Carbon Nanotube Terahertz Detector
Terahertz (THz) technologies are promising for diverse areas such as medicine, bioengineering, astronomy, environmental monitoring, and communications. However, despite decades of worldwide efforts, the THz region of the electromagnetic spectrum still continues to be elusive for solid state technolo...
Saved in:
Published in | Nano letters Vol. 14; no. 7; pp. 3953 - 3958 |
---|---|
Main Authors | , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Washington, DC
American Chemical Society
09.07.2014
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Terahertz (THz) technologies are promising for diverse areas such as medicine, bioengineering, astronomy, environmental monitoring, and communications. However, despite decades of worldwide efforts, the THz region of the electromagnetic spectrum still continues to be elusive for solid state technology. Here, we report on the development of a powerless, compact, broadband, flexible, large-area, and polarization-sensitive carbon nanotube THz detector that works at room temperature. The detector is sensitive throughout the entire range of the THz technology gap, with responsivities as high as ∼2.5 V/W and polarization ratios as high as ∼5:1. Complete thermoelectric and opto-thermal characterization together unambiguously reveal the photothermoelectric origin of the THz photosignal, triggered by plasmonic absorption and collective antenna effects, and suggest that judicious design of thermal management and quantum engineering of Seebeck coefficients will lead to further enhancement of device performance. |
---|---|
AbstractList | Terahertz (THz) technologies are promising for diverse areas such as medicine, bioengineering, astronomy, environmental monitoring, and communications. However, despite decades of worldwide efforts, the THz region of the electromagnetic spectrum still continues to be elusive for solid state technology. Here, we report on the development of a powerless, compact, broadband, flexible, large-area, and polarization-sensitive carbon nanotube THz detector that works at room temperature. The detector is sensitive throughout the entire range of the THz technology gap, with responsivities as high as 2.5 V/W and polarization ratios as high as 5:1. Complete thermoelectric and opto-thermal characterization together unambiguously reveal the photothermoelectric origin of the THz photosignal, triggered by plasmonic absorption and collective antenna effects, and suggest that judicious design of thermal management and quantum engineering of Seebeck coefficients will lead to further enhancement of device performance. Keywords: Carbon nanotubes; THz photodetector; broadband; polarization sensitive Terahertz (THz) technologies are promising for diverse areas such as medicine, bioengineering, astronomy, environmental monitoring, and communications. However, despite decades of worldwide efforts, the THz region of the electromagnetic spectrum still continues to be elusive for solid state technology. Here, we report on the development of a powerless, compact, broadband, flexible, large-area, and polarization-sensitive carbon nanotube THz detector that works at room temperature. The detector is sensitive throughout the entire range of the THz technology gap, with responsivities as high as ∼2.5 V/W and polarization ratios as high as ∼5:1. Complete thermoelectric and opto-thermal characterization together unambiguously reveal the photothermoelectric origin of the THz photosignal, triggered by plasmonic absorption and collective antenna effects, and suggest that judicious design of thermal management and quantum engineering of Seebeck coefficients will lead to further enhancement of device performance. Terahertz (THz) technologies are promising for diverse areas such as medicine, bioengineering, astronomy, environmental monitoring, and communications. However, despite decades of worldwide efforts, the THz region of the electromagnetic spectrum still continues to be elusive for solid state technology. Here, we report on the development of a powerless, compact, broadband, flexible, large-area, and polarization-sensitive carbon nanotube THz detector that works at room temperature. The detector is sensitive throughout the entire range of the THz technology gap, with responsivities as high as ∼2.5 V/W and polarization ratios as high as ∼5:1. Complete thermoelectric and opto-thermal characterization together unambiguously reveal the photothermoelectric origin of the THz photosignal, triggered by plasmonic absorption and collective antenna effects, and suggest that judicious design of thermal management and quantum engineering of Seebeck coefficients will lead to further enhancement of device performance.Terahertz (THz) technologies are promising for diverse areas such as medicine, bioengineering, astronomy, environmental monitoring, and communications. However, despite decades of worldwide efforts, the THz region of the electromagnetic spectrum still continues to be elusive for solid state technology. Here, we report on the development of a powerless, compact, broadband, flexible, large-area, and polarization-sensitive carbon nanotube THz detector that works at room temperature. The detector is sensitive throughout the entire range of the THz technology gap, with responsivities as high as ∼2.5 V/W and polarization ratios as high as ∼5:1. Complete thermoelectric and opto-thermal characterization together unambiguously reveal the photothermoelectric origin of the THz photosignal, triggered by plasmonic absorption and collective antenna effects, and suggest that judicious design of thermal management and quantum engineering of Seebeck coefficients will lead to further enhancement of device performance. |
Author | Kono, Junichiro Zhang, Qi Jiang, Qijia Lloyd, J. Meagan Kawano, Yukio He, Xiaowei Talin, A. Alec Fujimura, Naoki Erickson, Kristopher J Gao, Weilu Hauge, Robert H Léonard, François |
AuthorAffiliation | Carnegie Mellon University Department of Physical Electronics Rice University NanoJapan Program Sandia National Laboratories Department of Chemistry Department of Materials Science and NanoEngineering Tokyo Institute of Technology Electrical and Computer Engineering Department Department of Electrical and Computer Engineering Department of Physics and Astronomy Chemistry Department, Faculty of Science The Richard E. Smalley Institute for Nanoscale Science and Technology King Abdulaziz University |
AuthorAffiliation_xml | – name: Department of Chemistry – name: Chemistry Department, Faculty of Science – name: Tokyo Institute of Technology – name: King Abdulaziz University – name: Electrical and Computer Engineering Department – name: Carnegie Mellon University – name: NanoJapan Program – name: Department of Materials Science and NanoEngineering – name: Department of Physics and Astronomy – name: Department of Electrical and Computer Engineering – name: The Richard E. Smalley Institute for Nanoscale Science and Technology – name: Sandia National Laboratories – name: Department of Physical Electronics – name: Rice University |
Author_xml | – sequence: 1 givenname: Xiaowei surname: He fullname: He, Xiaowei – sequence: 2 givenname: Naoki surname: Fujimura fullname: Fujimura, Naoki – sequence: 3 givenname: J. Meagan surname: Lloyd fullname: Lloyd, J. Meagan – sequence: 4 givenname: Kristopher J surname: Erickson fullname: Erickson, Kristopher J – sequence: 5 givenname: A. Alec surname: Talin fullname: Talin, A. Alec – sequence: 6 givenname: Qi surname: Zhang fullname: Zhang, Qi – sequence: 7 givenname: Weilu surname: Gao fullname: Gao, Weilu – sequence: 8 givenname: Qijia surname: Jiang fullname: Jiang, Qijia – sequence: 9 givenname: Yukio surname: Kawano fullname: Kawano, Yukio – sequence: 10 givenname: Robert H surname: Hauge fullname: Hauge, Robert H – sequence: 11 givenname: François surname: Léonard fullname: Léonard, François email: fleonar@sandia.gov – sequence: 12 givenname: Junichiro surname: Kono fullname: Kono, Junichiro email: kono@rice.edu |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=28689148$$DView record in Pascal Francis https://www.ncbi.nlm.nih.gov/pubmed/24875576$$D View this record in MEDLINE/PubMed |
BookMark | eNqF0UtLAzEQAOAgFfvQg39AiiDoYW2SzWuPUp9Q9FLPSzY7i1u2SU2yB_31rnStIAVPM4dvHsyM0cA6CwidEnxNMCUz23BMqJDqAI0IT3EisowOdrliQzQOYYUxzlKOj9CQMiU5l2KEzufaF85On7V1sS1gugSv38DHz-ktRDDR-WN0WOkmwEkfJ-j1_m45f0wWLw9P85tFojnlMSkIoxWnKksNUaXQpTakqojk0kgAXgEDaQCrslsqVYRjECVkBdXKVJSwLJ2gy23fjXfvLYSYr-tgoGm0BdeGnEhBMReC4f8pZ0x2QzDr6FlP22INZb7x9Vr7j_znBB246IEORjeV19bU4dcpoTLCVOeuts54F4KHakcIzr_fkO_e0NnZH2vqqGPtbPS6bvZW9FtoE_KVa73tTr3HfQE95ZGo |
CitedBy_id | crossref_primary_10_1016_j_optmat_2023_113779 crossref_primary_10_1002_adpr_202000095 crossref_primary_10_1063_1_4901025 crossref_primary_10_1016_j_carbon_2019_11_068 crossref_primary_10_1142_S0218625X25300096 crossref_primary_10_1002_adom_201500237 crossref_primary_10_1063_1_5080750 crossref_primary_10_1103_PhysRevB_98_241404 crossref_primary_10_1016_j_mtphys_2018_04_001 crossref_primary_10_1063_5_0054845 crossref_primary_10_1021_acs_nanolett_5b00494 crossref_primary_10_1021_acsami_4c07979 crossref_primary_10_26599_NRE_2023_9120058 crossref_primary_10_37188_lam_2021_031 crossref_primary_10_1016_j_jallcom_2021_162496 crossref_primary_10_1016_j_sna_2023_114296 crossref_primary_10_1021_acsnano_1c06286 crossref_primary_10_1021_acs_nanolett_6b02778 crossref_primary_10_1364_OE_24_015730 crossref_primary_10_1088_1361_6463_aa96ef crossref_primary_10_1038_nnano_2015_220 crossref_primary_10_1039_C5NR01904D crossref_primary_10_1016_j_nancom_2015_09_001 crossref_primary_10_7566_JPSJ_84_121010 crossref_primary_10_1088_0022_3727_49_42_425101 crossref_primary_10_3390_mi14010061 crossref_primary_10_1109_JPROC_2018_2854372 crossref_primary_10_1016_j_rinp_2022_106055 crossref_primary_10_1039_C8RA01447G crossref_primary_10_1109_JQE_2024_3462953 crossref_primary_10_3390_ma15155386 crossref_primary_10_1063_1_5142311 crossref_primary_10_1021_acs_nanolett_7b02522 crossref_primary_10_1002_smll_201802806 crossref_primary_10_1103_PhysRevApplied_9_024027 crossref_primary_10_1002_pssb_201700227 crossref_primary_10_1016_j_optmat_2025_116705 crossref_primary_10_1088_1361_6463_ac928a crossref_primary_10_1063_1_4935947 crossref_primary_10_1021_acsami_6b11418 crossref_primary_10_2184_lsj_47_1_32 crossref_primary_10_1002_smll_201403413 crossref_primary_10_1038_nphoton_2016_209 crossref_primary_10_20965_ijat_2018_p0087 crossref_primary_10_1007_s11705_019_1831_2 crossref_primary_10_1021_acsomega_1c05605 crossref_primary_10_1557_mrc_2015_9 crossref_primary_10_1021_acsnano_8b06511 crossref_primary_10_1063_5_0205333 crossref_primary_10_1016_j_nanoen_2018_12_053 crossref_primary_10_1021_acsanm_0c01635 crossref_primary_10_1021_acsaelm_9b00058 crossref_primary_10_1021_acs_jpcc_5b06865 crossref_primary_10_1021_acs_nanolett_8b04099 crossref_primary_10_3390_pr12081728 crossref_primary_10_1088_1742_6596_1096_1_012127 crossref_primary_10_1364_JOSAB_439409 crossref_primary_10_1016_j_physa_2022_127013 crossref_primary_10_1016_j_carbon_2018_02_067 crossref_primary_10_1021_acsami_8b14386 crossref_primary_10_1039_D0NR01243B crossref_primary_10_1039_C8NR09060B crossref_primary_10_1063_1_4906878 crossref_primary_10_1016_j_matdes_2024_113151 crossref_primary_10_1063_1_4959215 crossref_primary_10_1002_adom_202401450 crossref_primary_10_1016_j_carbon_2022_09_068 crossref_primary_10_1002_adfm_202311008 crossref_primary_10_1103_PhysRevLett_118_257401 crossref_primary_10_1002_aelm_202100978 crossref_primary_10_1016_j_materresbull_2020_111093 crossref_primary_10_1021_acsanm_8b00421 crossref_primary_10_1088_1742_6596_1368_2_022051 crossref_primary_10_1021_acs_nanolett_5b02901 crossref_primary_10_1088_1361_6463_ab4ca4 crossref_primary_10_1016_j_materresbull_2018_07_011 crossref_primary_10_1016_j_mtphys_2022_100631 crossref_primary_10_1007_s11051_023_05790_7 crossref_primary_10_1002_aelm_202400124 crossref_primary_10_1002_adfm_201606022 crossref_primary_10_1007_s00340_021_07688_5 crossref_primary_10_1002_inf2_12384 crossref_primary_10_1038_s41467_018_05597_4 crossref_primary_10_1179_1432891715Z_0000000001504 crossref_primary_10_1016_j_carbon_2023_118193 crossref_primary_10_1016_j_fmre_2023_11_001 crossref_primary_10_1016_j_carbon_2024_118810 crossref_primary_10_1021_acsphotonics_8b01527 crossref_primary_10_1002_adom_202101008 crossref_primary_10_1016_j_optmat_2023_113432 crossref_primary_10_1002_adma_202312570 crossref_primary_10_1002_smll_202205329 crossref_primary_10_1016_j_apsusc_2025_162537 crossref_primary_10_1021_acsami_7b07184 crossref_primary_10_1021_acsami_4c10489 crossref_primary_10_1063_1_4954222 crossref_primary_10_1016_j_physe_2022_115298 crossref_primary_10_1016_j_msea_2016_01_110 crossref_primary_10_1016_j_apmt_2020_100800 crossref_primary_10_1134_S106378261612006X crossref_primary_10_1016_j_carbon_2019_07_033 crossref_primary_10_1021_nl5033843 crossref_primary_10_1063_5_0086515 crossref_primary_10_1021_acs_nanolett_5b03572 crossref_primary_10_1063_1_5055273 crossref_primary_10_1063_5_0196890 crossref_primary_10_1088_1742_6596_1124_5_051054 crossref_primary_10_1038_s41467_021_23089_w crossref_primary_10_1364_OPTICA_456761 crossref_primary_10_1002_admt_202100161 crossref_primary_10_1063_1_5023328 crossref_primary_10_1109_TNANO_2017_2663841 crossref_primary_10_1088_1742_6596_741_1_012143 crossref_primary_10_1038_srep38515 crossref_primary_10_1364_PRJ_430960 crossref_primary_10_1002_admi_202300528 crossref_primary_10_1016_j_matdes_2023_112383 crossref_primary_10_1109_OJNANO_2021_3135478 crossref_primary_10_1021_acsaelm_2c00068 crossref_primary_10_1063_5_0161026 crossref_primary_10_1002_adom_201801596 crossref_primary_10_1039_C5NR08791K crossref_primary_10_1109_MNANO_2016_2572244 crossref_primary_10_1007_s10762_017_0400_3 crossref_primary_10_1063_1_4897531 crossref_primary_10_1088_1361_6528_ab9bd6 crossref_primary_10_1021_acsnano_4c14699 crossref_primary_10_1039_D0TC01716G crossref_primary_10_3390_s21155221 crossref_primary_10_1364_OME_387795 crossref_primary_10_1039_D2NA00895E crossref_primary_10_1364_OE_442168 crossref_primary_10_1007_s42823_020_00172_8 crossref_primary_10_1073_pnas_1816251115 crossref_primary_10_1088_0957_4484_27_3_035205 crossref_primary_10_1016_j_carbon_2024_119273 crossref_primary_10_1016_j_physa_2022_128278 crossref_primary_10_1021_acsami_0c10943 crossref_primary_10_1063_1_4967988 crossref_primary_10_34077_Semicond2019_358 crossref_primary_10_1103_PhysRevMaterials_2_015201 crossref_primary_10_1364_OE_23_013348 crossref_primary_10_1002_adfm_202303352 crossref_primary_10_1016_j_carbon_2019_12_023 crossref_primary_10_1016_j_mtnano_2024_100533 crossref_primary_10_1364_JOSAB_33_002368 crossref_primary_10_1142_S0129156417400043 crossref_primary_10_1007_s00339_024_08105_2 crossref_primary_10_1002_adfm_202107499 crossref_primary_10_1039_D1RA04186J crossref_primary_10_1109_TTHZ_2023_3263628 crossref_primary_10_1016_j_matt_2020_06_014 crossref_primary_10_35848_1347_4065_ad21b8 crossref_primary_10_1002_adfm_201909448 crossref_primary_10_1021_acsami_8b06482 crossref_primary_10_1016_j_ceramint_2021_10_175 crossref_primary_10_1063_5_0062044 crossref_primary_10_1021_acsnano_5b06160 crossref_primary_10_1126_sciadv_abm4349 crossref_primary_10_1021_acsanm_8b01239 crossref_primary_10_1002_aenm_201601574 crossref_primary_10_1016_j_carbon_2024_118886 crossref_primary_10_1021_acsomega_7b02032 crossref_primary_10_1021_acsami_8b20095 crossref_primary_10_1063_1_4978935 crossref_primary_10_1109_TTHZ_2016_2525776 crossref_primary_10_1016_j_rinp_2022_105395 crossref_primary_10_1002_adma_201902044 crossref_primary_10_3390_app10061929 crossref_primary_10_1021_acsanm_2c01039 crossref_primary_10_1021_acs_nanolett_8b02629 crossref_primary_10_1109_TIM_2023_3318676 crossref_primary_10_1098_rsos_181605 crossref_primary_10_1016_j_mseb_2020_114831 crossref_primary_10_1016_j_carbon_2019_08_001 crossref_primary_10_1021_acsami_0c00764 crossref_primary_10_1021_acs_nanolett_9b02853 crossref_primary_10_1039_D1TA09396G crossref_primary_10_1134_S1064226921090114 crossref_primary_10_1002_adma_201503534 crossref_primary_10_1016_j_carbon_2018_02_005 crossref_primary_10_1002_adfm_202306281 crossref_primary_10_1021_acsami_2c03925 crossref_primary_10_1002_adfm_201807398 crossref_primary_10_1063_5_0060797 crossref_primary_10_1364_JOSAB_33_002430 crossref_primary_10_1016_j_mtcomm_2024_108436 crossref_primary_10_3390_nano12071101 crossref_primary_10_1016_j_carbon_2023_02_020 crossref_primary_10_1126_sciadv_1501227 crossref_primary_10_1039_C8NR08676A crossref_primary_10_1002_adpr_202000187 crossref_primary_10_2139_ssrn_4169730 crossref_primary_10_2139_ssrn_4169733 crossref_primary_10_1007_s40042_021_00367_w crossref_primary_10_1021_acsami_0c01405 crossref_primary_10_1039_D4NR05034G crossref_primary_10_1002_adfm_201704363 crossref_primary_10_1364_PRJ_525994 crossref_primary_10_1039_C6NR05005K crossref_primary_10_1016_j_sigpro_2022_108751 crossref_primary_10_3390_ma15041535 crossref_primary_10_7567_1882_0786_ab3bf1 crossref_primary_10_1016_j_optcom_2023_130216 crossref_primary_10_1088_1361_6528_ab851c crossref_primary_10_1021_acsanm_0c00182 crossref_primary_10_1088_1361_6463_ad93e2 crossref_primary_10_1039_D1RA06817B crossref_primary_10_1016_j_cma_2021_114257 crossref_primary_10_1088_1674_1056_27_9_094401 crossref_primary_10_1002_aisy_202000195 |
Cites_doi | 10.1117/12.680085 10.1038/nmat3417 10.1021/nn9013356 10.1038/nnano.2007.300 10.1007/s10762-012-9916-8 10.1103/PhysRevB.84.035437 10.1103/PhysRevB.81.205423 10.1143/JPSJ.71.1318 10.1103/PhysRevB.85.165435 10.1038/srep03344 10.1063/1.2837188 10.1021/nl901696j 10.1021/nl034313e 10.1021/nl403175g 10.1117/1.3436585 10.1126/science.1176112 10.1038/nphoton.2007.3 10.1021/nl050053k 10.1126/science.1156965 10.1038/srep01335 10.1063/1.4813621 10.1038/nphoton.2010.186 10.1021/nn402679u 10.2478/s11772-011-0033-3 10.1088/0022-3727/45/30/303001 10.1126/science.1141012 10.1103/PhysRevB.85.125432 10.1038/nphoton.2013.311 10.1007/978-3-540-72865-8 10.1103/PhysRevB.87.161401 10.1103/PhysRevLett.101.196405 10.1021/nl203783q 10.1038/nphoton.2013.235 10.1063/1.4704152 10.1038/nphoton.2008.94 10.1038/nnano.2008.60 10.1007/3-540-39947-X 10.1002/adma.201201751 10.1063/1.2838237 10.1103/PhysRevB.83.195411 |
ContentType | Journal Article |
Copyright | Copyright © 2014 American Chemical
Society 2015 INIST-CNRS |
Copyright_xml | – notice: Copyright © 2014 American Chemical Society – notice: 2015 INIST-CNRS |
DBID | AAYXX CITATION IQODW CGR CUY CVF ECM EIF NPM 7X8 7SR 7U5 8BQ 8FD JG9 L7M |
DOI | 10.1021/nl5012678 |
DatabaseName | CrossRef Pascal-Francis Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic Engineered Materials Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database Materials Research Database Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic Materials Research Database Engineered Materials Abstracts Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace METADEX |
DatabaseTitleList | Materials Research Database MEDLINE MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Physics |
EISSN | 1530-6992 |
EndPage | 3958 |
ExternalDocumentID | 24875576 28689148 10_1021_nl5012678 b646475699 |
Genre | Research Support, U.S. Gov't, Non-P.H.S Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | - .K2 123 4.4 55A 5VS 7~N AABXI ABMVS ABPTK ABUCX ACGFS ACS AEESW AENEX AFEFF ALMA_UNASSIGNED_HOLDINGS AQSVZ BAANH CS3 DU5 EBS ED ED~ EJD F5P GNL IH9 IHE JG JG~ K2 LG6 PK8 RNS ROL TN5 UI2 VF5 VG9 W1F X --- -~X 6P2 AAHBH AAYXX ABBLG ABJNI ABLBI ABQRX ACBEA ADHLV AHGAQ CITATION CUPRZ GGK 53G AAYOK AFFNX IQODW CGR CUY CVF ECM EIF NPM 7X8 7SR 7U5 8BQ 8FD JG9 L7M |
ID | FETCH-LOGICAL-a525t-b142f52893c18d6adac1ff1757c7ee5fe4e7ce08d53038150e6de9b2a8cf21493 |
IEDL.DBID | ACS |
ISSN | 1530-6984 1530-6992 |
IngestDate | Thu Jul 10 21:29:04 EDT 2025 Thu Jul 10 20:27:33 EDT 2025 Mon Jul 21 06:01:25 EDT 2025 Wed Apr 02 07:27:39 EDT 2025 Thu Apr 24 23:13:12 EDT 2025 Tue Jul 01 00:43:00 EDT 2025 Thu Aug 27 13:42:39 EDT 2020 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 7 |
Keywords | Carbon nanotubes polarization sensitive THz photodetector broadband Thermoelectric materials THz range Detectors Plasmons Seebeck effect Nanostructured materials Antennas |
Language | English |
License | CC BY 4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a525t-b142f52893c18d6adac1ff1757c7ee5fe4e7ce08d53038150e6de9b2a8cf21493 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PMID | 24875576 |
PQID | 1544738104 |
PQPubID | 23479 |
PageCount | 6 |
ParticipantIDs | proquest_miscellaneous_1762056640 proquest_miscellaneous_1544738104 pubmed_primary_24875576 pascalfrancis_primary_28689148 crossref_primary_10_1021_nl5012678 crossref_citationtrail_10_1021_nl5012678 acs_journals_10_1021_nl5012678 |
ProviderPackageCode | JG~ 55A AABXI GNL VF5 7~N VG9 W1F ACS AEESW AFEFF .K2 ABMVS ABUCX IH9 BAANH AQSVZ ED~ UI2 CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2014-07-09 |
PublicationDateYYYYMMDD | 2014-07-09 |
PublicationDate_xml | – month: 07 year: 2014 text: 2014-07-09 day: 09 |
PublicationDecade | 2010 |
PublicationPlace | Washington, DC |
PublicationPlace_xml | – name: Washington, DC – name: United States |
PublicationTitle | Nano letters |
PublicationTitleAlternate | Nano Lett |
PublicationYear | 2014 |
Publisher | American Chemical Society |
Publisher_xml | – name: American Chemical Society |
References | Ren L. (ref28/cit28) 2012; 12 Zhang Q. (ref29/cit29) 2013; 13 Freitag M. (ref34/cit34) 2003; 3 Dresselhaus M. S. (ref1/cit1) 2001 Batrakov K. G. (ref12/cit12) 2010; 4 Tonouchi M. (ref18/cit18) 2007; 1 Rogalski A. (ref40/cit40) 2011; 19 Shuba M. V. (ref31/cit31) 2012; 85 Pint C. L. (ref27/cit27) 2010; 4 Otsuji T. (ref9/cit9) 2012; 45 Mittendorff M. (ref26/cit26) 2013; 103 Chudow J. D. (ref22/cit22) 2012; 100 Slepyan G. Y. (ref30/cit30) 2010; 81 Zhong Z. (ref24/cit24) 2008; 3 Gabor N. M. (ref36/cit36) 2009; 325 Nanot S. (ref33/cit33) 2013; 3 Balasubramanian K. (ref35/cit35) 2005; 5 Kawano Y. (ref23/cit23) 2008; 103 Avouris P. (ref4/cit4) 2008; 2 Portnoi M. E. (ref8/cit8) 2006; 6328 Hartmann R. R. (ref11/cit11) Nanot S. (ref7/cit7) 2012; 24 Ren L. (ref13/cit13) 2013; 87 Ren L. (ref10/cit10) 2012; 33 Fu K. (ref21/cit21) 2008; 92 St-Antoine B. C. (ref37/cit37) 2009; 9 Booshehri L. G. (ref39/cit39) 2011; 83 Mittleman D. M. (ref20/cit20) 2013; 7 Léonard F. (ref5/cit5) 2009 Jorio A. (ref3/cit3) 2008 He X. (ref32/cit32) 2013; 7 Nair R. R. (ref16/cit16) 2008; 320 Lee M. (ref19/cit19) 2007; 316 Nonoguchi Y. (ref41/cit41) 2013; 3 Barkelid M. (ref38/cit38) 2014; 8 Fainchtein R. (ref42/cit42) 2012; 85 Avouris P. (ref2/cit2) 2007; 2 Vicarelli L. (ref25/cit25) 2012; 11 Bonaccorso F. (ref6/cit6) 2010; 4 Ando T. (ref15/cit15) 2002; 71 Mak K. F. (ref17/cit17) 2008; 101 Hartmann R. R. (ref14/cit14) 2011; 84 |
References_xml | – volume: 6328 start-page: 632805 year: 2006 ident: ref8/cit8 publication-title: Proc. SPIE doi: 10.1117/12.680085 – volume: 11 start-page: 865 year: 2012 ident: ref25/cit25 publication-title: Nat. Mater. doi: 10.1038/nmat3417 – volume: 4 start-page: 1131 year: 2010 ident: ref27/cit27 publication-title: ACS Nano doi: 10.1021/nn9013356 – volume: 2 start-page: 605 year: 2007 ident: ref2/cit2 publication-title: Nat. Nanotechnol. doi: 10.1038/nnano.2007.300 – volume: 33 start-page: 846 year: 2012 ident: ref10/cit10 publication-title: J. Infrared Milli. Terahz Waves doi: 10.1007/s10762-012-9916-8 – volume: 84 start-page: 035437 year: 2011 ident: ref14/cit14 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.84.035437 – volume: 81 start-page: 205423 year: 2010 ident: ref30/cit30 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.81.205423 – volume: 71 start-page: 1318 year: 2002 ident: ref15/cit15 publication-title: Phys. Soc. Jpn. doi: 10.1143/JPSJ.71.1318 – volume: 85 start-page: 165435 year: 2012 ident: ref31/cit31 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.85.165435 – volume: 3 start-page: 3344 year: 2013 ident: ref41/cit41 publication-title: Sci. Rep. doi: 10.1038/srep03344 – volume-title: The Physics of Carbon Nanotube Devices year: 2009 ident: ref5/cit5 – volume: 92 start-page: 033105 year: 2008 ident: ref21/cit21 publication-title: Appl. Phys. Lett. doi: 10.1063/1.2837188 – volume: 9 start-page: 3503 year: 2009 ident: ref37/cit37 publication-title: Nano Lett. doi: 10.1021/nl901696j – volume: 3 start-page: 1067 year: 2003 ident: ref34/cit34 publication-title: Nano Lett. doi: 10.1021/nl034313e – volume: 13 start-page: 5991 year: 2013 ident: ref29/cit29 publication-title: Nano Lett. doi: 10.1021/nl403175g – volume: 4 start-page: 041665 year: 2010 ident: ref12/cit12 publication-title: J. Nanophoton. doi: 10.1117/1.3436585 – volume: 325 start-page: 1367 year: 2009 ident: ref36/cit36 publication-title: Science doi: 10.1126/science.1176112 – volume: 1 start-page: 97 year: 2007 ident: ref18/cit18 publication-title: Nat. Photonics doi: 10.1038/nphoton.2007.3 – volume: 5 start-page: 507 year: 2005 ident: ref35/cit35 publication-title: Nano Lett. doi: 10.1021/nl050053k – volume: 320 start-page: 1308 year: 2008 ident: ref16/cit16 publication-title: Science doi: 10.1126/science.1156965 – volume: 3 start-page: 1335 year: 2013 ident: ref33/cit33 publication-title: Sci. Rep. doi: 10.1038/srep01335 – volume: 103 start-page: 021113 year: 2013 ident: ref26/cit26 publication-title: Appl. Phys. Lett. doi: 10.1063/1.4813621 – volume: 4 start-page: 611 year: 2010 ident: ref6/cit6 publication-title: Nat. Photonics doi: 10.1038/nphoton.2010.186 – volume: 7 start-page: 7271 year: 2013 ident: ref32/cit32 publication-title: ACS Nano doi: 10.1021/nn402679u – volume: 19 start-page: 346 year: 2011 ident: ref40/cit40 publication-title: Opto-Electron. Rev. doi: 10.2478/s11772-011-0033-3 – volume: 45 start-page: 303001 year: 2012 ident: ref9/cit9 publication-title: J. Phys. D: Appl. Phys. doi: 10.1088/0022-3727/45/30/303001 – volume: 316 start-page: 64 year: 2007 ident: ref19/cit19 publication-title: Science doi: 10.1126/science.1141012 – volume: 85 start-page: 125432 year: 2012 ident: ref42/cit42 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.85.125432 – volume: 8 start-page: 47 year: 2014 ident: ref38/cit38 publication-title: Nat. Photonics doi: 10.1038/nphoton.2013.311 – volume-title: Nanotechnology ident: ref11/cit11 – volume-title: Carbon Nanotubes: Advanced Topics in the Synthesis, Structure, Properties and Applications year: 2008 ident: ref3/cit3 doi: 10.1007/978-3-540-72865-8 – volume: 87 start-page: 161401(R) year: 2013 ident: ref13/cit13 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.87.161401 – volume: 101 start-page: 196405 year: 2008 ident: ref17/cit17 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.101.196405 – volume: 12 start-page: 787 year: 2012 ident: ref28/cit28 publication-title: Nano Lett. doi: 10.1021/nl203783q – volume: 7 start-page: 666 year: 2013 ident: ref20/cit20 publication-title: Nat. Photonics doi: 10.1038/nphoton.2013.235 – volume: 100 start-page: 163503 year: 2012 ident: ref22/cit22 publication-title: Appl. Phys. Lett. doi: 10.1063/1.4704152 – volume: 2 start-page: 341 year: 2008 ident: ref4/cit4 publication-title: Nat. Photonics doi: 10.1038/nphoton.2008.94 – volume: 3 start-page: 201 year: 2008 ident: ref24/cit24 publication-title: Nat. Nanotechnol. doi: 10.1038/nnano.2008.60 – volume-title: Carbon Nanotubes: Synthesis, Structure, Properties, and Applications year: 2001 ident: ref1/cit1 doi: 10.1007/3-540-39947-X – volume: 24 start-page: 4977 year: 2012 ident: ref7/cit7 publication-title: Adv. Mater. doi: 10.1002/adma.201201751 – volume: 103 start-page: 034307 year: 2008 ident: ref23/cit23 publication-title: J. Appl. Phys. doi: 10.1063/1.2838237 – volume: 83 start-page: 195411 year: 2011 ident: ref39/cit39 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.83.195411 |
SSID | ssj0009350 |
Score | 2.567111 |
Snippet | Terahertz (THz) technologies are promising for diverse areas such as medicine, bioengineering, astronomy, environmental monitoring, and communications.... |
SourceID | proquest pubmed pascalfrancis crossref acs |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 3953 |
SubjectTerms | Broadband Carbon nanotubes Collective excitations (including excitons, polarons, plasmons and other charge-density excitations) Condensed matter: electronic structure, electrical, magnetic, and optical properties Cross-disciplinary physics: materials science; rheology Detectors Devices Electronic structure and electrical properties of surfaces, interfaces, thin films and low-dimensional structures Equipment Design Exact sciences and technology General equipment and techniques Instruments, apparatus, components and techniques common to several branches of physics and astronomy Materials science Nanocrystalline materials Nanoscale materials and structures: fabrication and characterization Nanostructure Nanotubes Nanotubes, Carbon - chemistry Nanotubes, Carbon - ultrastructure Physics Polarization Sensors (chemical, optical, electrical, movement, gas, etc.); remote sensing Surface and interface electron states Temperature Terahertz Radiation Terahertz Spectroscopy - instrumentation Thermal management Thermoelectricity |
Title | Carbon Nanotube Terahertz Detector |
URI | http://dx.doi.org/10.1021/nl5012678 https://www.ncbi.nlm.nih.gov/pubmed/24875576 https://www.proquest.com/docview/1544738104 https://www.proquest.com/docview/1762056640 |
Volume | 14 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV3JTsNADLWgXECIfSlLFZYDl5RmMktyRAWEOHABJG7RLM6FKq3a5NKvx0m6UAHl7igZj8f2syfPANdMKimMY76xZemGM_Qjnjof4xCdQRZLU12QfZFP7_z5Q3yswNUfHXwW3GY9QU6UfOoqrDEZqRJh3XVf58y6YTWGlU4u4aA44lP6oO-PlqHHjhZCz-ZAj0gLaT2-4u_8soozj9twP_1bp75e8tkuctO245_kjcuWsANbkzzTu6sNYxdWMNuDjW_sg_tw2dVD0888crD9vDDovSF5HhzmY-8e86qafwDvjw9v3Sd_MjLB14KJ3C9LOqkgEBXaIHJSO22DNKUUQVmFKFLkqCx2IkfaolgtOigdxobpyKaMwFJ4CI2sn-ExeFoprbQOw5QZrow2BJalVUGgWahj55rQIp0mE5MfJVU3mwXJbLFNuJmqO7ETwvFy7kXvN9HLmeigZtn4Tai1sGczSRbJKCZY14SL6SYmdEjKzofOsF_QtwnOVcllxpfIUFigbFDyThOOaguYv6GEdYTMTv5b8ymsU0bFq_u88Rk08mGB55S15KZVWe0XHQDjEA |
linkProvider | American Chemical Society |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV1Lb9NAEB6VcgCEeD_CI5gKJC4u8XpfPnCoUqqUll5Ipd7cfYwvVE4VO0L0p_BX-HPMbpykRQVOlbiP1uPx7Mx8O-tvAN4wqaSwnqXWhaMbzjDVvPIpFjl6i6yQNl6QPZCjQ_7pSBytwY_FvzCkREMrNbGJv2IXyN7XJ4JiKYXW7gLlHn7_RvCs-bC7Td_yLWM7H8fDUdpNEEiNYKJNwwlHJQhT5C7TXhpvXFZVlDGVU4iiQo7K4UB7kYeOmRig9FhYZrSrGGGHnNa9Btep6GEB2G0Nv6wIffM4_ZUCBsGvQvMFa9F5VUPGc82FjHf71DRk_Go-NePPZW1Mbzt34efSMPFWy9fNWWs33dlvnJH_p-XuwZ2uqk625tvgPqxh_QBuneNafAgbQzO1kzqhdDJpZxaTMVKcxWl7lmxjG3sXj-DwSpR8DOv1pMankBiljDImzytmubLGKq2lU1lmWG4K73vQJ9uW3QZvyti7Z1m5NG4P3i2-cuk6evUw5ePkMtGNpejpnFPkMqH-BVdZSjItdUEgtgevF75TUkgIfR5T42RGugnOVWBu43-RoSRIta_kgx48mTve6gkBxBIOffavd34FN0bjz_vl_u7B3nO4SbUkjzeZixew3k5n-JLqtdb248ZJ4Piq_e0XOLRGlg |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV1Lb9NAEB6VIiEqxJsSHsFUIHFxidf78oFDlRC1FFVItFJvZh-zFyonih0h-mP4K_w1Zh0nbVGBUyXuo_V4dp6e8TcAr5hUUljPUuvipxvOMNU8-BSLHL1FVkjbDsgeyN0j_uFYHK_Bj-W_MMRETSfVbRM_WvXUhw5hIHtbnQjyp-ReuyHKffz-jUq0-t3eiO7zNWPj94fD3bTbIpAawUSTxq8cQVBdkbtMe2m8cVkIFDWVU4giIEflcKC9yGPXTAxQeiwsM9oFRvVDTudeg-uxPRiLu53h5zNQ37zdAEtOg0qwQvMlctF5VmPUc_WFqHdramq6gLDYnPHn1LYNceM78HMlnHay5ev2vLHb7vQ33Mj_V3p34XaXXSc7C3O4B2tY3YeNc5iLD2BraGZ2UiUUVibN3GJyiORvcdacJiNs2h7GQzi6EiYfwXo1qfAxJEYpo4zJ88AsV9ZYpbV0KssMy03hfQ_6JN-yM_S6bHv4LCtXwu3Bm-VNl66DWY_bPk4uI91akU4X2CKXEfUvqMuKkmmpCypme_ByqT8luYbY7zEVTubEm-BcRQQ3_hcaCoaUA0s-6MHmQvnOnhCLWapHn_zrnV_AjU-jcflx72D_KdyklJK3A83FM1hvZnN8TmlbY_ut7STw5arV7RctVkkZ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Carbon+nanotube+terahertz+detector&rft.jtitle=Nano+letters&rft.au=He%2C+Xiaowei&rft.au=Fujimura%2C+Naoki&rft.au=Lloyd%2C+J+Meagan&rft.au=Erickson%2C+Kristopher+J&rft.date=2014-07-09&rft.issn=1530-6992&rft.eissn=1530-6992&rft.volume=14&rft.issue=7&rft.spage=3953&rft_id=info:doi/10.1021%2Fnl5012678&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1530-6984&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1530-6984&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1530-6984&client=summon |