkuHEOA-bsgATEZOUGSvg5h-fXFV5sHr43AoHKD0Wo1XvijnixP4YI2XqDhPsTLxzzPUDW8L-D7Ggsm7pV2ADX3d_OK3PF5NTgf3yb0GVdKkHvgDsuFmW-TOL1yDW-RW0-78-Pwh-Zlk2Qo5Iqh4Q7OuEyEtfPXr1J3RZVE24hT_qqVgfuzigeFKAXC7OYWRYduuPZpc7YGDGgVEST9bbIOUf3c5BalzuPFyHHx99YhMDt5-2R8FTQeGwKpQLYOp1ZLHfJpxK9IoZVY7IYSaOgZTayw9z5jHm0xp54ZeD2G1rUPL0mloI-YjsU02Z8XM7RAKKzHhWRp7HnLseK1BOfVSO8tVKkTWI1FrdZM19OTYJePUtHVoJ6Zzl0F3GSYNuKtHWKdY1gwd16vstW41a8FmYB65XnkHAsHYb-AZMzkMkaIPWW0gG_bIc4iObhTI3D1KPhq8htAWsG_8g_dIfy14OnFk2gcABk951kaTgXcdN3DszBWrhQF0JqQUkYr_IRNVpG4ASP4uE1YoRfNo-Ph_LPGE3A6r5iBYDrlLNpfzlXsKEG2Z9qt3sE9uJu8-jMaX0aY6qA
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELba7aEghKBQdXkUgzjAIVo7tpNsb1GhSul2D7QrVVwsJ2vTlGoT7QPov2cmL1jx6IFDIiWZiSzPZPw5Hn9DyGtwmzSyfOhJqUJPGgdx0ITGE5E0SgojlY97h0_HQTKRHy7UxQY5bPfCYFplE_vrmF5F6-bOoOnNQZnngzMGUwcf4D4uyABMlptkC9mpZI9sxccnybgLyLzeEYfyHiqspXnli3K-uIID07xERXuKyYl_HqQ2nSngfIk5k_dKs4BudHX9i99CeTU-HT0g9xtgSeO67Q_Jhp3tkLu_0A3ukO2m4vnlzSPyLc6yFdJEUPGOZl0xQlq46urafqfLomzEKf6tpWABLOSBHksBc9s5hZZh5a4DGv9cBgc1CqCSfjRYCSn_YnMKUjfw4M3Y-_T2MZkcvT8_TLymCINnlK-W3tREkod8mnEj0iBlJrJCCDW1DEbXUDqeMYcPmYqsHbpoCBPuyDcsnfomYC4Qu6Q3K2Z2j1CYjAnH0tBxn2PR6wiUUycja7hKhcj6JGh7XWcNQzkWyrjWbSrale7MpdFcmkkN5uoT1imWNUnH7SoHrVn1mr9pGEpuV94DR9DmM1hGT858ZOlDYhsIiH3yCryjawWSdyfxSOM9RLcAf8OvvE_215ynE0eyfcBg8JaXrTdp-NxxDcfMbLFaaABoQkoRqPAfMkHF6waY5O8yfgVUIh4Mn_xPT7wg28n56UiPjscnT8kdv6oVgtmRz0hvOV_Z54DYlul-80X-AHi-PVk
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Accurate+3D+comparison+of+complex+topography+with+terrestrial+laser+scanner%3A+Application+to+the+Rangitikei+canyon+%28N-Z%29&rft.jtitle=ISPRS+journal+of+photogrammetry+and+remote+sensing&rft.au=Lague%2C+Dimitri&rft.au=Brodu%2C+Nicolas&rft.au=Leroux%2C+J%C3%A9r%C3%B4me&rft.date=2013-08-01&rft.issn=0924-2716&rft.volume=82+p.10-26&rft.spage=10&rft.epage=26&rft_id=info:doi/10.1016%2Fj.isprsjprs.2013.04.009&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0924-2716&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0924-2716&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0924-2716&client=summon