The hydrological cycle and ocean circulation of the Maritime Continent in the Pliocene: results from PlioMIP2

The Maritime Continent (MC) forms the western boundary of the tropical Pacific Ocean, and relatively small changes in this region can impact the climate locally and remotely. In the mid-Piacenzian warm period of the Pliocene (mPWP; 3.264 to 3.025 Ma) atmospheric CO.sub.2 concentrations were â¼ 400 p...

Full description

Saved in:
Bibliographic Details
Published inClimate of the past Vol. 19; no. 10; pp. 2053 - 2077
Main Authors Ren, Xin, Lunt, Daniel J, Hendy, Erica, von der Heydt, Anna, Abe-Ouchi, Ayako, Otto-Bliesner, Bette, Williams, Charles J. R, Stepanek, Christian, Guo, Chuncheng, Chandan, Deepak, Lohmann, Gerrit, Tindall, Julia C, Sohl, Linda E, Chandler, Mark A, Kageyama, Masa, Baatsen, Michiel L. J, Tan, Ning, Zhang, Qiong, Feng, Ran, Hunter, Stephen, Chan, Wing-Le, Peltier, W. Richard, Li, Xiangyu, Kamae, Youichi, Zhang, Zhongshi, Haywood, Alan M
Format Journal Article
LanguageEnglish
Published Katlenburg-Lindau Copernicus GmbH 26.10.2023
European Geosciences Union (EGU) [2005-....]
Copernicus Publications
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The Maritime Continent (MC) forms the western boundary of the tropical Pacific Ocean, and relatively small changes in this region can impact the climate locally and remotely. In the mid-Piacenzian warm period of the Pliocene (mPWP; 3.264 to 3.025 Ma) atmospheric CO.sub.2 concentrations were â¼ 400 ppm, and the subaerial Sunda and Sahul shelves made the land-sea distribution of the MC different to today. Topographic changes and elevated levels of CO.sub.2, combined with other forcings, are therefore expected to have driven a substantial climate signal in the MC region at this time. By using the results from the Pliocene Model Intercomparison Project Phase 2 (PlioMIP2), we study the mean climatic features of the MC in the mPWP and changes in Indonesian Throughflow (ITF) with respect to the preindustrial. Results show a warmer and wetter mPWP climate of the MC and lower sea surface salinity in the surrounding ocean compared with the preindustrial. Furthermore, we quantify the volume transfer through the ITF; although the ITF may be expected to be hindered by the subaerial shelves, 10 out of 15 models show an increased volume transport compared with the preindustrial.
AbstractList The Maritime Continent (MC) forms the western boundary of the tropical Pacific Ocean, and relatively small changes in this region can impact the climate locally and remotely. In the mid-Piacenzian warm period of the Pliocene (mPWP; 3.264 to 3.025 Ma) atmospheric CO2 concentrations were ∼ 400 ppm, and the subaerial Sunda and Sahul shelves made the land–sea distribution of the MC different to today. Topographic changes and elevated levels of CO2, combined with other forcings, are therefore expected to have driven a substantial climate signal in the MC region at this time. By using the results from the Pliocene Model Intercomparison Project Phase 2 (PlioMIP2), we study the mean climatic features of the MC in the mPWP and changes in Indonesian Throughflow (ITF) with respect to the preindustrial. Results show a warmer and wetter mPWP climate of the MC and lower sea surface salinity in the surrounding ocean compared with the preindustrial. Furthermore, we quantify the volume transfer through the ITF; although the ITF may be expected to be hindered by the subaerial shelves, 10 out of 15 models show an increased volume transport compared with the preindustrial. In order to avoid undue influence from closely related models that are present in the PlioMIP2 ensemble, we introduce a new metric, the multi-cluster mean (MCM), which is based on cluster analysis of the individual models. We study the effect that the choice of MCM versus the more traditional analysis of multi-model mean (MMM) and individual models has on the discrepancy between model results and data. We find that models, which reproduce modern MC climate well, are not always good at simulating the mPWP climate anomaly of the MC. By comparing with individual models, the MMM and MCM reproduce the preindustrial sea surface temperature (SST) of the reanalysis better than most individual models and produce less discrepancy with reconstructed sea surface temperature anomalies (SSTA) than most individual models in the MC. In addition, the clusters reveal spatial signals that are not captured by the MMM, so that the MCM provides us with a new way to explore the results from model ensembles that include similar models.
The Maritime Continent (MC) forms the western boundary of the tropical Pacific Ocean, and relatively small changes in this region can impact the climate locally and remotely. In the mid-Piacenzian warm period of the Pliocene (mPWP; 3.264 to 3.025 Ma) atmospheric CO.sub.2 concentrations were â¼ 400 ppm, and the subaerial Sunda and Sahul shelves made the land-sea distribution of the MC different to today. Topographic changes and elevated levels of CO.sub.2, combined with other forcings, are therefore expected to have driven a substantial climate signal in the MC region at this time. By using the results from the Pliocene Model Intercomparison Project Phase 2 (PlioMIP2), we study the mean climatic features of the MC in the mPWP and changes in Indonesian Throughflow (ITF) with respect to the preindustrial. Results show a warmer and wetter mPWP climate of the MC and lower sea surface salinity in the surrounding ocean compared with the preindustrial. Furthermore, we quantify the volume transfer through the ITF; although the ITF may be expected to be hindered by the subaerial shelves, 10 out of 15 models show an increased volume transport compared with the preindustrial.
The Maritime Continent (MC) forms the western boundary of the tropical Pacific Ocean, and relatively small changes in this region can impact the climate locally and remotely. In the mid-Piacenzian warm period of the Pliocene (mPWP; 3.264 to 3.025 Ma) atmospheric CO.sub.2 concentrations were â¼ 400 ppm, and the subaerial Sunda and Sahul shelves made the land-sea distribution of the MC different to today. Topographic changes and elevated levels of CO.sub.2, combined with other forcings, are therefore expected to have driven a substantial climate signal in the MC region at this time. By using the results from the Pliocene Model Intercomparison Project Phase 2 (PlioMIP2), we study the mean climatic features of the MC in the mPWP and changes in Indonesian Throughflow (ITF) with respect to the preindustrial. Results show a warmer and wetter mPWP climate of the MC and lower sea surface salinity in the surrounding ocean compared with the preindustrial. Furthermore, we quantify the volume transfer through the ITF; although the ITF may be expected to be hindered by the subaerial shelves, 10 out of 15 models show an increased volume transport compared with the preindustrial. In order to avoid undue influence from closely related models that are present in the PlioMIP2 ensemble, we introduce a new metric, the multi-cluster mean (MCM), which is based on cluster analysis of the individual models. We study the effect that the choice of MCM versus the more traditional analysis of multi-model mean (MMM) and individual models has on the discrepancy between model results and data. We find that models, which reproduce modern MC climate well, are not always good at simulating the mPWP climate anomaly of the MC. By comparing with individual models, the MMM and MCM reproduce the preindustrial sea surface temperature (SST) of the reanalysis better than most individual models and produce less discrepancy with reconstructed sea surface temperature anomalies (SSTA) than most individual models in the MC. In addition, the clusters reveal spatial signals that are not captured by the MMM, so that the MCM provides us with a new way to explore the results from model ensembles that include similar models.
The Maritime Continent (MC) forms the western boundary of the tropical Pacific Ocean, and relatively small changes in this region can impact the climate locally and remotely. In the mid-Piacenzian warm period of the Pliocene (mPWP; 3.264 to 3.025 Ma) atmospheric CO2 concentrations were ∼ 400 ppm, and the subaerial Sunda and Sahul shelves made the land–sea distribution of the MC different to today. Topographic changes and elevated levels of CO2, combined with other forcings, are therefore expected to have driven a substantial climate signal in the MC region at this time. By using the results from the Pliocene Model Intercomparison Project Phase 2 (PlioMIP2), we study the mean climatic features of the MC in the mPWP and changes in Indonesian Throughflow (ITF) with respect to the preindustrial. Results show a warmer and wetter mPWP climate of the MC and lower sea surface salinity in the surrounding ocean compared with the preindustrial. Furthermore, we quantify the volume transfer through the ITF; although the ITF may be expected to be hindered by the subaerial shelves, 10 out of 15 models show an increased volume transport compared with the preindustrial.In order to avoid undue influence from closely related models that are present in the PlioMIP2 ensemble, we introduce a new metric, the multi-cluster mean (MCM), which is based on cluster analysis of the individual models. We study the effect that the choice of MCM versus the more traditional analysis of multi-model mean (MMM) and individual models has on the discrepancy between model results and data. We find that models, which reproduce modern MC climate well, are not always good at simulating the mPWP climate anomaly of the MC. By comparing with individual models, the MMM and MCM reproduce the preindustrial sea surface temperature (SST) of the reanalysis better than most individual models and produce less discrepancy with reconstructed sea surface temperature anomalies (SSTA) than most individual models in the MC. In addition, the clusters reveal spatial signals that are not captured by the MMM, so that the MCM provides us with a new way to explore the results from model ensembles that include similar models.
The Maritime Continent (MC) forms the western boundary of the tropical Pacific Ocean, and relatively small changes in this region can impact the climate locally and remotely. In the mid-Piacenzian warm period of the Pliocene (mPWP; 3.264 to 3.025 Ma) atmospheric CO2 concentrations were ∼ 400 ppm, and the subaerial Sunda and Sahul shelves made the land–sea distribution of the MC different to today. Topographic changes and elevated levels of CO 2 , combined with other forcings, are therefore expected to have driven a substantial climate signal in the MC region at this time. By using the results from the Pliocene Model Intercomparison Project Phase 2 (PlioMIP2), we study the mean climatic features of the MC in the mPWP and changes in Indonesian Throughflow (ITF) with respect to the preindustrial. Results show a warmer and wetter mPWP climate of the MC and lower sea surface salinity in the surrounding ocean compared with the preindustrial. Furthermore, we quantify the volume transfer through the ITF; although the ITF may be expected to be hindered by the subaerial shelves, 10 out of 15 models show an increased volume transport compared with the preindustrial. In order to avoid undue influence from closely related models that are present in the PlioMIP2 ensemble, we introduce a new metric, the multi-cluster mean (MCM), which is based on cluster analysis of the individual models. We study the effect that the choice of MCM versus the more traditional analysis of multi-model mean (MMM) and individual models has on the discrepancy between model results and data. We find that models, which reproduce modern MC climate well, are not always good at simulating the mPWP climate anomaly of the MC. By comparing with individual models, the MMM and MCM reproduce the preindustrial sea surface temperature (SST) of the reanalysis better than most individual models and produce less discrepancy with reconstructed sea surface temperature anomalies (SSTA) than most individual models in the MC. In addition, the clusters reveal spatial signals that are not captured by the MMM, so that the MCM provides us with a new way to explore the results from model ensembles that include similar models.
The Maritime Continent (MC) forms the western boundary of the tropical Pacific Ocean, and relatively small changes in this region can impact the climate locally and remotely. In the mid-Piacenzian warm period of the Pliocene (mPWP; 3.264 to 3.025 Ma) atmospheric CO 2 concentrations were ∼  400 ppm, and the subaerial Sunda and Sahul shelves made the land–sea distribution of the MC different to today. Topographic changes and elevated levels of CO 2 , combined with other forcings, are therefore expected to have driven a substantial climate signal in the MC region at this time. By using the results from the Pliocene Model Intercomparison Project Phase 2 (PlioMIP2), we study the mean climatic features of the MC in the mPWP and changes in Indonesian Throughflow (ITF) with respect to the preindustrial. Results show a warmer and wetter mPWP climate of the MC and lower sea surface salinity in the surrounding ocean compared with the preindustrial. Furthermore, we quantify the volume transfer through the ITF; although the ITF may be expected to be hindered by the subaerial shelves, 10 out of 15 models show an increased volume transport compared with the preindustrial. In order to avoid undue influence from closely related models that are present in the PlioMIP2 ensemble, we introduce a new metric, the multi-cluster mean (MCM), which is based on cluster analysis of the individual models. We study the effect that the choice of MCM versus the more traditional analysis of multi-model mean (MMM) and individual models has on the discrepancy between model results and data. We find that models, which reproduce modern MC climate well, are not always good at simulating the mPWP climate anomaly of the MC. By comparing with individual models, the MMM and MCM reproduce the preindustrial sea surface temperature (SST) of the reanalysis better than most individual models and produce less discrepancy with reconstructed sea surface temperature anomalies (SSTA) than most individual models in the MC. In addition, the clusters reveal spatial signals that are not captured by the MMM, so that the MCM provides us with a new way to explore the results from model ensembles that include similar models.
Audience Academic
Author Hunter, Stephen
Otto-Bliesner, Bette
Haywood, Alan M
Peltier, W. Richard
Ren, Xin
Kamae, Youichi
Feng, Ran
von der Heydt, Anna
Sohl, Linda E
Chandler, Mark A
Williams, Charles J. R
Lunt, Daniel J
Zhang, Zhongshi
Guo, Chuncheng
Li, Xiangyu
Chandan, Deepak
Lohmann, Gerrit
Baatsen, Michiel L. J
Chan, Wing-Le
Stepanek, Christian
Tindall, Julia C
Abe-Ouchi, Ayako
Zhang, Qiong
Kageyama, Masa
Hendy, Erica
Tan, Ning
Author_xml – sequence: 1
  fullname: Ren, Xin
– sequence: 2
  fullname: Lunt, Daniel J
– sequence: 3
  fullname: Hendy, Erica
– sequence: 4
  fullname: von der Heydt, Anna
– sequence: 5
  fullname: Abe-Ouchi, Ayako
– sequence: 6
  fullname: Otto-Bliesner, Bette
– sequence: 7
  fullname: Williams, Charles J. R
– sequence: 8
  fullname: Stepanek, Christian
– sequence: 9
  fullname: Guo, Chuncheng
– sequence: 10
  fullname: Chandan, Deepak
– sequence: 11
  fullname: Lohmann, Gerrit
– sequence: 12
  fullname: Tindall, Julia C
– sequence: 13
  fullname: Sohl, Linda E
– sequence: 14
  fullname: Chandler, Mark A
– sequence: 15
  fullname: Kageyama, Masa
– sequence: 16
  fullname: Baatsen, Michiel L. J
– sequence: 17
  fullname: Tan, Ning
– sequence: 18
  fullname: Zhang, Qiong
– sequence: 19
  fullname: Feng, Ran
– sequence: 20
  fullname: Hunter, Stephen
– sequence: 21
  fullname: Chan, Wing-Le
– sequence: 22
  fullname: Peltier, W. Richard
– sequence: 23
  fullname: Li, Xiangyu
– sequence: 24
  fullname: Kamae, Youichi
– sequence: 25
  fullname: Zhang, Zhongshi
– sequence: 26
  fullname: Haywood, Alan M
BackLink https://hal.science/hal-04265011$$DView record in HAL
https://urn.kb.se/resolve?urn=urn:nbn:se:su:diva-227332$$DView record from Swedish Publication Index
BookMark eNptkstrGzEQxpeSQpO0514FPQW6iZ776M2kjxgcGtq0VyGPJFtmV3IlbVv_95XtUmIoAkl885tPo2EuqjMfvKmq1wRfC9LzG9jWpK8pFqxslD2rzklHeN0zRs-e3F9UFyltMOYd6cV5NT6uDVrvdAxDWDlQA4IdDAYpr1EAozwCF2EaVHbBo2BRLvy9ii670aDb4LPzxmfk_CHyMLiS5c07FE2ahpyQjWE8yPfzB_qyem7VkMyrv-dl9e3jh8fbu3rx-dP8draolaAi1wJboVrbEVBMCwDdUtZCD5wz23HSgbKt1Q1owbpeCEyEtSUEDee0bW3DLqv50VcHtZHb6EYVdzIoJw9CiCupYnblo7LvGgO2vKO54UuNl1gLK0xHGLYWRF-83h690i-znZYnbu_d99nBLU2S0ra0t-BXR3ythhP2braQew1z2pSSyU9S2DdHdhvDj8mkLDdhir50RtKuIwVrxBNqpUq9ztuQo4LRJZCztsUcswa3hbr-D1WWNqODMirWFf0k4eokoTDZ_M4rNaUk51-_nLI3RxZiSCka--9nBMv99EnYStLL_fTJ_fSxP_piy7s
Cites_doi 10.1007/s10712-017-9416-4
10.1029/2006JD007870
10.5194/cp-16-2275-2020
10.5194/cp-16-1523-2020
10.1029/JC092iC12p12941
10.5194/cp-17-2139-2021
10.5194/esd-10-91-2019
10.1038/s41561-022-00999-y
10.5194/cp-15-1691-2019
10.1016/0012-821X(83)90050-X
10.1126/science.1112596
10.1029/2020GL090615
10.1175/JCLI-D-19-1011.1
10.1038/s41467-022-28814-7
10.1007/s00382-017-4010-5
10.1175/JCLI-D-15-0222.1
10.1126/science.1246172
10.1002/2017GL076829
10.1038/ngeo2828
10.1175/1520-0485(2002)032<1404:EOTITO>2.0.CO;2
10.5194/cp-16-1-2020
10.1016/j.gca.2013.07.028
10.1029/2000JD900719
10.1029/2002JD002670
10.1002/2016EF000376
10.1038/s41558-020-00955-x
10.1126/science.207.4426.61
10.1038/ngeo2577
10.1029/2019MS001916
10.5194/cp-13-135-2017
10.5194/gmd-4-571-2011
10.1016/j.dynatmoce.2018.02.001
10.1029/2008JC005257
10.1002/essoar.10510285.1
10.1175/2009JCLI3361.1
10.1002/2014GL061413
10.1175/2008BAMS2634.1
10.1029/2006GL028044
10.1038/ncomms10646
10.1007/s00382-019-04930-x
10.1038/nclimate3278
10.1038/nature01092
10.1002/grl.50256
10.1186/s40645-018-0174-9
10.1098/rsta.2007.2076
10.1029/2018PA003512
10.1029/2019MS001892
10.1029/2012GL051447
10.1002/2017PA003201
10.1175/JCLI-D-11-00091.1
10.1016/j.epsl.2013.09.044
10.1029/2019MS002033
10.1144/SP355.13
10.5194/gmd-14-1147-2021
10.1016/S1463-5003(02)00015-X
10.1017/9781009157896.002
10.5194/cp-18-657-2022
10.29041/strat.07.2.03
10.1038/ngeo520
10.1002/2016GL067757
10.1029/2019PA003744
10.1029/92PA02092
10.1002/essoar.10502015.1
10.5194/cp-16-2095-2020
10.1175/1520-0442(2003)016<0834:TMCAIR>2.0.CO;2
10.5194/egusphere-egu23-10963
10.1029/2007GL031911
10.1029/2019MS002010
10.1017/9781009157896.021
10.1002/2013JC009533
10.1029/2019MS002025
10.1007/s10872-022-00641-w
10.1029/2020PA003872
10.1002/jgrc.20069
10.1038/nature04744
10.1002/2016GL068406
10.5194/cp-12-663-2016
10.1073/pnas.1809600115
10.1175/1520-0485(2004)034<1232:AIOOWV>2.0.CO;2
10.5670/oceanog.2005.01
10.1016/j.dynatmoce.2009.12.002
10.1144/TMS002.13
10.5194/cp-16-183-2020
10.1016/j.epsl.2016.03.010
10.5194/cp-12-1519-2016
10.1073/pnas.1714308114
10.5194/cp-9-191-2013
10.1038/s41597-022-01739-y
10.5194/cp-17-1065-2021
10.1038/ngeo2194
10.5194/cp-19-61-2023
10.1098/rsta.2008.0200
10.1175/JCLI4258.1
10.1175/2010JPO4380.1
10.5194/cp-17-2537-2021
10.5194/cp-12-1619-2016
10.5194/cp-17-2427-2021
10.1007/s00382-017-4043-9
10.1038/ngeo2188
10.1016/j.palaeo.2021.110447
10.5194/cp-13-919-2017
10.1080/02626667.2015.1057513
10.5194/cp-17-529-2021
10.1007/s00382-012-1343-y
10.5194/gmd-13-3011-2020
10.1098/rsta.2012.0524
10.1186/s40562-018-0102-2
10.5194/cp-16-1599-2020
10.1175/1520-0493(1968)096<0365:ROATMC>2.0.CO;2
10.5194/cp-11-605-2015
10.5194/gmd-3-227-2010
10.1175/JCLI-D-14-00545.1
10.1038/35075500
ContentType Journal Article
Copyright COPYRIGHT 2023 Copernicus GmbH
2023. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Distributed under a Creative Commons Attribution 4.0 International License
Copyright_xml – notice: COPYRIGHT 2023 Copernicus GmbH
– notice: 2023. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: Distributed under a Creative Commons Attribution 4.0 International License
DBID AAYXX
CITATION
ISR
7TG
7TN
7UA
ABUWG
AFKRA
AZQEC
BENPR
BFMQW
BHPHI
BKSAR
C1K
CCPQU
DWQXO
F1W
H96
H97
HCIFZ
KL.
L.G
PCBAR
PIMPY
PQEST
PQQKQ
PQUKI
1XC
VOOES
ABAVF
ADTPV
AOWAS
D8T
DG7
ZZAVC
DOA
DOI 10.5194/cp-19-2053-2023
DatabaseName CrossRef
Gale In Context: Science
Meteorological & Geoastrophysical Abstracts
Oceanic Abstracts
Water Resources Abstracts
ProQuest Central (Alumni)
ProQuest Central
ProQuest Central Essentials
ProQuest Central
Continental Europe Database
Natural Science Collection
Earth, Atmospheric & Aquatic Science Collection
Environmental Sciences and Pollution Management
ProQuest One Community College
ProQuest Central Korea
ASFA: Aquatic Sciences and Fisheries Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality
SciTech Premium Collection
Meteorological & Geoastrophysical Abstracts - Academic
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Earth, Atmospheric & Aquatic Science Database
Publicly Available Content Database
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
Hyper Article en Ligne (HAL)
Hyper Article en Ligne (HAL) (Open Access)
SWEPUB Stockholms universitet full text
SwePub
SwePub Articles
SWEPUB Freely available online
SWEPUB Stockholms universitet
SwePub Articles full text
Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
Aquatic Science & Fisheries Abstracts (ASFA) Professional
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
Earth, Atmospheric & Aquatic Science Database
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
Continental Europe Database
Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality
Water Resources Abstracts
Environmental Sciences and Pollution Management
Earth, Atmospheric & Aquatic Science Collection
ProQuest Central
Meteorological & Geoastrophysical Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Oceanic Abstracts
ProQuest One Academic UKI Edition
Natural Science Collection
ProQuest Central Korea
ASFA: Aquatic Sciences and Fisheries Abstracts
ProQuest One Academic
Meteorological & Geoastrophysical Abstracts - Academic
DatabaseTitleList
CrossRef


Publicly Available Content Database



Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Meteorology & Climatology
Geography
EISSN 1814-9332
EndPage 2077
ExternalDocumentID oai_doaj_org_article_986ecfa3dd4e4bd0b0d5f5e8130ffc59
oai_DiVA_org_su_227332
oai_HAL_hal_04265011v1
A770403607
10_5194_cp_19_2053_2023
GeographicLocations Indian Ocean
Pacific Ocean
GeographicLocations_xml – name: Pacific Ocean
– name: Indian Ocean
GroupedDBID 29B
2WC
2XV
3V.
4P2
5GY
5VS
8FE
8FH
8R4
8R5
AAFWJ
AAYXX
ABUWG
ADBBV
AENEX
AFKRA
AFPKN
AHGZY
ALMA_UNASSIGNED_HOLDINGS
BBORY
BCNDV
BENPR
BFMQW
BHPHI
BKSAR
BPHCQ
CCPQU
CITATION
D1K
E3Z
EBS
EDH
EJD
GROUPED_DOAJ
H13
HCIFZ
IAO
IEA
IEP
ISR
ITC
K6-
KQ8
LK5
M7R
M~E
OK1
P2P
PCBAR
PIMPY
PQQKQ
PROAC
Q2X
RKB
RNS
TR2
~02
RIG
7TG
7TN
7UA
AZQEC
C1K
DWQXO
F1W
H96
H97
KL.
L.G
PQEST
PQUKI
1XC
C1A
IPNFZ
VOOES
ABAVF
ADTPV
AOWAS
D8T
DG7
ZZAVC
ID FETCH-LOGICAL-a525t-50f5a7f81ca3d5ccd7237c9c443f8418caf7fd6cd538955015ff43fc644277f63
IEDL.DBID BENPR
ISSN 1814-9332
1814-9324
IngestDate Tue Oct 22 15:13:27 EDT 2024
Sat Aug 24 00:18:44 EDT 2024
Thu Dec 05 10:06:09 EST 2024
Sun Nov 17 02:11:44 EST 2024
Tue Nov 19 21:24:03 EST 2024
Tue Nov 12 23:52:50 EST 2024
Sat Sep 28 21:33:45 EDT 2024
Fri Dec 06 06:52:34 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 10
Language English
License https://creativecommons.org/licenses/by/4.0
Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a525t-50f5a7f81ca3d5ccd7237c9c443f8418caf7fd6cd538955015ff43fc644277f63
ORCID 0000-0003-1745-5952
0000-0002-5646-6104
0000-0003-1911-1598
0000-0003-1791-2463
0000-0002-6673-2007
0000-0002-3912-6271
0000-0003-3585-6928
0000-0002-0756-754X
0000-0003-2089-733X
0000-0002-7724-4025
0000-0002-6548-227X
0000-0002-4593-6238
0000-0003-4849-4671
0000-0002-2354-1622
0000-0003-0461-5718
0000-0002-9137-2883
0000-0002-5557-3282
0000-0001-6276-6499
0000-0002-5555-7661
0000-0003-0822-5880
OpenAccessLink https://www.proquest.com/docview/2881650651?pq-origsite=%requestingapplication%
PQID 2881650651
PQPubID 105735
PageCount 25
ParticipantIDs doaj_primary_oai_doaj_org_article_986ecfa3dd4e4bd0b0d5f5e8130ffc59
swepub_primary_oai_DiVA_org_su_227332
hal_primary_oai_HAL_hal_04265011v1
proquest_journals_2881650651
gale_infotracmisc_A770403607
gale_infotracacademiconefile_A770403607
gale_incontextgauss_ISR_A770403607
crossref_primary_10_5194_cp_19_2053_2023
PublicationCentury 2000
PublicationDate 2023-10-26
PublicationDateYYYYMMDD 2023-10-26
PublicationDate_xml – month: 10
  year: 2023
  text: 2023-10-26
  day: 26
PublicationDecade 2020
PublicationPlace Katlenburg-Lindau
PublicationPlace_xml – name: Katlenburg-Lindau
PublicationTitle Climate of the past
PublicationYear 2023
Publisher Copernicus GmbH
European Geosciences Union (EGU) [2005-....]
Copernicus Publications
Publisher_xml – sequence: 0
  name: European Geosciences Union (EGU) [2005-....]
– name: Copernicus GmbH
– name: Copernicus Publications
References ref57
ref56
ref59
ref58
ref53
ref52
ref55
ref54
ref51
ref50
ref46
ref45
ref48
ref47
ref42
ref41
ref44
ref43
ref49
ref8
ref7
ref9
ref4
ref3
ref6
ref5
ref100
ref101
ref40
ref35
ref34
ref37
ref36
ref31
ref30
ref33
ref32
ref39
ref38
ref24
ref23
ref26
ref25
ref20
ref22
ref21
ref28
ref27
ref29
ref13
ref12
ref15
ref14
ref97
ref126
ref96
ref11
ref99
ref124
ref10
ref98
ref125
ref17
ref16
ref19
ref18
ref93
ref92
ref95
ref94
ref91
ref90
ref89
ref86
ref85
ref88
ref87
ref82
ref81
ref84
ref83
ref80
ref79
ref108
ref78
ref109
ref106
ref107
ref75
ref104
ref74
ref105
ref77
ref102
ref76
ref103
ref2
ref1
ref71
ref111
ref70
ref112
ref73
ref72
ref110
ref68
ref119
ref67
ref117
ref69
ref118
ref64
ref115
ref63
ref116
ref66
ref113
ref65
ref114
ref60
ref122
ref123
ref62
ref120
ref61
ref121
References_xml – ident: ref2
  doi: 10.1007/s10712-017-9416-4
– ident: ref24
  doi: 10.1029/2006JD007870
– ident: ref96
  doi: 10.5194/cp-16-2275-2020
– ident: ref18
  doi: 10.5194/cp-16-1523-2020
– ident: ref118
  doi: 10.1029/JC092iC12p12941
– ident: ref116
  doi: 10.5194/cp-17-2139-2021
– ident: ref1
  doi: 10.5194/esd-10-91-2019
– ident: ref78
  doi: 10.1038/s41561-022-00999-y
– ident: ref54
  doi: 10.5194/cp-15-1691-2019
– ident: ref21
  doi: 10.1016/0012-821X(83)90050-X
– ident: ref112
  doi: 10.1126/science.1112596
– ident: ref98
  doi: 10.1029/2020GL090615
– ident: ref25
  doi: 10.1175/JCLI-D-19-1011.1
– ident: ref37
  doi: 10.1038/s41467-022-28814-7
– ident: ref90
  doi: 10.1007/s00382-017-4010-5
– ident: ref122
  doi: 10.1175/JCLI-D-15-0222.1
– ident: ref123
  doi: 10.1126/science.1246172
– ident: ref10
  doi: 10.1002/2017GL076829
– ident: ref125
  doi: 10.1038/ngeo2828
– ident: ref63
  doi: 10.1175/1520-0485(2002)032<1404:EOTITO>2.0.CO;2
– ident: ref99
  doi: 10.5194/cp-16-1-2020
– ident: ref51
  doi: 10.1016/j.gca.2013.07.028
– ident: ref101
  doi: 10.1029/2000JD900719
– ident: ref82
  doi: 10.1029/2002JD002670
– ident: ref97
  doi: 10.1002/2016EF000376
– ident: ref126
  doi: 10.1038/s41558-020-00955-x
– ident: ref32
  doi: 10.1126/science.207.4426.61
– ident: ref33
  doi: 10.1038/ngeo2577
– ident: ref23
  doi: 10.1029/2019MS001916
– ident: ref71
– ident: ref20
  doi: 10.5194/cp-13-135-2017
– ident: ref44
  doi: 10.5194/gmd-4-571-2011
– ident: ref83
– ident: ref68
– ident: ref65
  doi: 10.1016/j.dynatmoce.2018.02.001
– ident: ref94
  doi: 10.1029/2008JC005257
– ident: ref117
  doi: 10.1002/essoar.10510285.1
– ident: ref60
  doi: 10.1175/2009JCLI3361.1
– ident: ref77
  doi: 10.1002/2014GL061413
– ident: ref107
  doi: 10.1175/2008BAMS2634.1
– ident: ref74
– ident: ref4
  doi: 10.1029/2006GL028044
– ident: ref46
  doi: 10.1038/ncomms10646
– ident: ref111
  doi: 10.1007/s00382-019-04930-x
– ident: ref7
  doi: 10.1038/nclimate3278
– ident: ref3
  doi: 10.1038/nature01092
– ident: ref15
– ident: ref62
  doi: 10.1002/grl.50256
– ident: ref119
  doi: 10.1186/s40645-018-0174-9
– ident: ref102
  doi: 10.1098/rsta.2007.2076
– ident: ref8
  doi: 10.1029/2018PA003512
– ident: ref53
  doi: 10.1029/2019MS001892
– ident: ref86
  doi: 10.1029/2012GL051447
– ident: ref103
  doi: 10.1002/2017PA003201
– ident: ref22
  doi: 10.1175/JCLI-D-11-00091.1
– ident: ref61
  doi: 10.1002/grl.50256
– ident: ref49
  doi: 10.1016/j.epsl.2013.09.044
– ident: ref36
  doi: 10.1029/2019MS002033
– ident: ref106
  doi: 10.1144/SP355.13
– ident: ref121
  doi: 10.5194/gmd-14-1147-2021
– ident: ref70
  doi: 10.1016/S1463-5003(02)00015-X
– ident: ref6
  doi: 10.1017/9781009157896.002
– ident: ref9
  doi: 10.5194/cp-18-657-2022
– ident: ref27
  doi: 10.29041/strat.07.2.03
– ident: ref58
  doi: 10.1038/ngeo520
– ident: ref87
  doi: 10.1002/2016GL067757
– ident: ref104
  doi: 10.1029/2019PA003744
– ident: ref81
  doi: 10.1029/92PA02092
– ident: ref120
  doi: 10.1002/essoar.10502015.1
– ident: ref48
  doi: 10.5194/cp-16-2095-2020
– ident: ref73
  doi: 10.1175/1520-0442(2003)016<0834:TMCAIR>2.0.CO;2
– ident: ref100
  doi: 10.5194/egusphere-egu23-10963
– ident: ref110
  doi: 10.1029/2007GL031911
– ident: ref11
  doi: 10.1029/2019MS002010
– ident: ref35
  doi: 10.1029/2019MS002033
– ident: ref41
  doi: 10.1017/9781009157896.021
– ident: ref93
  doi: 10.1002/2013JC009533
– ident: ref59
  doi: 10.1029/2019MS002025
– ident: ref89
  doi: 10.1007/s10872-022-00641-w
– ident: ref91
  doi: 10.1029/2020PA003872
– ident: ref79
  doi: 10.1002/jgrc.20069
– ident: ref109
  doi: 10.1038/nature04744
– ident: ref26
– ident: ref40
  doi: 10.1002/2016GL068406
– ident: ref47
  doi: 10.5194/cp-12-663-2016
– ident: ref92
– ident: ref14
  doi: 10.1073/pnas.1809600115
– ident: ref114
  doi: 10.1175/1520-0485(2004)034<1232:AIOOWV>2.0.CO;2
– ident: ref39
  doi: 10.5670/oceanog.2005.01
– ident: ref38
  doi: 10.1016/j.dynatmoce.2009.12.002
– ident: ref69
  doi: 10.1144/TMS002.13
– ident: ref64
– ident: ref66
  doi: 10.5194/cp-16-183-2020
– ident: ref13
  doi: 10.1016/j.epsl.2016.03.010
– ident: ref28
  doi: 10.5194/cp-12-1519-2016
– ident: ref17
  doi: 10.1073/pnas.1714308114
– ident: ref45
  doi: 10.5194/cp-9-191-2013
– ident: ref55
  doi: 10.1038/s41597-022-01739-y
– ident: ref56
  doi: 10.5194/cp-17-1065-2021
– ident: ref75
  doi: 10.1038/ngeo2194
– ident: ref113
  doi: 10.5194/cp-19-61-2023
– ident: ref84
  doi: 10.1098/rsta.2008.0200
– ident: ref108
  doi: 10.1175/JCLI4258.1
– ident: ref30
  doi: 10.1175/2010JPO4380.1
– ident: ref42
  doi: 10.5194/cp-17-2537-2021
– ident: ref57
  doi: 10.5194/cp-12-1619-2016
– ident: ref76
  doi: 10.5194/cp-17-2427-2021
– ident: ref67
  doi: 10.1007/s00382-017-4043-9
– ident: ref95
  doi: 10.1038/ngeo2188
– ident: ref85
  doi: 10.1016/j.palaeo.2021.110447
– ident: ref19
  doi: 10.5194/cp-13-919-2017
– ident: ref50
  doi: 10.1080/02626667.2015.1057513
– ident: ref124
  doi: 10.5194/cp-17-529-2021
– ident: ref52
  doi: 10.1007/s00382-012-1343-y
– ident: ref115
– ident: ref88
  doi: 10.5194/gmd-13-3011-2020
– ident: ref105
  doi: 10.1029/2019PA003744
– ident: ref29
  doi: 10.1098/rsta.2012.0524
– ident: ref34
  doi: 10.1186/s40562-018-0102-2
– ident: ref72
  doi: 10.5194/cp-16-1599-2020
– ident: ref80
  doi: 10.1175/1520-0493(1968)096<0365:ROATMC>2.0.CO;2
– ident: ref12
  doi: 10.5194/cp-11-605-2015
– ident: ref43
  doi: 10.5194/gmd-3-227-2010
– ident: ref5
  doi: 10.1175/JCLI-D-14-00545.1
– ident: ref16
  doi: 10.1038/35075500
– ident: ref31
SSID ssj0048195
Score 2.4034278
Snippet The Maritime Continent (MC) forms the western boundary of the tropical Pacific Ocean, and relatively small changes in this region can impact the climate...
SourceID doaj
swepub
hal
proquest
gale
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
StartPage 2053
SubjectTerms Anomalies
Atmosphere
Atmospheric models
Carbon dioxide
Climate
Climate change
Cluster analysis
Continental interfaces, environment
El Nino
Geography
Heat
Hydrologic cycle
Hydrological cycle
Hydrology
Indonesian Throughflow
Intercomparison
Marine transportation
Modelling
Ocean
Ocean circulation
Ocean currents
Ocean, Atmosphere
Oceans
Pliocene
Precipitation
Salinity
Sciences of the Universe
Sea surface
Sea surface temperature
Sea surface temperature anomalies
Shelving
Simulation
Surface salinity
Surface temperature
Temperature anomalies
Volume transport
Water circulation
SummonAdditionalLinks – databaseName: Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELagJy6Ip1goyKp4XaLGjp043JZCtUUsqoCi3ixnbNNI2-wqySL13zN2stXmxIVjPI7lzExmvknsz4S8zjgI5kufGAx2CeZjk1RSZAlCZ4-APAdXxVW-3_LFhfhyKS_3jvoKa8IGeuBBccelyh14k1krnKhsWqVWeukUxl7vQQ5b91K-K6aGGCzC36FQaikmEkQoYiD1QbQijmGTsBKdQ-KEUp5N8lGk7b8NznevwtrIfeC5TyYaE9DpA3J_RI50Psz4IbnjmkdktkTQu27jt3H6lp6sakSg8eoxuUYXoFc3tt3FNwo3eCc1jaWYtUxDoW5hPL6Lrj1FLEiXJrAcXTsaaKsQgTY9rZsoOV_VeFfjPlCs0LervqNha0psXp6d8yfk4vTzz5NFMp6ukBjJZZ_I1EtTeMUAlSsBbMGzAkoQIvNKMAXGF97mYDEklljHMOk9igABFC8Kn2dPyUGzbtwzQhVAWlmGw6VOWM-UMlgHMY_YocoVczPyfqdjvRlINDQWH8EcGjaalTqYQwdzzMjHYIPbboH9OjagT-jRJ_S_fGJGjoIFdeC3aMICmt9m23X67Md3PS8KDFtZnhYz8m7s5Nd9a8CM-xHwkQIl1qTn4aQnvoAwER-ho0xmvJh_1aEtFKioOfaH4Rg7P9JjlOg0V4qhPJcofjP41mSYT_WveXzwbqs54syMP_8f6nlB7gVVhwzM80Ny0Ldb9xKhVV-9im_RX8OqHwQ
  priority: 102
  providerName: Directory of Open Access Journals
Title The hydrological cycle and ocean circulation of the Maritime Continent in the Pliocene: results from PlioMIP2
URI https://www.proquest.com/docview/2881650651
https://hal.science/hal-04265011
https://urn.kb.se/resolve?urn=urn:nbn:se:su:diva-227332
https://doaj.org/article/986ecfa3dd4e4bd0b0d5f5e8130ffc59
Volume 19
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3fb9MwELZY9wAvCAaIjDFZE79eosWOnTi8oG5s6hCdqsHQ3izHjtdIXVKSFKn_PefUHcsLj7Xdk-M7333nON8h9C6mmhGb2VCBswshHqsw5ywOATpbAOSJLvL-lu9lMrlm3274jT9wa_21yq1P7B21qbU7Iz-mQhBAEwknX5a_Q1c1yr1d9SU0dtAuJbEQI7R7cnY5u9r6YubeErmUSxAWAlJhG3IfQC3sWC9DkoGRcJhYRONBXOrp---d9M7c3ZF8CEAfkor2gej8GXrqESQeb1T-HD0qqj302Bczn6_3UDAFIFw3_Xk5_oBPFyWg0v7XC3QHZoHna9NsfR7Wa5CCVWUwRDJVYV022pf0wrXFgA_xVDnmo7sCOyorQKVVh8uq75ktSvhXVXzGkLWvFl2L3ecqffP0YkZfouvzs5-nk9BXXAgVp7wLeWS5Sq0gWsWGa21SGqc604zFVjAitLKpNYk24CYzyG0Itxa6NIAqmqY2iV-hUVVXxWuEhdZRbgiIiwpmLBFCQW5ELOCJPBGkCNCn7XrL5YZYQ0JC4lQj9VKSTDrVSKeaAJ04fdwPc4zYfUPd3Eq_wWQmkkJbmLZhBctNlEeGW14IiNHWap4F6MhpUzrOi8pdqrlVq7aVFz-u5DhNwZXFSZQG6KMfZOuuUVr5bxTgkRxN1mDkwWAkbEo96D4CoxnMeDL-Ll2bS1ph5cgfAjK2NiW952jlPzsP0PuNnQ3EfC1_jfsHb1eSAvaM6f7_xbxBT9wiunhLkwM06ppV8RaAVJcf-t1y2B9E_AVaKhsF
link.rule.ids 230,314,780,784,864,885,2102,21388,27924,27925,33744,43805,74302
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3fb9MwELZY9zBe0BggMgZYE79eosWJnTi8oG5saqGtqrGhvVmOHa-VuqRLUqT-95xTdywvPNZ2T47vfPed43yH0IcoVJSY1PgSnJ0P8Vj6GaORD9DZACCPVZ61t3wn8eCa_rhhN-7ArXbXKrc-sXXUulT2jPwk5JwAmogZ-ba8923VKPt21ZXQ2EG7ljmd9dDu6flkern1xdS-JbIpFyfUB6RCN-Q-gFroiVr6JAUjYTCxIIw6caml739w0jsze0fyMQB9TCraBqKLffTMIUjc36j8OXqSFwdozxUzn60PkDcGIFxW7Xk5_oTPFnNApe2vF-gOzALP1rra-jys1iAFy0JjiGSywGpeKVfSC5cGAz7EY2mZj-5ybKmsAJUWDZ4Xbc90MYd_FflXDFn7atHU2H6u0jaPh9PwJbq-OL86G_iu4oIvWcganwWGycRwomSkmVI6CaNEpYrSyHBKuJImMTpWGtxkCrkNYcZAlwJQFSaJiaNXqFeURf4aYa5UkGkC4oKcakM4l5AbEQN4Ios5yT30ZbveYrkh1hCQkFjVCLUUJBVWNcKqxkOnVh8PwywjdttQVrfCbTCR8jhXBqataU4zHWSBZoblHGK0MYqlHjq22hSW86Kwl2pu5aquxfDXpegnCbiyKA4SD312g0zZVFJJ940CPJKlyeqMPOqMhE2pOt3HYDSdGQ_6I2HbbNIKK0f-EJCxtSnhPEct_tm5hz5u7Kwj5vv8d7998HolQsCeUXj4fzHv0d7gajwSo-Hk5xv01C6ojb1hfIR6TbXK3wKoarJ3buf8BQ0CHPg
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3db9MwELdYJwEvCAZogQHWxNdL1DixE4cX1H1ULaxVNRjam-XY8VqpS0qSIvW_55y6Y3nhMbZzcnznu9_F5zuE3kehosSkxpeg7Hywx9LPGI18gM4GAHms8qyN8p3Goyv67Zpdu_in2oVV7nRiq6h1qew_8n7IOQE0ETPSNy4sYnY2_Lr67dsKUvak1ZXT2EP7YBWDsIf2T86ns8udXqb2xMi6X5xQH1AL3Sb6AQRD-2rlkxQEhsEkgzDq2Kg2lf-dwt6b23jJ-2D0foLR1igNn6InDk3iwZb9z9CDvDhAj1xh8_nmAHkTAMVl1f47xx_x6XIBCLV9eo5uQUTwfKOrnf7DagNUsCw0BqsmC6wWlXLlvXBpMGBFPJE2C9Jtjm1aK0CoRYMXRdszWy7grSL_gsGDXy-bGturK23zZDwLX6Cr4fnP05Hvqi_4koWs8VlgmEwMJ0pGmimlkzBKVKoojQynhCtpEqNjpUFlpuDnEGYMdCkAWGGSmDh6iXpFWeSHCHOlgkwTIBfkVBvCuQQ_iRjAFlnMSe6hz7v1Fqttkg0BzolljVArQVJhWSMsazx0YvlxN8xmx24byupGuM0mUh7nysC0Nc1ppoMs0MywnIO9Nkax1EPHlpvC5r8orCTdyHVdi_GPSzFIElBrURwkHvrkBpmyqaSS7r4CfJJNmdUZedQZCRtUdbqPQWg6Mx4NLoRtsw4srBz5Q4DGTqaE0yK1-CfzHvqwlbMOmbPFr0H74fVahIBDo_DV_8m8Qw9h04iL8fT7a_TYrqc1w2F8hHpNtc7fAL5qsrdu4_wFjCkhJQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+hydrological+cycle+and+ocean+circulation+of+the+Maritime+Continent+in+the+Pliocene%3A+results+from+PlioMIP2&rft.jtitle=Climate+of+the+past&rft.au=Ren%2C+Xin&rft.au=Lunt%2C+Daniel+J&rft.au=Hendy%2C+Erica&rft.au=von+der+Heydt%2C+Anna&rft.date=2023-10-26&rft.pub=Copernicus+GmbH&rft.issn=1814-9332&rft.volume=19&rft.issue=10&rft.spage=2053&rft_id=info:doi/10.5194%2Fcp-19-2053-2023&rft.externalDocID=A770403607
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1814-9332&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1814-9332&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1814-9332&client=summon