Carbon Nanotube Terahertz Detector

Terahertz (THz) technologies are promising for diverse areas such as medicine, bioengineering, astronomy, environmental monitoring, and communications. However, despite decades of worldwide efforts, the THz region of the electromagnetic spectrum still continues to be elusive for solid state technolo...

Full description

Saved in:
Bibliographic Details
Published inNano letters Vol. 14; no. 7; pp. 3953 - 3958
Main Authors He, Xiaowei, Fujimura, Naoki, Lloyd, J. Meagan, Erickson, Kristopher J, Talin, A. Alec, Zhang, Qi, Gao, Weilu, Jiang, Qijia, Kawano, Yukio, Hauge, Robert H, Léonard, François, Kono, Junichiro
Format Journal Article
LanguageEnglish
Published Washington, DC American Chemical Society 09.07.2014
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Terahertz (THz) technologies are promising for diverse areas such as medicine, bioengineering, astronomy, environmental monitoring, and communications. However, despite decades of worldwide efforts, the THz region of the electromagnetic spectrum still continues to be elusive for solid state technology. Here, we report on the development of a powerless, compact, broadband, flexible, large-area, and polarization-sensitive carbon nanotube THz detector that works at room temperature. The detector is sensitive throughout the entire range of the THz technology gap, with responsivities as high as ∼2.5 V/W and polarization ratios as high as ∼5:1. Complete thermoelectric and opto-thermal characterization together unambiguously reveal the photothermoelectric origin of the THz photosignal, triggered by plasmonic absorption and collective antenna effects, and suggest that judicious design of thermal management and quantum engineering of Seebeck coefficients will lead to further enhancement of device performance.
AbstractList Terahertz (THz) technologies are promising for diverse areas such as medicine, bioengineering, astronomy, environmental monitoring, and communications. However, despite decades of worldwide efforts, the THz region of the electromagnetic spectrum still continues to be elusive for solid state technology. Here, we report on the development of a powerless, compact, broadband, flexible, large-area, and polarization-sensitive carbon nanotube THz detector that works at room temperature. The detector is sensitive throughout the entire range of the THz technology gap, with responsivities as high as 2.5 V/W and polarization ratios as high as 5:1. Complete thermoelectric and opto-thermal characterization together unambiguously reveal the photothermoelectric origin of the THz photosignal, triggered by plasmonic absorption and collective antenna effects, and suggest that judicious design of thermal management and quantum engineering of Seebeck coefficients will lead to further enhancement of device performance. Keywords: Carbon nanotubes; THz photodetector; broadband; polarization sensitive
Terahertz (THz) technologies are promising for diverse areas such as medicine, bioengineering, astronomy, environmental monitoring, and communications. However, despite decades of worldwide efforts, the THz region of the electromagnetic spectrum still continues to be elusive for solid state technology. Here, we report on the development of a powerless, compact, broadband, flexible, large-area, and polarization-sensitive carbon nanotube THz detector that works at room temperature. The detector is sensitive throughout the entire range of the THz technology gap, with responsivities as high as ∼2.5 V/W and polarization ratios as high as ∼5:1. Complete thermoelectric and opto-thermal characterization together unambiguously reveal the photothermoelectric origin of the THz photosignal, triggered by plasmonic absorption and collective antenna effects, and suggest that judicious design of thermal management and quantum engineering of Seebeck coefficients will lead to further enhancement of device performance.
Terahertz (THz) technologies are promising for diverse areas such as medicine, bioengineering, astronomy, environmental monitoring, and communications. However, despite decades of worldwide efforts, the THz region of the electromagnetic spectrum still continues to be elusive for solid state technology. Here, we report on the development of a powerless, compact, broadband, flexible, large-area, and polarization-sensitive carbon nanotube THz detector that works at room temperature. The detector is sensitive throughout the entire range of the THz technology gap, with responsivities as high as ∼2.5 V/W and polarization ratios as high as ∼5:1. Complete thermoelectric and opto-thermal characterization together unambiguously reveal the photothermoelectric origin of the THz photosignal, triggered by plasmonic absorption and collective antenna effects, and suggest that judicious design of thermal management and quantum engineering of Seebeck coefficients will lead to further enhancement of device performance.Terahertz (THz) technologies are promising for diverse areas such as medicine, bioengineering, astronomy, environmental monitoring, and communications. However, despite decades of worldwide efforts, the THz region of the electromagnetic spectrum still continues to be elusive for solid state technology. Here, we report on the development of a powerless, compact, broadband, flexible, large-area, and polarization-sensitive carbon nanotube THz detector that works at room temperature. The detector is sensitive throughout the entire range of the THz technology gap, with responsivities as high as ∼2.5 V/W and polarization ratios as high as ∼5:1. Complete thermoelectric and opto-thermal characterization together unambiguously reveal the photothermoelectric origin of the THz photosignal, triggered by plasmonic absorption and collective antenna effects, and suggest that judicious design of thermal management and quantum engineering of Seebeck coefficients will lead to further enhancement of device performance.
Author Kono, Junichiro
Zhang, Qi
Jiang, Qijia
Lloyd, J. Meagan
Kawano, Yukio
He, Xiaowei
Talin, A. Alec
Fujimura, Naoki
Erickson, Kristopher J
Gao, Weilu
Hauge, Robert H
Léonard, François
AuthorAffiliation Carnegie Mellon University
Department of Physical Electronics
Rice University
NanoJapan Program
Sandia National Laboratories
Department of Chemistry
Department of Materials Science and NanoEngineering
Tokyo Institute of Technology
Electrical and Computer Engineering Department
Department of Electrical and Computer Engineering
Department of Physics and Astronomy
Chemistry Department, Faculty of Science
The Richard E. Smalley Institute for Nanoscale Science and Technology
King Abdulaziz University
AuthorAffiliation_xml – name: Department of Chemistry
– name: Chemistry Department, Faculty of Science
– name: Tokyo Institute of Technology
– name: King Abdulaziz University
– name: Electrical and Computer Engineering Department
– name: Carnegie Mellon University
– name: NanoJapan Program
– name: Department of Materials Science and NanoEngineering
– name: Department of Physics and Astronomy
– name: Department of Electrical and Computer Engineering
– name: The Richard E. Smalley Institute for Nanoscale Science and Technology
– name: Sandia National Laboratories
– name: Department of Physical Electronics
– name: Rice University
Author_xml – sequence: 1
  givenname: Xiaowei
  surname: He
  fullname: He, Xiaowei
– sequence: 2
  givenname: Naoki
  surname: Fujimura
  fullname: Fujimura, Naoki
– sequence: 3
  givenname: J. Meagan
  surname: Lloyd
  fullname: Lloyd, J. Meagan
– sequence: 4
  givenname: Kristopher J
  surname: Erickson
  fullname: Erickson, Kristopher J
– sequence: 5
  givenname: A. Alec
  surname: Talin
  fullname: Talin, A. Alec
– sequence: 6
  givenname: Qi
  surname: Zhang
  fullname: Zhang, Qi
– sequence: 7
  givenname: Weilu
  surname: Gao
  fullname: Gao, Weilu
– sequence: 8
  givenname: Qijia
  surname: Jiang
  fullname: Jiang, Qijia
– sequence: 9
  givenname: Yukio
  surname: Kawano
  fullname: Kawano, Yukio
– sequence: 10
  givenname: Robert H
  surname: Hauge
  fullname: Hauge, Robert H
– sequence: 11
  givenname: François
  surname: Léonard
  fullname: Léonard, François
  email: fleonar@sandia.gov
– sequence: 12
  givenname: Junichiro
  surname: Kono
  fullname: Kono, Junichiro
  email: kono@rice.edu
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=28689148$$DView record in Pascal Francis
https://www.ncbi.nlm.nih.gov/pubmed/24875576$$D View this record in MEDLINE/PubMed
BookMark eNqF0UtLAzEQAOAgFfvQg39AiiDoYW2SzWuPUp9Q9FLPSzY7i1u2SU2yB_31rnStIAVPM4dvHsyM0cA6CwidEnxNMCUz23BMqJDqAI0IT3EisowOdrliQzQOYYUxzlKOj9CQMiU5l2KEzufaF85On7V1sS1gugSv38DHz-ktRDDR-WN0WOkmwEkfJ-j1_m45f0wWLw9P85tFojnlMSkIoxWnKksNUaXQpTakqojk0kgAXgEDaQCrslsqVYRjECVkBdXKVJSwLJ2gy23fjXfvLYSYr-tgoGm0BdeGnEhBMReC4f8pZ0x2QzDr6FlP22INZb7x9Vr7j_znBB246IEORjeV19bU4dcpoTLCVOeuts54F4KHakcIzr_fkO_e0NnZH2vqqGPtbPS6bvZW9FtoE_KVa73tTr3HfQE95ZGo
CitedBy_id crossref_primary_10_1016_j_optmat_2023_113779
crossref_primary_10_1002_adpr_202000095
crossref_primary_10_1063_1_4901025
crossref_primary_10_1016_j_carbon_2019_11_068
crossref_primary_10_1142_S0218625X25300096
crossref_primary_10_1002_adom_201500237
crossref_primary_10_1063_1_5080750
crossref_primary_10_1103_PhysRevB_98_241404
crossref_primary_10_1016_j_mtphys_2018_04_001
crossref_primary_10_1063_5_0054845
crossref_primary_10_1021_acs_nanolett_5b00494
crossref_primary_10_1021_acsami_4c07979
crossref_primary_10_26599_NRE_2023_9120058
crossref_primary_10_37188_lam_2021_031
crossref_primary_10_1016_j_jallcom_2021_162496
crossref_primary_10_1016_j_sna_2023_114296
crossref_primary_10_1021_acsnano_1c06286
crossref_primary_10_1021_acs_nanolett_6b02778
crossref_primary_10_1364_OE_24_015730
crossref_primary_10_1088_1361_6463_aa96ef
crossref_primary_10_1038_nnano_2015_220
crossref_primary_10_1039_C5NR01904D
crossref_primary_10_1016_j_nancom_2015_09_001
crossref_primary_10_7566_JPSJ_84_121010
crossref_primary_10_1088_0022_3727_49_42_425101
crossref_primary_10_3390_mi14010061
crossref_primary_10_1109_JPROC_2018_2854372
crossref_primary_10_1016_j_rinp_2022_106055
crossref_primary_10_1039_C8RA01447G
crossref_primary_10_1109_JQE_2024_3462953
crossref_primary_10_3390_ma15155386
crossref_primary_10_1063_1_5142311
crossref_primary_10_1021_acs_nanolett_7b02522
crossref_primary_10_1002_smll_201802806
crossref_primary_10_1103_PhysRevApplied_9_024027
crossref_primary_10_1002_pssb_201700227
crossref_primary_10_1016_j_optmat_2025_116705
crossref_primary_10_1088_1361_6463_ac928a
crossref_primary_10_1063_1_4935947
crossref_primary_10_1021_acsami_6b11418
crossref_primary_10_2184_lsj_47_1_32
crossref_primary_10_1002_smll_201403413
crossref_primary_10_1038_nphoton_2016_209
crossref_primary_10_20965_ijat_2018_p0087
crossref_primary_10_1007_s11705_019_1831_2
crossref_primary_10_1021_acsomega_1c05605
crossref_primary_10_1557_mrc_2015_9
crossref_primary_10_1021_acsnano_8b06511
crossref_primary_10_1063_5_0205333
crossref_primary_10_1016_j_nanoen_2018_12_053
crossref_primary_10_1021_acsanm_0c01635
crossref_primary_10_1021_acsaelm_9b00058
crossref_primary_10_1021_acs_jpcc_5b06865
crossref_primary_10_1021_acs_nanolett_8b04099
crossref_primary_10_3390_pr12081728
crossref_primary_10_1088_1742_6596_1096_1_012127
crossref_primary_10_1364_JOSAB_439409
crossref_primary_10_1016_j_physa_2022_127013
crossref_primary_10_1016_j_carbon_2018_02_067
crossref_primary_10_1021_acsami_8b14386
crossref_primary_10_1039_D0NR01243B
crossref_primary_10_1039_C8NR09060B
crossref_primary_10_1063_1_4906878
crossref_primary_10_1016_j_matdes_2024_113151
crossref_primary_10_1063_1_4959215
crossref_primary_10_1002_adom_202401450
crossref_primary_10_1016_j_carbon_2022_09_068
crossref_primary_10_1002_adfm_202311008
crossref_primary_10_1103_PhysRevLett_118_257401
crossref_primary_10_1002_aelm_202100978
crossref_primary_10_1016_j_materresbull_2020_111093
crossref_primary_10_1021_acsanm_8b00421
crossref_primary_10_1088_1742_6596_1368_2_022051
crossref_primary_10_1021_acs_nanolett_5b02901
crossref_primary_10_1088_1361_6463_ab4ca4
crossref_primary_10_1016_j_materresbull_2018_07_011
crossref_primary_10_1016_j_mtphys_2022_100631
crossref_primary_10_1007_s11051_023_05790_7
crossref_primary_10_1002_aelm_202400124
crossref_primary_10_1002_adfm_201606022
crossref_primary_10_1007_s00340_021_07688_5
crossref_primary_10_1002_inf2_12384
crossref_primary_10_1038_s41467_018_05597_4
crossref_primary_10_1179_1432891715Z_0000000001504
crossref_primary_10_1016_j_carbon_2023_118193
crossref_primary_10_1016_j_fmre_2023_11_001
crossref_primary_10_1016_j_carbon_2024_118810
crossref_primary_10_1021_acsphotonics_8b01527
crossref_primary_10_1002_adom_202101008
crossref_primary_10_1016_j_optmat_2023_113432
crossref_primary_10_1002_adma_202312570
crossref_primary_10_1002_smll_202205329
crossref_primary_10_1016_j_apsusc_2025_162537
crossref_primary_10_1021_acsami_7b07184
crossref_primary_10_1021_acsami_4c10489
crossref_primary_10_1063_1_4954222
crossref_primary_10_1016_j_physe_2022_115298
crossref_primary_10_1016_j_msea_2016_01_110
crossref_primary_10_1016_j_apmt_2020_100800
crossref_primary_10_1134_S106378261612006X
crossref_primary_10_1016_j_carbon_2019_07_033
crossref_primary_10_1021_nl5033843
crossref_primary_10_1063_5_0086515
crossref_primary_10_1021_acs_nanolett_5b03572
crossref_primary_10_1063_1_5055273
crossref_primary_10_1063_5_0196890
crossref_primary_10_1088_1742_6596_1124_5_051054
crossref_primary_10_1038_s41467_021_23089_w
crossref_primary_10_1364_OPTICA_456761
crossref_primary_10_1002_admt_202100161
crossref_primary_10_1063_1_5023328
crossref_primary_10_1109_TNANO_2017_2663841
crossref_primary_10_1088_1742_6596_741_1_012143
crossref_primary_10_1038_srep38515
crossref_primary_10_1364_PRJ_430960
crossref_primary_10_1002_admi_202300528
crossref_primary_10_1016_j_matdes_2023_112383
crossref_primary_10_1109_OJNANO_2021_3135478
crossref_primary_10_1021_acsaelm_2c00068
crossref_primary_10_1063_5_0161026
crossref_primary_10_1002_adom_201801596
crossref_primary_10_1039_C5NR08791K
crossref_primary_10_1109_MNANO_2016_2572244
crossref_primary_10_1007_s10762_017_0400_3
crossref_primary_10_1063_1_4897531
crossref_primary_10_1088_1361_6528_ab9bd6
crossref_primary_10_1021_acsnano_4c14699
crossref_primary_10_1039_D0TC01716G
crossref_primary_10_3390_s21155221
crossref_primary_10_1364_OME_387795
crossref_primary_10_1039_D2NA00895E
crossref_primary_10_1364_OE_442168
crossref_primary_10_1007_s42823_020_00172_8
crossref_primary_10_1073_pnas_1816251115
crossref_primary_10_1088_0957_4484_27_3_035205
crossref_primary_10_1016_j_carbon_2024_119273
crossref_primary_10_1016_j_physa_2022_128278
crossref_primary_10_1021_acsami_0c10943
crossref_primary_10_1063_1_4967988
crossref_primary_10_34077_Semicond2019_358
crossref_primary_10_1103_PhysRevMaterials_2_015201
crossref_primary_10_1364_OE_23_013348
crossref_primary_10_1002_adfm_202303352
crossref_primary_10_1016_j_carbon_2019_12_023
crossref_primary_10_1016_j_mtnano_2024_100533
crossref_primary_10_1364_JOSAB_33_002368
crossref_primary_10_1142_S0129156417400043
crossref_primary_10_1007_s00339_024_08105_2
crossref_primary_10_1002_adfm_202107499
crossref_primary_10_1039_D1RA04186J
crossref_primary_10_1109_TTHZ_2023_3263628
crossref_primary_10_1016_j_matt_2020_06_014
crossref_primary_10_35848_1347_4065_ad21b8
crossref_primary_10_1002_adfm_201909448
crossref_primary_10_1021_acsami_8b06482
crossref_primary_10_1016_j_ceramint_2021_10_175
crossref_primary_10_1063_5_0062044
crossref_primary_10_1021_acsnano_5b06160
crossref_primary_10_1126_sciadv_abm4349
crossref_primary_10_1021_acsanm_8b01239
crossref_primary_10_1002_aenm_201601574
crossref_primary_10_1016_j_carbon_2024_118886
crossref_primary_10_1021_acsomega_7b02032
crossref_primary_10_1021_acsami_8b20095
crossref_primary_10_1063_1_4978935
crossref_primary_10_1109_TTHZ_2016_2525776
crossref_primary_10_1016_j_rinp_2022_105395
crossref_primary_10_1002_adma_201902044
crossref_primary_10_3390_app10061929
crossref_primary_10_1021_acsanm_2c01039
crossref_primary_10_1021_acs_nanolett_8b02629
crossref_primary_10_1109_TIM_2023_3318676
crossref_primary_10_1098_rsos_181605
crossref_primary_10_1016_j_mseb_2020_114831
crossref_primary_10_1016_j_carbon_2019_08_001
crossref_primary_10_1021_acsami_0c00764
crossref_primary_10_1021_acs_nanolett_9b02853
crossref_primary_10_1039_D1TA09396G
crossref_primary_10_1134_S1064226921090114
crossref_primary_10_1002_adma_201503534
crossref_primary_10_1016_j_carbon_2018_02_005
crossref_primary_10_1002_adfm_202306281
crossref_primary_10_1021_acsami_2c03925
crossref_primary_10_1002_adfm_201807398
crossref_primary_10_1063_5_0060797
crossref_primary_10_1364_JOSAB_33_002430
crossref_primary_10_1016_j_mtcomm_2024_108436
crossref_primary_10_3390_nano12071101
crossref_primary_10_1016_j_carbon_2023_02_020
crossref_primary_10_1126_sciadv_1501227
crossref_primary_10_1039_C8NR08676A
crossref_primary_10_1002_adpr_202000187
crossref_primary_10_2139_ssrn_4169730
crossref_primary_10_2139_ssrn_4169733
crossref_primary_10_1007_s40042_021_00367_w
crossref_primary_10_1021_acsami_0c01405
crossref_primary_10_1039_D4NR05034G
crossref_primary_10_1002_adfm_201704363
crossref_primary_10_1364_PRJ_525994
crossref_primary_10_1039_C6NR05005K
crossref_primary_10_1016_j_sigpro_2022_108751
crossref_primary_10_3390_ma15041535
crossref_primary_10_7567_1882_0786_ab3bf1
crossref_primary_10_1016_j_optcom_2023_130216
crossref_primary_10_1088_1361_6528_ab851c
crossref_primary_10_1021_acsanm_0c00182
crossref_primary_10_1088_1361_6463_ad93e2
crossref_primary_10_1039_D1RA06817B
crossref_primary_10_1016_j_cma_2021_114257
crossref_primary_10_1088_1674_1056_27_9_094401
crossref_primary_10_1002_aisy_202000195
Cites_doi 10.1117/12.680085
10.1038/nmat3417
10.1021/nn9013356
10.1038/nnano.2007.300
10.1007/s10762-012-9916-8
10.1103/PhysRevB.84.035437
10.1103/PhysRevB.81.205423
10.1143/JPSJ.71.1318
10.1103/PhysRevB.85.165435
10.1038/srep03344
10.1063/1.2837188
10.1021/nl901696j
10.1021/nl034313e
10.1021/nl403175g
10.1117/1.3436585
10.1126/science.1176112
10.1038/nphoton.2007.3
10.1021/nl050053k
10.1126/science.1156965
10.1038/srep01335
10.1063/1.4813621
10.1038/nphoton.2010.186
10.1021/nn402679u
10.2478/s11772-011-0033-3
10.1088/0022-3727/45/30/303001
10.1126/science.1141012
10.1103/PhysRevB.85.125432
10.1038/nphoton.2013.311
10.1007/978-3-540-72865-8
10.1103/PhysRevB.87.161401
10.1103/PhysRevLett.101.196405
10.1021/nl203783q
10.1038/nphoton.2013.235
10.1063/1.4704152
10.1038/nphoton.2008.94
10.1038/nnano.2008.60
10.1007/3-540-39947-X
10.1002/adma.201201751
10.1063/1.2838237
10.1103/PhysRevB.83.195411
ContentType Journal Article
Copyright Copyright © 2014 American Chemical Society
2015 INIST-CNRS
Copyright_xml – notice: Copyright © 2014 American Chemical Society
– notice: 2015 INIST-CNRS
DBID AAYXX
CITATION
IQODW
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7SR
7U5
8BQ
8FD
JG9
L7M
DOI 10.1021/nl5012678
DatabaseName CrossRef
Pascal-Francis
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Materials Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
Materials Research Database
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
METADEX
DatabaseTitleList Materials Research Database

MEDLINE
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Physics
EISSN 1530-6992
EndPage 3958
ExternalDocumentID 24875576
28689148
10_1021_nl5012678
b646475699
Genre Research Support, U.S. Gov't, Non-P.H.S
Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID -
.K2
123
4.4
55A
5VS
7~N
AABXI
ABMVS
ABPTK
ABUCX
ACGFS
ACS
AEESW
AENEX
AFEFF
ALMA_UNASSIGNED_HOLDINGS
AQSVZ
BAANH
CS3
DU5
EBS
ED
ED~
EJD
F5P
GNL
IH9
IHE
JG
JG~
K2
LG6
PK8
RNS
ROL
TN5
UI2
VF5
VG9
W1F
X
---
-~X
6P2
AAHBH
AAYXX
ABBLG
ABJNI
ABLBI
ABQRX
ACBEA
ADHLV
AHGAQ
CITATION
CUPRZ
GGK
53G
AAYOK
AFFNX
IQODW
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7SR
7U5
8BQ
8FD
JG9
L7M
ID FETCH-LOGICAL-a525t-b142f52893c18d6adac1ff1757c7ee5fe4e7ce08d53038150e6de9b2a8cf21493
IEDL.DBID ACS
ISSN 1530-6984
1530-6992
IngestDate Thu Jul 10 21:29:04 EDT 2025
Thu Jul 10 20:27:33 EDT 2025
Mon Jul 21 06:01:25 EDT 2025
Wed Apr 02 07:27:39 EDT 2025
Thu Apr 24 23:13:12 EDT 2025
Tue Jul 01 00:43:00 EDT 2025
Thu Aug 27 13:42:39 EDT 2020
IsPeerReviewed true
IsScholarly true
Issue 7
Keywords Carbon nanotubes
polarization sensitive
THz photodetector
broadband
Thermoelectric materials
THz range
Detectors
Plasmons
Seebeck effect
Nanostructured materials
Antennas
Language English
License CC BY 4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a525t-b142f52893c18d6adac1ff1757c7ee5fe4e7ce08d53038150e6de9b2a8cf21493
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 24875576
PQID 1544738104
PQPubID 23479
PageCount 6
ParticipantIDs proquest_miscellaneous_1762056640
proquest_miscellaneous_1544738104
pubmed_primary_24875576
pascalfrancis_primary_28689148
crossref_primary_10_1021_nl5012678
crossref_citationtrail_10_1021_nl5012678
acs_journals_10_1021_nl5012678
ProviderPackageCode JG~
55A
AABXI
GNL
VF5
7~N
VG9
W1F
ACS
AEESW
AFEFF
.K2
ABMVS
ABUCX
IH9
BAANH
AQSVZ
ED~
UI2
CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2014-07-09
PublicationDateYYYYMMDD 2014-07-09
PublicationDate_xml – month: 07
  year: 2014
  text: 2014-07-09
  day: 09
PublicationDecade 2010
PublicationPlace Washington, DC
PublicationPlace_xml – name: Washington, DC
– name: United States
PublicationTitle Nano letters
PublicationTitleAlternate Nano Lett
PublicationYear 2014
Publisher American Chemical Society
Publisher_xml – name: American Chemical Society
References Ren L. (ref28/cit28) 2012; 12
Zhang Q. (ref29/cit29) 2013; 13
Freitag M. (ref34/cit34) 2003; 3
Dresselhaus M. S. (ref1/cit1) 2001
Batrakov K. G. (ref12/cit12) 2010; 4
Tonouchi M. (ref18/cit18) 2007; 1
Rogalski A. (ref40/cit40) 2011; 19
Shuba M. V. (ref31/cit31) 2012; 85
Pint C. L. (ref27/cit27) 2010; 4
Otsuji T. (ref9/cit9) 2012; 45
Mittendorff M. (ref26/cit26) 2013; 103
Chudow J. D. (ref22/cit22) 2012; 100
Slepyan G. Y. (ref30/cit30) 2010; 81
Zhong Z. (ref24/cit24) 2008; 3
Gabor N. M. (ref36/cit36) 2009; 325
Nanot S. (ref33/cit33) 2013; 3
Balasubramanian K. (ref35/cit35) 2005; 5
Kawano Y. (ref23/cit23) 2008; 103
Avouris P. (ref4/cit4) 2008; 2
Portnoi M. E. (ref8/cit8) 2006; 6328
Hartmann R. R. (ref11/cit11)
Nanot S. (ref7/cit7) 2012; 24
Ren L. (ref13/cit13) 2013; 87
Ren L. (ref10/cit10) 2012; 33
Fu K. (ref21/cit21) 2008; 92
St-Antoine B. C. (ref37/cit37) 2009; 9
Booshehri L. G. (ref39/cit39) 2011; 83
Mittleman D. M. (ref20/cit20) 2013; 7
Léonard F. (ref5/cit5) 2009
Jorio A. (ref3/cit3) 2008
He X. (ref32/cit32) 2013; 7
Nair R. R. (ref16/cit16) 2008; 320
Lee M. (ref19/cit19) 2007; 316
Nonoguchi Y. (ref41/cit41) 2013; 3
Barkelid M. (ref38/cit38) 2014; 8
Fainchtein R. (ref42/cit42) 2012; 85
Avouris P. (ref2/cit2) 2007; 2
Vicarelli L. (ref25/cit25) 2012; 11
Bonaccorso F. (ref6/cit6) 2010; 4
Ando T. (ref15/cit15) 2002; 71
Mak K. F. (ref17/cit17) 2008; 101
Hartmann R. R. (ref14/cit14) 2011; 84
References_xml – volume: 6328
  start-page: 632805
  year: 2006
  ident: ref8/cit8
  publication-title: Proc. SPIE
  doi: 10.1117/12.680085
– volume: 11
  start-page: 865
  year: 2012
  ident: ref25/cit25
  publication-title: Nat. Mater.
  doi: 10.1038/nmat3417
– volume: 4
  start-page: 1131
  year: 2010
  ident: ref27/cit27
  publication-title: ACS Nano
  doi: 10.1021/nn9013356
– volume: 2
  start-page: 605
  year: 2007
  ident: ref2/cit2
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/nnano.2007.300
– volume: 33
  start-page: 846
  year: 2012
  ident: ref10/cit10
  publication-title: J. Infrared Milli. Terahz Waves
  doi: 10.1007/s10762-012-9916-8
– volume: 84
  start-page: 035437
  year: 2011
  ident: ref14/cit14
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.84.035437
– volume: 81
  start-page: 205423
  year: 2010
  ident: ref30/cit30
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.81.205423
– volume: 71
  start-page: 1318
  year: 2002
  ident: ref15/cit15
  publication-title: Phys. Soc. Jpn.
  doi: 10.1143/JPSJ.71.1318
– volume: 85
  start-page: 165435
  year: 2012
  ident: ref31/cit31
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.85.165435
– volume: 3
  start-page: 3344
  year: 2013
  ident: ref41/cit41
  publication-title: Sci. Rep.
  doi: 10.1038/srep03344
– volume-title: The Physics of Carbon Nanotube Devices
  year: 2009
  ident: ref5/cit5
– volume: 92
  start-page: 033105
  year: 2008
  ident: ref21/cit21
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.2837188
– volume: 9
  start-page: 3503
  year: 2009
  ident: ref37/cit37
  publication-title: Nano Lett.
  doi: 10.1021/nl901696j
– volume: 3
  start-page: 1067
  year: 2003
  ident: ref34/cit34
  publication-title: Nano Lett.
  doi: 10.1021/nl034313e
– volume: 13
  start-page: 5991
  year: 2013
  ident: ref29/cit29
  publication-title: Nano Lett.
  doi: 10.1021/nl403175g
– volume: 4
  start-page: 041665
  year: 2010
  ident: ref12/cit12
  publication-title: J. Nanophoton.
  doi: 10.1117/1.3436585
– volume: 325
  start-page: 1367
  year: 2009
  ident: ref36/cit36
  publication-title: Science
  doi: 10.1126/science.1176112
– volume: 1
  start-page: 97
  year: 2007
  ident: ref18/cit18
  publication-title: Nat. Photonics
  doi: 10.1038/nphoton.2007.3
– volume: 5
  start-page: 507
  year: 2005
  ident: ref35/cit35
  publication-title: Nano Lett.
  doi: 10.1021/nl050053k
– volume: 320
  start-page: 1308
  year: 2008
  ident: ref16/cit16
  publication-title: Science
  doi: 10.1126/science.1156965
– volume: 3
  start-page: 1335
  year: 2013
  ident: ref33/cit33
  publication-title: Sci. Rep.
  doi: 10.1038/srep01335
– volume: 103
  start-page: 021113
  year: 2013
  ident: ref26/cit26
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.4813621
– volume: 4
  start-page: 611
  year: 2010
  ident: ref6/cit6
  publication-title: Nat. Photonics
  doi: 10.1038/nphoton.2010.186
– volume: 7
  start-page: 7271
  year: 2013
  ident: ref32/cit32
  publication-title: ACS Nano
  doi: 10.1021/nn402679u
– volume: 19
  start-page: 346
  year: 2011
  ident: ref40/cit40
  publication-title: Opto-Electron. Rev.
  doi: 10.2478/s11772-011-0033-3
– volume: 45
  start-page: 303001
  year: 2012
  ident: ref9/cit9
  publication-title: J. Phys. D: Appl. Phys.
  doi: 10.1088/0022-3727/45/30/303001
– volume: 316
  start-page: 64
  year: 2007
  ident: ref19/cit19
  publication-title: Science
  doi: 10.1126/science.1141012
– volume: 85
  start-page: 125432
  year: 2012
  ident: ref42/cit42
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.85.125432
– volume: 8
  start-page: 47
  year: 2014
  ident: ref38/cit38
  publication-title: Nat. Photonics
  doi: 10.1038/nphoton.2013.311
– volume-title: Nanotechnology
  ident: ref11/cit11
– volume-title: Carbon Nanotubes: Advanced Topics in the Synthesis, Structure, Properties and Applications
  year: 2008
  ident: ref3/cit3
  doi: 10.1007/978-3-540-72865-8
– volume: 87
  start-page: 161401(R)
  year: 2013
  ident: ref13/cit13
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.87.161401
– volume: 101
  start-page: 196405
  year: 2008
  ident: ref17/cit17
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.101.196405
– volume: 12
  start-page: 787
  year: 2012
  ident: ref28/cit28
  publication-title: Nano Lett.
  doi: 10.1021/nl203783q
– volume: 7
  start-page: 666
  year: 2013
  ident: ref20/cit20
  publication-title: Nat. Photonics
  doi: 10.1038/nphoton.2013.235
– volume: 100
  start-page: 163503
  year: 2012
  ident: ref22/cit22
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.4704152
– volume: 2
  start-page: 341
  year: 2008
  ident: ref4/cit4
  publication-title: Nat. Photonics
  doi: 10.1038/nphoton.2008.94
– volume: 3
  start-page: 201
  year: 2008
  ident: ref24/cit24
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/nnano.2008.60
– volume-title: Carbon Nanotubes: Synthesis, Structure, Properties, and Applications
  year: 2001
  ident: ref1/cit1
  doi: 10.1007/3-540-39947-X
– volume: 24
  start-page: 4977
  year: 2012
  ident: ref7/cit7
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201201751
– volume: 103
  start-page: 034307
  year: 2008
  ident: ref23/cit23
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.2838237
– volume: 83
  start-page: 195411
  year: 2011
  ident: ref39/cit39
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.83.195411
SSID ssj0009350
Score 2.567111
Snippet Terahertz (THz) technologies are promising for diverse areas such as medicine, bioengineering, astronomy, environmental monitoring, and communications....
SourceID proquest
pubmed
pascalfrancis
crossref
acs
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 3953
SubjectTerms Broadband
Carbon nanotubes
Collective excitations (including excitons, polarons, plasmons and other charge-density excitations)
Condensed matter: electronic structure, electrical, magnetic, and optical properties
Cross-disciplinary physics: materials science; rheology
Detectors
Devices
Electronic structure and electrical properties of surfaces, interfaces, thin films and low-dimensional structures
Equipment Design
Exact sciences and technology
General equipment and techniques
Instruments, apparatus, components and techniques common to several branches of physics and astronomy
Materials science
Nanocrystalline materials
Nanoscale materials and structures: fabrication and characterization
Nanostructure
Nanotubes
Nanotubes, Carbon - chemistry
Nanotubes, Carbon - ultrastructure
Physics
Polarization
Sensors (chemical, optical, electrical, movement, gas, etc.); remote sensing
Surface and interface electron states
Temperature
Terahertz Radiation
Terahertz Spectroscopy - instrumentation
Thermal management
Thermoelectricity
Title Carbon Nanotube Terahertz Detector
URI http://dx.doi.org/10.1021/nl5012678
https://www.ncbi.nlm.nih.gov/pubmed/24875576
https://www.proquest.com/docview/1544738104
https://www.proquest.com/docview/1762056640
Volume 14
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV3JTsNADLWgXECIfSlLFZYDl5RmMktyRAWEOHABJG7RLM6FKq3a5NKvx0m6UAHl7igZj8f2syfPANdMKimMY76xZemGM_Qjnjof4xCdQRZLU12QfZFP7_z5Q3yswNUfHXwW3GY9QU6UfOoqrDEZqRJh3XVf58y6YTWGlU4u4aA44lP6oO-PlqHHjhZCz-ZAj0gLaT2-4u_8soozj9twP_1bp75e8tkuctO245_kjcuWsANbkzzTu6sNYxdWMNuDjW_sg_tw2dVD0888crD9vDDovSF5HhzmY-8e86qafwDvjw9v3Sd_MjLB14KJ3C9LOqkgEBXaIHJSO22DNKUUQVmFKFLkqCx2IkfaolgtOigdxobpyKaMwFJ4CI2sn-ExeFoprbQOw5QZrow2BJalVUGgWahj55rQIp0mE5MfJVU3mwXJbLFNuJmqO7ETwvFy7kXvN9HLmeigZtn4Tai1sGczSRbJKCZY14SL6SYmdEjKzofOsF_QtwnOVcllxpfIUFigbFDyThOOaguYv6GEdYTMTv5b8ymsU0bFq_u88Rk08mGB55S15KZVWe0XHQDjEA
linkProvider American Chemical Society
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV1Lb9NAEB6VcgCEeD_CI5gKJC4u8XpfPnCoUqqUll5Ipd7cfYwvVE4VO0L0p_BX-HPMbpykRQVOlbiP1uPx7Mx8O-tvAN4wqaSwnqXWhaMbzjDVvPIpFjl6i6yQNl6QPZCjQ_7pSBytwY_FvzCkREMrNbGJv2IXyN7XJ4JiKYXW7gLlHn7_RvCs-bC7Td_yLWM7H8fDUdpNEEiNYKJNwwlHJQhT5C7TXhpvXFZVlDGVU4iiQo7K4UB7kYeOmRig9FhYZrSrGGGHnNa9Btep6GEB2G0Nv6wIffM4_ZUCBsGvQvMFa9F5VUPGc82FjHf71DRk_Go-NePPZW1Mbzt34efSMPFWy9fNWWs33dlvnJH_p-XuwZ2uqk625tvgPqxh_QBuneNafAgbQzO1kzqhdDJpZxaTMVKcxWl7lmxjG3sXj-DwSpR8DOv1pMankBiljDImzytmubLGKq2lU1lmWG4K73vQJ9uW3QZvyti7Z1m5NG4P3i2-cuk6evUw5ePkMtGNpejpnFPkMqH-BVdZSjItdUEgtgevF75TUkgIfR5T42RGugnOVWBu43-RoSRIta_kgx48mTve6gkBxBIOffavd34FN0bjz_vl_u7B3nO4SbUkjzeZixew3k5n-JLqtdb248ZJ4Piq_e0XOLRGlg
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV1Lb9NAEB6VIiEqxJsSHsFUIHFxidf78oFDlRC1FFVItFJvZh-zFyonih0h-mP4K_w1Zh0nbVGBUyXuo_V4dp6e8TcAr5hUUljPUuvipxvOMNU8-BSLHL1FVkjbDsgeyN0j_uFYHK_Bj-W_MMRETSfVbRM_WvXUhw5hIHtbnQjyp-ReuyHKffz-jUq0-t3eiO7zNWPj94fD3bTbIpAawUSTxq8cQVBdkbtMe2m8cVkIFDWVU4giIEflcKC9yGPXTAxQeiwsM9oFRvVDTudeg-uxPRiLu53h5zNQ37zdAEtOg0qwQvMlctF5VmPUc_WFqHdramq6gLDYnPHn1LYNceM78HMlnHay5ev2vLHb7vQ33Mj_V3p34XaXXSc7C3O4B2tY3YeNc5iLD2BraGZ2UiUUVibN3GJyiORvcdacJiNs2h7GQzi6EiYfwXo1qfAxJEYpo4zJ88AsV9ZYpbV0KssMy03hfQ_6JN-yM_S6bHv4LCtXwu3Bm-VNl66DWY_bPk4uI91akU4X2CKXEfUvqMuKkmmpCypme_ByqT8luYbY7zEVTubEm-BcRQQ3_hcaCoaUA0s-6MHmQvnOnhCLWapHn_zrnV_AjU-jcflx72D_KdyklJK3A83FM1hvZnN8TmlbY_ut7STw5arV7RctVkkZ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Carbon+nanotube+terahertz+detector&rft.jtitle=Nano+letters&rft.au=He%2C+Xiaowei&rft.au=Fujimura%2C+Naoki&rft.au=Lloyd%2C+J+Meagan&rft.au=Erickson%2C+Kristopher+J&rft.date=2014-07-09&rft.issn=1530-6992&rft.eissn=1530-6992&rft.volume=14&rft.issue=7&rft.spage=3953&rft_id=info:doi/10.1021%2Fnl5012678&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1530-6984&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1530-6984&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1530-6984&client=summon