The hydrological cycle and ocean circulation of the Maritime Continent in the Pliocene: results from PlioMIP2
The Maritime Continent (MC) forms the western boundary of the tropical Pacific Ocean, and relatively small changes in this region can impact the climate locally and remotely. In the mid-Piacenzian warm period of the Pliocene (mPWP; 3.264 to 3.025 Ma) atmospheric CO.sub.2 concentrations were â¼ 400 p...
Saved in:
Published in | Climate of the past Vol. 19; no. 10; pp. 2053 - 2077 |
---|---|
Main Authors | , , , , , , , , , , , , , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Katlenburg-Lindau
Copernicus GmbH
26.10.2023
European Geosciences Union (EGU) [2005-....] Copernicus Publications |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The Maritime Continent (MC) forms the western boundary of the tropical Pacific Ocean, and relatively small changes in this region can impact the climate locally and remotely. In the mid-Piacenzian warm period of the Pliocene (mPWP; 3.264 to 3.025 Ma) atmospheric CO.sub.2 concentrations were â¼ 400 ppm, and the subaerial Sunda and Sahul shelves made the land-sea distribution of the MC different to today. Topographic changes and elevated levels of CO.sub.2, combined with other forcings, are therefore expected to have driven a substantial climate signal in the MC region at this time. By using the results from the Pliocene Model Intercomparison Project Phase 2 (PlioMIP2), we study the mean climatic features of the MC in the mPWP and changes in Indonesian Throughflow (ITF) with respect to the preindustrial. Results show a warmer and wetter mPWP climate of the MC and lower sea surface salinity in the surrounding ocean compared with the preindustrial. Furthermore, we quantify the volume transfer through the ITF; although the ITF may be expected to be hindered by the subaerial shelves, 10 out of 15 models show an increased volume transport compared with the preindustrial. |
---|---|
AbstractList | The Maritime Continent (MC) forms the western boundary of the tropical Pacific Ocean, and relatively small changes in this region can impact the climate locally and remotely. In the mid-Piacenzian warm period of the Pliocene (mPWP; 3.264 to 3.025 Ma) atmospheric CO2 concentrations were ∼ 400 ppm, and the subaerial Sunda and Sahul shelves made the land–sea distribution of the MC different to today. Topographic changes and elevated levels of CO2, combined with other forcings, are therefore expected to have driven a substantial climate signal in the MC region at this time. By using the results from the Pliocene Model Intercomparison Project Phase 2 (PlioMIP2), we study the mean climatic features of the MC in the mPWP and changes in Indonesian Throughflow (ITF) with respect to the preindustrial. Results show a warmer and wetter mPWP climate of the MC and lower sea surface salinity in the surrounding ocean compared with the preindustrial. Furthermore, we quantify the volume transfer through the ITF; although the ITF may be expected to be hindered by the subaerial shelves, 10 out of 15 models show an increased volume transport compared with the preindustrial. In order to avoid undue influence from closely related models that are present in the PlioMIP2 ensemble, we introduce a new metric, the multi-cluster mean (MCM), which is based on cluster analysis of the individual models. We study the effect that the choice of MCM versus the more traditional analysis of multi-model mean (MMM) and individual models has on the discrepancy between model results and data. We find that models, which reproduce modern MC climate well, are not always good at simulating the mPWP climate anomaly of the MC. By comparing with individual models, the MMM and MCM reproduce the preindustrial sea surface temperature (SST) of the reanalysis better than most individual models and produce less discrepancy with reconstructed sea surface temperature anomalies (SSTA) than most individual models in the MC. In addition, the clusters reveal spatial signals that are not captured by the MMM, so that the MCM provides us with a new way to explore the results from model ensembles that include similar models. The Maritime Continent (MC) forms the western boundary of the tropical Pacific Ocean, and relatively small changes in this region can impact the climate locally and remotely. In the mid-Piacenzian warm period of the Pliocene (mPWP; 3.264 to 3.025 Ma) atmospheric CO.sub.2 concentrations were â¼ 400 ppm, and the subaerial Sunda and Sahul shelves made the land-sea distribution of the MC different to today. Topographic changes and elevated levels of CO.sub.2, combined with other forcings, are therefore expected to have driven a substantial climate signal in the MC region at this time. By using the results from the Pliocene Model Intercomparison Project Phase 2 (PlioMIP2), we study the mean climatic features of the MC in the mPWP and changes in Indonesian Throughflow (ITF) with respect to the preindustrial. Results show a warmer and wetter mPWP climate of the MC and lower sea surface salinity in the surrounding ocean compared with the preindustrial. Furthermore, we quantify the volume transfer through the ITF; although the ITF may be expected to be hindered by the subaerial shelves, 10 out of 15 models show an increased volume transport compared with the preindustrial. The Maritime Continent (MC) forms the western boundary of the tropical Pacific Ocean, and relatively small changes in this region can impact the climate locally and remotely. In the mid-Piacenzian warm period of the Pliocene (mPWP; 3.264 to 3.025 Ma) atmospheric CO.sub.2 concentrations were â¼ 400 ppm, and the subaerial Sunda and Sahul shelves made the land-sea distribution of the MC different to today. Topographic changes and elevated levels of CO.sub.2, combined with other forcings, are therefore expected to have driven a substantial climate signal in the MC region at this time. By using the results from the Pliocene Model Intercomparison Project Phase 2 (PlioMIP2), we study the mean climatic features of the MC in the mPWP and changes in Indonesian Throughflow (ITF) with respect to the preindustrial. Results show a warmer and wetter mPWP climate of the MC and lower sea surface salinity in the surrounding ocean compared with the preindustrial. Furthermore, we quantify the volume transfer through the ITF; although the ITF may be expected to be hindered by the subaerial shelves, 10 out of 15 models show an increased volume transport compared with the preindustrial. In order to avoid undue influence from closely related models that are present in the PlioMIP2 ensemble, we introduce a new metric, the multi-cluster mean (MCM), which is based on cluster analysis of the individual models. We study the effect that the choice of MCM versus the more traditional analysis of multi-model mean (MMM) and individual models has on the discrepancy between model results and data. We find that models, which reproduce modern MC climate well, are not always good at simulating the mPWP climate anomaly of the MC. By comparing with individual models, the MMM and MCM reproduce the preindustrial sea surface temperature (SST) of the reanalysis better than most individual models and produce less discrepancy with reconstructed sea surface temperature anomalies (SSTA) than most individual models in the MC. In addition, the clusters reveal spatial signals that are not captured by the MMM, so that the MCM provides us with a new way to explore the results from model ensembles that include similar models. The Maritime Continent (MC) forms the western boundary of the tropical Pacific Ocean, and relatively small changes in this region can impact the climate locally and remotely. In the mid-Piacenzian warm period of the Pliocene (mPWP; 3.264 to 3.025 Ma) atmospheric CO2 concentrations were ∼ 400 ppm, and the subaerial Sunda and Sahul shelves made the land–sea distribution of the MC different to today. Topographic changes and elevated levels of CO2, combined with other forcings, are therefore expected to have driven a substantial climate signal in the MC region at this time. By using the results from the Pliocene Model Intercomparison Project Phase 2 (PlioMIP2), we study the mean climatic features of the MC in the mPWP and changes in Indonesian Throughflow (ITF) with respect to the preindustrial. Results show a warmer and wetter mPWP climate of the MC and lower sea surface salinity in the surrounding ocean compared with the preindustrial. Furthermore, we quantify the volume transfer through the ITF; although the ITF may be expected to be hindered by the subaerial shelves, 10 out of 15 models show an increased volume transport compared with the preindustrial.In order to avoid undue influence from closely related models that are present in the PlioMIP2 ensemble, we introduce a new metric, the multi-cluster mean (MCM), which is based on cluster analysis of the individual models. We study the effect that the choice of MCM versus the more traditional analysis of multi-model mean (MMM) and individual models has on the discrepancy between model results and data. We find that models, which reproduce modern MC climate well, are not always good at simulating the mPWP climate anomaly of the MC. By comparing with individual models, the MMM and MCM reproduce the preindustrial sea surface temperature (SST) of the reanalysis better than most individual models and produce less discrepancy with reconstructed sea surface temperature anomalies (SSTA) than most individual models in the MC. In addition, the clusters reveal spatial signals that are not captured by the MMM, so that the MCM provides us with a new way to explore the results from model ensembles that include similar models. The Maritime Continent (MC) forms the western boundary of the tropical Pacific Ocean, and relatively small changes in this region can impact the climate locally and remotely. In the mid-Piacenzian warm period of the Pliocene (mPWP; 3.264 to 3.025 Ma) atmospheric CO2 concentrations were ∼ 400 ppm, and the subaerial Sunda and Sahul shelves made the land–sea distribution of the MC different to today. Topographic changes and elevated levels of CO 2 , combined with other forcings, are therefore expected to have driven a substantial climate signal in the MC region at this time. By using the results from the Pliocene Model Intercomparison Project Phase 2 (PlioMIP2), we study the mean climatic features of the MC in the mPWP and changes in Indonesian Throughflow (ITF) with respect to the preindustrial. Results show a warmer and wetter mPWP climate of the MC and lower sea surface salinity in the surrounding ocean compared with the preindustrial. Furthermore, we quantify the volume transfer through the ITF; although the ITF may be expected to be hindered by the subaerial shelves, 10 out of 15 models show an increased volume transport compared with the preindustrial. In order to avoid undue influence from closely related models that are present in the PlioMIP2 ensemble, we introduce a new metric, the multi-cluster mean (MCM), which is based on cluster analysis of the individual models. We study the effect that the choice of MCM versus the more traditional analysis of multi-model mean (MMM) and individual models has on the discrepancy between model results and data. We find that models, which reproduce modern MC climate well, are not always good at simulating the mPWP climate anomaly of the MC. By comparing with individual models, the MMM and MCM reproduce the preindustrial sea surface temperature (SST) of the reanalysis better than most individual models and produce less discrepancy with reconstructed sea surface temperature anomalies (SSTA) than most individual models in the MC. In addition, the clusters reveal spatial signals that are not captured by the MMM, so that the MCM provides us with a new way to explore the results from model ensembles that include similar models. The Maritime Continent (MC) forms the western boundary of the tropical Pacific Ocean, and relatively small changes in this region can impact the climate locally and remotely. In the mid-Piacenzian warm period of the Pliocene (mPWP; 3.264 to 3.025 Ma) atmospheric CO 2 concentrations were ∼ 400 ppm, and the subaerial Sunda and Sahul shelves made the land–sea distribution of the MC different to today. Topographic changes and elevated levels of CO 2 , combined with other forcings, are therefore expected to have driven a substantial climate signal in the MC region at this time. By using the results from the Pliocene Model Intercomparison Project Phase 2 (PlioMIP2), we study the mean climatic features of the MC in the mPWP and changes in Indonesian Throughflow (ITF) with respect to the preindustrial. Results show a warmer and wetter mPWP climate of the MC and lower sea surface salinity in the surrounding ocean compared with the preindustrial. Furthermore, we quantify the volume transfer through the ITF; although the ITF may be expected to be hindered by the subaerial shelves, 10 out of 15 models show an increased volume transport compared with the preindustrial. In order to avoid undue influence from closely related models that are present in the PlioMIP2 ensemble, we introduce a new metric, the multi-cluster mean (MCM), which is based on cluster analysis of the individual models. We study the effect that the choice of MCM versus the more traditional analysis of multi-model mean (MMM) and individual models has on the discrepancy between model results and data. We find that models, which reproduce modern MC climate well, are not always good at simulating the mPWP climate anomaly of the MC. By comparing with individual models, the MMM and MCM reproduce the preindustrial sea surface temperature (SST) of the reanalysis better than most individual models and produce less discrepancy with reconstructed sea surface temperature anomalies (SSTA) than most individual models in the MC. In addition, the clusters reveal spatial signals that are not captured by the MMM, so that the MCM provides us with a new way to explore the results from model ensembles that include similar models. |
Audience | Academic |
Author | Hunter, Stephen Otto-Bliesner, Bette Haywood, Alan M Peltier, W. Richard Ren, Xin Kamae, Youichi Feng, Ran von der Heydt, Anna Sohl, Linda E Chandler, Mark A Williams, Charles J. R Lunt, Daniel J Zhang, Zhongshi Guo, Chuncheng Li, Xiangyu Chandan, Deepak Lohmann, Gerrit Baatsen, Michiel L. J Chan, Wing-Le Stepanek, Christian Tindall, Julia C Abe-Ouchi, Ayako Zhang, Qiong Kageyama, Masa Hendy, Erica Tan, Ning |
Author_xml | – sequence: 1 fullname: Ren, Xin – sequence: 2 fullname: Lunt, Daniel J – sequence: 3 fullname: Hendy, Erica – sequence: 4 fullname: von der Heydt, Anna – sequence: 5 fullname: Abe-Ouchi, Ayako – sequence: 6 fullname: Otto-Bliesner, Bette – sequence: 7 fullname: Williams, Charles J. R – sequence: 8 fullname: Stepanek, Christian – sequence: 9 fullname: Guo, Chuncheng – sequence: 10 fullname: Chandan, Deepak – sequence: 11 fullname: Lohmann, Gerrit – sequence: 12 fullname: Tindall, Julia C – sequence: 13 fullname: Sohl, Linda E – sequence: 14 fullname: Chandler, Mark A – sequence: 15 fullname: Kageyama, Masa – sequence: 16 fullname: Baatsen, Michiel L. J – sequence: 17 fullname: Tan, Ning – sequence: 18 fullname: Zhang, Qiong – sequence: 19 fullname: Feng, Ran – sequence: 20 fullname: Hunter, Stephen – sequence: 21 fullname: Chan, Wing-Le – sequence: 22 fullname: Peltier, W. Richard – sequence: 23 fullname: Li, Xiangyu – sequence: 24 fullname: Kamae, Youichi – sequence: 25 fullname: Zhang, Zhongshi – sequence: 26 fullname: Haywood, Alan M |
BackLink | https://hal.science/hal-04265011$$DView record in HAL https://urn.kb.se/resolve?urn=urn:nbn:se:su:diva-227332$$DView record from Swedish Publication Index |
BookMark | eNptkstrGzEQxpeSQpO0514FPQW6iZ776M2kjxgcGtq0VyGPJFtmV3IlbVv_95XtUmIoAkl885tPo2EuqjMfvKmq1wRfC9LzG9jWpK8pFqxslD2rzklHeN0zRs-e3F9UFyltMOYd6cV5NT6uDVrvdAxDWDlQA4IdDAYpr1EAozwCF2EaVHbBo2BRLvy9ii670aDb4LPzxmfk_CHyMLiS5c07FE2ahpyQjWE8yPfzB_qyem7VkMyrv-dl9e3jh8fbu3rx-dP8draolaAi1wJboVrbEVBMCwDdUtZCD5wz23HSgbKt1Q1owbpeCEyEtSUEDee0bW3DLqv50VcHtZHb6EYVdzIoJw9CiCupYnblo7LvGgO2vKO54UuNl1gLK0xHGLYWRF-83h690i-znZYnbu_d99nBLU2S0ra0t-BXR3ythhP2braQew1z2pSSyU9S2DdHdhvDj8mkLDdhir50RtKuIwVrxBNqpUq9ztuQo4LRJZCztsUcswa3hbr-D1WWNqODMirWFf0k4eokoTDZ_M4rNaUk51-_nLI3RxZiSCka--9nBMv99EnYStLL_fTJ_fSxP_piy7s |
Cites_doi | 10.1007/s10712-017-9416-4 10.1029/2006JD007870 10.5194/cp-16-2275-2020 10.5194/cp-16-1523-2020 10.1029/JC092iC12p12941 10.5194/cp-17-2139-2021 10.5194/esd-10-91-2019 10.1038/s41561-022-00999-y 10.5194/cp-15-1691-2019 10.1016/0012-821X(83)90050-X 10.1126/science.1112596 10.1029/2020GL090615 10.1175/JCLI-D-19-1011.1 10.1038/s41467-022-28814-7 10.1007/s00382-017-4010-5 10.1175/JCLI-D-15-0222.1 10.1126/science.1246172 10.1002/2017GL076829 10.1038/ngeo2828 10.1175/1520-0485(2002)032<1404:EOTITO>2.0.CO;2 10.5194/cp-16-1-2020 10.1016/j.gca.2013.07.028 10.1029/2000JD900719 10.1029/2002JD002670 10.1002/2016EF000376 10.1038/s41558-020-00955-x 10.1126/science.207.4426.61 10.1038/ngeo2577 10.1029/2019MS001916 10.5194/cp-13-135-2017 10.5194/gmd-4-571-2011 10.1016/j.dynatmoce.2018.02.001 10.1029/2008JC005257 10.1002/essoar.10510285.1 10.1175/2009JCLI3361.1 10.1002/2014GL061413 10.1175/2008BAMS2634.1 10.1029/2006GL028044 10.1038/ncomms10646 10.1007/s00382-019-04930-x 10.1038/nclimate3278 10.1038/nature01092 10.1002/grl.50256 10.1186/s40645-018-0174-9 10.1098/rsta.2007.2076 10.1029/2018PA003512 10.1029/2019MS001892 10.1029/2012GL051447 10.1002/2017PA003201 10.1175/JCLI-D-11-00091.1 10.1016/j.epsl.2013.09.044 10.1029/2019MS002033 10.1144/SP355.13 10.5194/gmd-14-1147-2021 10.1016/S1463-5003(02)00015-X 10.1017/9781009157896.002 10.5194/cp-18-657-2022 10.29041/strat.07.2.03 10.1038/ngeo520 10.1002/2016GL067757 10.1029/2019PA003744 10.1029/92PA02092 10.1002/essoar.10502015.1 10.5194/cp-16-2095-2020 10.1175/1520-0442(2003)016<0834:TMCAIR>2.0.CO;2 10.5194/egusphere-egu23-10963 10.1029/2007GL031911 10.1029/2019MS002010 10.1017/9781009157896.021 10.1002/2013JC009533 10.1029/2019MS002025 10.1007/s10872-022-00641-w 10.1029/2020PA003872 10.1002/jgrc.20069 10.1038/nature04744 10.1002/2016GL068406 10.5194/cp-12-663-2016 10.1073/pnas.1809600115 10.1175/1520-0485(2004)034<1232:AIOOWV>2.0.CO;2 10.5670/oceanog.2005.01 10.1016/j.dynatmoce.2009.12.002 10.1144/TMS002.13 10.5194/cp-16-183-2020 10.1016/j.epsl.2016.03.010 10.5194/cp-12-1519-2016 10.1073/pnas.1714308114 10.5194/cp-9-191-2013 10.1038/s41597-022-01739-y 10.5194/cp-17-1065-2021 10.1038/ngeo2194 10.5194/cp-19-61-2023 10.1098/rsta.2008.0200 10.1175/JCLI4258.1 10.1175/2010JPO4380.1 10.5194/cp-17-2537-2021 10.5194/cp-12-1619-2016 10.5194/cp-17-2427-2021 10.1007/s00382-017-4043-9 10.1038/ngeo2188 10.1016/j.palaeo.2021.110447 10.5194/cp-13-919-2017 10.1080/02626667.2015.1057513 10.5194/cp-17-529-2021 10.1007/s00382-012-1343-y 10.5194/gmd-13-3011-2020 10.1098/rsta.2012.0524 10.1186/s40562-018-0102-2 10.5194/cp-16-1599-2020 10.1175/1520-0493(1968)096<0365:ROATMC>2.0.CO;2 10.5194/cp-11-605-2015 10.5194/gmd-3-227-2010 10.1175/JCLI-D-14-00545.1 10.1038/35075500 |
ContentType | Journal Article |
Copyright | COPYRIGHT 2023 Copernicus GmbH 2023. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. Distributed under a Creative Commons Attribution 4.0 International License |
Copyright_xml | – notice: COPYRIGHT 2023 Copernicus GmbH – notice: 2023. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: Distributed under a Creative Commons Attribution 4.0 International License |
DBID | AAYXX CITATION ISR 7TG 7TN 7UA ABUWG AFKRA AZQEC BENPR BFMQW BHPHI BKSAR C1K CCPQU DWQXO F1W H96 H97 HCIFZ KL. L.G PCBAR PIMPY PQEST PQQKQ PQUKI 1XC VOOES ABAVF ADTPV AOWAS D8T DG7 ZZAVC DOA |
DOI | 10.5194/cp-19-2053-2023 |
DatabaseName | CrossRef Gale In Context: Science Meteorological & Geoastrophysical Abstracts Oceanic Abstracts Water Resources Abstracts ProQuest Central (Alumni) ProQuest Central ProQuest Central Essentials ProQuest Central Continental Europe Database Natural Science Collection Earth, Atmospheric & Aquatic Science Collection Environmental Sciences and Pollution Management ProQuest One Community College ProQuest Central Korea ASFA: Aquatic Sciences and Fisheries Abstracts Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality SciTech Premium Collection Meteorological & Geoastrophysical Abstracts - Academic Aquatic Science & Fisheries Abstracts (ASFA) Professional Earth, Atmospheric & Aquatic Science Database Publicly Available Content Database ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition Hyper Article en Ligne (HAL) Hyper Article en Ligne (HAL) (Open Access) SWEPUB Stockholms universitet full text SwePub SwePub Articles SWEPUB Freely available online SWEPUB Stockholms universitet SwePub Articles full text Directory of Open Access Journals |
DatabaseTitle | CrossRef Publicly Available Content Database Aquatic Science & Fisheries Abstracts (ASFA) Professional ProQuest Central Essentials ProQuest One Academic Eastern Edition Earth, Atmospheric & Aquatic Science Database ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College Continental Europe Database Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality Water Resources Abstracts Environmental Sciences and Pollution Management Earth, Atmospheric & Aquatic Science Collection ProQuest Central Meteorological & Geoastrophysical Abstracts Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Oceanic Abstracts ProQuest One Academic UKI Edition Natural Science Collection ProQuest Central Korea ASFA: Aquatic Sciences and Fisheries Abstracts ProQuest One Academic Meteorological & Geoastrophysical Abstracts - Academic |
DatabaseTitleList | CrossRef Publicly Available Content Database |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Meteorology & Climatology Geography |
EISSN | 1814-9332 |
EndPage | 2077 |
ExternalDocumentID | oai_doaj_org_article_986ecfa3dd4e4bd0b0d5f5e8130ffc59 oai_DiVA_org_su_227332 oai_HAL_hal_04265011v1 A770403607 10_5194_cp_19_2053_2023 |
GeographicLocations | Indian Ocean Pacific Ocean |
GeographicLocations_xml | – name: Pacific Ocean – name: Indian Ocean |
GroupedDBID | 29B 2WC 2XV 3V. 4P2 5GY 5VS 8FE 8FH 8R4 8R5 AAFWJ AAYXX ABUWG ADBBV AENEX AFKRA AFPKN AHGZY ALMA_UNASSIGNED_HOLDINGS BBORY BCNDV BENPR BFMQW BHPHI BKSAR BPHCQ CCPQU CITATION D1K E3Z EBS EDH EJD GROUPED_DOAJ H13 HCIFZ IAO IEA IEP ISR ITC K6- KQ8 LK5 M7R M~E OK1 P2P PCBAR PIMPY PQQKQ PROAC Q2X RKB RNS TR2 ~02 RIG 7TG 7TN 7UA AZQEC C1K DWQXO F1W H96 H97 KL. L.G PQEST PQUKI 1XC C1A IPNFZ VOOES ABAVF ADTPV AOWAS D8T DG7 ZZAVC |
ID | FETCH-LOGICAL-a525t-50f5a7f81ca3d5ccd7237c9c443f8418caf7fd6cd538955015ff43fc644277f63 |
IEDL.DBID | BENPR |
ISSN | 1814-9332 1814-9324 |
IngestDate | Tue Oct 22 15:13:27 EDT 2024 Sat Aug 24 00:18:44 EDT 2024 Thu Dec 05 10:06:09 EST 2024 Sun Nov 17 02:11:44 EST 2024 Tue Nov 19 21:24:03 EST 2024 Tue Nov 12 23:52:50 EST 2024 Sat Sep 28 21:33:45 EDT 2024 Fri Dec 06 06:52:34 EST 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 10 |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a525t-50f5a7f81ca3d5ccd7237c9c443f8418caf7fd6cd538955015ff43fc644277f63 |
ORCID | 0000-0003-1745-5952 0000-0002-5646-6104 0000-0003-1911-1598 0000-0003-1791-2463 0000-0002-6673-2007 0000-0002-3912-6271 0000-0003-3585-6928 0000-0002-0756-754X 0000-0003-2089-733X 0000-0002-7724-4025 0000-0002-6548-227X 0000-0002-4593-6238 0000-0003-4849-4671 0000-0002-2354-1622 0000-0003-0461-5718 0000-0002-9137-2883 0000-0002-5557-3282 0000-0001-6276-6499 0000-0002-5555-7661 0000-0003-0822-5880 |
OpenAccessLink | https://www.proquest.com/docview/2881650651?pq-origsite=%requestingapplication% |
PQID | 2881650651 |
PQPubID | 105735 |
PageCount | 25 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_986ecfa3dd4e4bd0b0d5f5e8130ffc59 swepub_primary_oai_DiVA_org_su_227332 hal_primary_oai_HAL_hal_04265011v1 proquest_journals_2881650651 gale_infotracmisc_A770403607 gale_infotracacademiconefile_A770403607 gale_incontextgauss_ISR_A770403607 crossref_primary_10_5194_cp_19_2053_2023 |
PublicationCentury | 2000 |
PublicationDate | 2023-10-26 |
PublicationDateYYYYMMDD | 2023-10-26 |
PublicationDate_xml | – month: 10 year: 2023 text: 2023-10-26 day: 26 |
PublicationDecade | 2020 |
PublicationPlace | Katlenburg-Lindau |
PublicationPlace_xml | – name: Katlenburg-Lindau |
PublicationTitle | Climate of the past |
PublicationYear | 2023 |
Publisher | Copernicus GmbH European Geosciences Union (EGU) [2005-....] Copernicus Publications |
Publisher_xml | – sequence: 0 name: European Geosciences Union (EGU) [2005-....] – name: Copernicus GmbH – name: Copernicus Publications |
References | ref57 ref56 ref59 ref58 ref53 ref52 ref55 ref54 ref51 ref50 ref46 ref45 ref48 ref47 ref42 ref41 ref44 ref43 ref49 ref8 ref7 ref9 ref4 ref3 ref6 ref5 ref100 ref101 ref40 ref35 ref34 ref37 ref36 ref31 ref30 ref33 ref32 ref39 ref38 ref24 ref23 ref26 ref25 ref20 ref22 ref21 ref28 ref27 ref29 ref13 ref12 ref15 ref14 ref97 ref126 ref96 ref11 ref99 ref124 ref10 ref98 ref125 ref17 ref16 ref19 ref18 ref93 ref92 ref95 ref94 ref91 ref90 ref89 ref86 ref85 ref88 ref87 ref82 ref81 ref84 ref83 ref80 ref79 ref108 ref78 ref109 ref106 ref107 ref75 ref104 ref74 ref105 ref77 ref102 ref76 ref103 ref2 ref1 ref71 ref111 ref70 ref112 ref73 ref72 ref110 ref68 ref119 ref67 ref117 ref69 ref118 ref64 ref115 ref63 ref116 ref66 ref113 ref65 ref114 ref60 ref122 ref123 ref62 ref120 ref61 ref121 |
References_xml | – ident: ref2 doi: 10.1007/s10712-017-9416-4 – ident: ref24 doi: 10.1029/2006JD007870 – ident: ref96 doi: 10.5194/cp-16-2275-2020 – ident: ref18 doi: 10.5194/cp-16-1523-2020 – ident: ref118 doi: 10.1029/JC092iC12p12941 – ident: ref116 doi: 10.5194/cp-17-2139-2021 – ident: ref1 doi: 10.5194/esd-10-91-2019 – ident: ref78 doi: 10.1038/s41561-022-00999-y – ident: ref54 doi: 10.5194/cp-15-1691-2019 – ident: ref21 doi: 10.1016/0012-821X(83)90050-X – ident: ref112 doi: 10.1126/science.1112596 – ident: ref98 doi: 10.1029/2020GL090615 – ident: ref25 doi: 10.1175/JCLI-D-19-1011.1 – ident: ref37 doi: 10.1038/s41467-022-28814-7 – ident: ref90 doi: 10.1007/s00382-017-4010-5 – ident: ref122 doi: 10.1175/JCLI-D-15-0222.1 – ident: ref123 doi: 10.1126/science.1246172 – ident: ref10 doi: 10.1002/2017GL076829 – ident: ref125 doi: 10.1038/ngeo2828 – ident: ref63 doi: 10.1175/1520-0485(2002)032<1404:EOTITO>2.0.CO;2 – ident: ref99 doi: 10.5194/cp-16-1-2020 – ident: ref51 doi: 10.1016/j.gca.2013.07.028 – ident: ref101 doi: 10.1029/2000JD900719 – ident: ref82 doi: 10.1029/2002JD002670 – ident: ref97 doi: 10.1002/2016EF000376 – ident: ref126 doi: 10.1038/s41558-020-00955-x – ident: ref32 doi: 10.1126/science.207.4426.61 – ident: ref33 doi: 10.1038/ngeo2577 – ident: ref23 doi: 10.1029/2019MS001916 – ident: ref71 – ident: ref20 doi: 10.5194/cp-13-135-2017 – ident: ref44 doi: 10.5194/gmd-4-571-2011 – ident: ref83 – ident: ref68 – ident: ref65 doi: 10.1016/j.dynatmoce.2018.02.001 – ident: ref94 doi: 10.1029/2008JC005257 – ident: ref117 doi: 10.1002/essoar.10510285.1 – ident: ref60 doi: 10.1175/2009JCLI3361.1 – ident: ref77 doi: 10.1002/2014GL061413 – ident: ref107 doi: 10.1175/2008BAMS2634.1 – ident: ref74 – ident: ref4 doi: 10.1029/2006GL028044 – ident: ref46 doi: 10.1038/ncomms10646 – ident: ref111 doi: 10.1007/s00382-019-04930-x – ident: ref7 doi: 10.1038/nclimate3278 – ident: ref3 doi: 10.1038/nature01092 – ident: ref15 – ident: ref62 doi: 10.1002/grl.50256 – ident: ref119 doi: 10.1186/s40645-018-0174-9 – ident: ref102 doi: 10.1098/rsta.2007.2076 – ident: ref8 doi: 10.1029/2018PA003512 – ident: ref53 doi: 10.1029/2019MS001892 – ident: ref86 doi: 10.1029/2012GL051447 – ident: ref103 doi: 10.1002/2017PA003201 – ident: ref22 doi: 10.1175/JCLI-D-11-00091.1 – ident: ref61 doi: 10.1002/grl.50256 – ident: ref49 doi: 10.1016/j.epsl.2013.09.044 – ident: ref36 doi: 10.1029/2019MS002033 – ident: ref106 doi: 10.1144/SP355.13 – ident: ref121 doi: 10.5194/gmd-14-1147-2021 – ident: ref70 doi: 10.1016/S1463-5003(02)00015-X – ident: ref6 doi: 10.1017/9781009157896.002 – ident: ref9 doi: 10.5194/cp-18-657-2022 – ident: ref27 doi: 10.29041/strat.07.2.03 – ident: ref58 doi: 10.1038/ngeo520 – ident: ref87 doi: 10.1002/2016GL067757 – ident: ref104 doi: 10.1029/2019PA003744 – ident: ref81 doi: 10.1029/92PA02092 – ident: ref120 doi: 10.1002/essoar.10502015.1 – ident: ref48 doi: 10.5194/cp-16-2095-2020 – ident: ref73 doi: 10.1175/1520-0442(2003)016<0834:TMCAIR>2.0.CO;2 – ident: ref100 doi: 10.5194/egusphere-egu23-10963 – ident: ref110 doi: 10.1029/2007GL031911 – ident: ref11 doi: 10.1029/2019MS002010 – ident: ref35 doi: 10.1029/2019MS002033 – ident: ref41 doi: 10.1017/9781009157896.021 – ident: ref93 doi: 10.1002/2013JC009533 – ident: ref59 doi: 10.1029/2019MS002025 – ident: ref89 doi: 10.1007/s10872-022-00641-w – ident: ref91 doi: 10.1029/2020PA003872 – ident: ref79 doi: 10.1002/jgrc.20069 – ident: ref109 doi: 10.1038/nature04744 – ident: ref26 – ident: ref40 doi: 10.1002/2016GL068406 – ident: ref47 doi: 10.5194/cp-12-663-2016 – ident: ref92 – ident: ref14 doi: 10.1073/pnas.1809600115 – ident: ref114 doi: 10.1175/1520-0485(2004)034<1232:AIOOWV>2.0.CO;2 – ident: ref39 doi: 10.5670/oceanog.2005.01 – ident: ref38 doi: 10.1016/j.dynatmoce.2009.12.002 – ident: ref69 doi: 10.1144/TMS002.13 – ident: ref64 – ident: ref66 doi: 10.5194/cp-16-183-2020 – ident: ref13 doi: 10.1016/j.epsl.2016.03.010 – ident: ref28 doi: 10.5194/cp-12-1519-2016 – ident: ref17 doi: 10.1073/pnas.1714308114 – ident: ref45 doi: 10.5194/cp-9-191-2013 – ident: ref55 doi: 10.1038/s41597-022-01739-y – ident: ref56 doi: 10.5194/cp-17-1065-2021 – ident: ref75 doi: 10.1038/ngeo2194 – ident: ref113 doi: 10.5194/cp-19-61-2023 – ident: ref84 doi: 10.1098/rsta.2008.0200 – ident: ref108 doi: 10.1175/JCLI4258.1 – ident: ref30 doi: 10.1175/2010JPO4380.1 – ident: ref42 doi: 10.5194/cp-17-2537-2021 – ident: ref57 doi: 10.5194/cp-12-1619-2016 – ident: ref76 doi: 10.5194/cp-17-2427-2021 – ident: ref67 doi: 10.1007/s00382-017-4043-9 – ident: ref95 doi: 10.1038/ngeo2188 – ident: ref85 doi: 10.1016/j.palaeo.2021.110447 – ident: ref19 doi: 10.5194/cp-13-919-2017 – ident: ref50 doi: 10.1080/02626667.2015.1057513 – ident: ref124 doi: 10.5194/cp-17-529-2021 – ident: ref52 doi: 10.1007/s00382-012-1343-y – ident: ref115 – ident: ref88 doi: 10.5194/gmd-13-3011-2020 – ident: ref105 doi: 10.1029/2019PA003744 – ident: ref29 doi: 10.1098/rsta.2012.0524 – ident: ref34 doi: 10.1186/s40562-018-0102-2 – ident: ref72 doi: 10.5194/cp-16-1599-2020 – ident: ref80 doi: 10.1175/1520-0493(1968)096<0365:ROATMC>2.0.CO;2 – ident: ref12 doi: 10.5194/cp-11-605-2015 – ident: ref43 doi: 10.5194/gmd-3-227-2010 – ident: ref5 doi: 10.1175/JCLI-D-14-00545.1 – ident: ref16 doi: 10.1038/35075500 – ident: ref31 |
SSID | ssj0048195 |
Score | 2.4034278 |
Snippet | The Maritime Continent (MC) forms the western boundary of the tropical Pacific Ocean, and relatively small changes in this region can impact the climate... |
SourceID | doaj swepub hal proquest gale crossref |
SourceType | Open Website Open Access Repository Aggregation Database |
StartPage | 2053 |
SubjectTerms | Anomalies Atmosphere Atmospheric models Carbon dioxide Climate Climate change Cluster analysis Continental interfaces, environment El Nino Geography Heat Hydrologic cycle Hydrological cycle Hydrology Indonesian Throughflow Intercomparison Marine transportation Modelling Ocean Ocean circulation Ocean currents Ocean, Atmosphere Oceans Pliocene Precipitation Salinity Sciences of the Universe Sea surface Sea surface temperature Sea surface temperature anomalies Shelving Simulation Surface salinity Surface temperature Temperature anomalies Volume transport Water circulation |
SummonAdditionalLinks | – databaseName: Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELagJy6Ip1goyKp4XaLGjp043JZCtUUsqoCi3ixnbNNI2-wqySL13zN2stXmxIVjPI7lzExmvknsz4S8zjgI5kufGAx2CeZjk1RSZAlCZ4-APAdXxVW-3_LFhfhyKS_3jvoKa8IGeuBBccelyh14k1krnKhsWqVWeukUxl7vQQ5b91K-K6aGGCzC36FQaikmEkQoYiD1QbQijmGTsBKdQ-KEUp5N8lGk7b8NznevwtrIfeC5TyYaE9DpA3J_RI50Psz4IbnjmkdktkTQu27jt3H6lp6sakSg8eoxuUYXoFc3tt3FNwo3eCc1jaWYtUxDoW5hPL6Lrj1FLEiXJrAcXTsaaKsQgTY9rZsoOV_VeFfjPlCs0LervqNha0psXp6d8yfk4vTzz5NFMp6ukBjJZZ_I1EtTeMUAlSsBbMGzAkoQIvNKMAXGF97mYDEklljHMOk9igABFC8Kn2dPyUGzbtwzQhVAWlmGw6VOWM-UMlgHMY_YocoVczPyfqdjvRlINDQWH8EcGjaalTqYQwdzzMjHYIPbboH9OjagT-jRJ_S_fGJGjoIFdeC3aMICmt9m23X67Md3PS8KDFtZnhYz8m7s5Nd9a8CM-xHwkQIl1qTn4aQnvoAwER-ho0xmvJh_1aEtFKioOfaH4Rg7P9JjlOg0V4qhPJcofjP41mSYT_WveXzwbqs54syMP_8f6nlB7gVVhwzM80Ny0Ldb9xKhVV-9im_RX8OqHwQ priority: 102 providerName: Directory of Open Access Journals |
Title | The hydrological cycle and ocean circulation of the Maritime Continent in the Pliocene: results from PlioMIP2 |
URI | https://www.proquest.com/docview/2881650651 https://hal.science/hal-04265011 https://urn.kb.se/resolve?urn=urn:nbn:se:su:diva-227332 https://doaj.org/article/986ecfa3dd4e4bd0b0d5f5e8130ffc59 |
Volume | 19 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3fb9MwELZY9wAvCAaIjDFZE79eosWOnTi8oG5s6hCdqsHQ3izHjtdIXVKSFKn_PefUHcsLj7Xdk-M7333nON8h9C6mmhGb2VCBswshHqsw5ywOATpbAOSJLvL-lu9lMrlm3274jT9wa_21yq1P7B21qbU7Iz-mQhBAEwknX5a_Q1c1yr1d9SU0dtAuJbEQI7R7cnY5u9r6YubeErmUSxAWAlJhG3IfQC3sWC9DkoGRcJhYRONBXOrp---d9M7c3ZF8CEAfkor2gej8GXrqESQeb1T-HD0qqj302Bczn6_3UDAFIFw3_Xk5_oBPFyWg0v7XC3QHZoHna9NsfR7Wa5CCVWUwRDJVYV022pf0wrXFgA_xVDnmo7sCOyorQKVVh8uq75ktSvhXVXzGkLWvFl2L3ecqffP0YkZfouvzs5-nk9BXXAgVp7wLeWS5Sq0gWsWGa21SGqc604zFVjAitLKpNYk24CYzyG0Itxa6NIAqmqY2iV-hUVVXxWuEhdZRbgiIiwpmLBFCQW5ELOCJPBGkCNCn7XrL5YZYQ0JC4lQj9VKSTDrVSKeaAJ04fdwPc4zYfUPd3Eq_wWQmkkJbmLZhBctNlEeGW14IiNHWap4F6MhpUzrOi8pdqrlVq7aVFz-u5DhNwZXFSZQG6KMfZOuuUVr5bxTgkRxN1mDkwWAkbEo96D4CoxnMeDL-Ll2bS1ph5cgfAjK2NiW952jlPzsP0PuNnQ3EfC1_jfsHb1eSAvaM6f7_xbxBT9wiunhLkwM06ppV8RaAVJcf-t1y2B9E_AVaKhsF |
link.rule.ids | 230,314,780,784,864,885,2102,21388,27924,27925,33744,43805,74302 |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3fb9MwELZY9zBe0BggMgZYE79eosWJnTi8oG5saqGtqrGhvVmOHa-VuqRLUqT-95xTdywvPNZ2T47vfPed43yH0IcoVJSY1PgSnJ0P8Vj6GaORD9DZACCPVZ61t3wn8eCa_rhhN-7ArXbXKrc-sXXUulT2jPwk5JwAmogZ-ba8923VKPt21ZXQ2EG7ljmd9dDu6flkern1xdS-JbIpFyfUB6RCN-Q-gFroiVr6JAUjYTCxIIw6caml739w0jsze0fyMQB9TCraBqKLffTMIUjc36j8OXqSFwdozxUzn60PkDcGIFxW7Xk5_oTPFnNApe2vF-gOzALP1rra-jys1iAFy0JjiGSywGpeKVfSC5cGAz7EY2mZj-5ybKmsAJUWDZ4Xbc90MYd_FflXDFn7atHU2H6u0jaPh9PwJbq-OL86G_iu4oIvWcganwWGycRwomSkmVI6CaNEpYrSyHBKuJImMTpWGtxkCrkNYcZAlwJQFSaJiaNXqFeURf4aYa5UkGkC4oKcakM4l5AbEQN4Ios5yT30ZbveYrkh1hCQkFjVCLUUJBVWNcKqxkOnVh8PwywjdttQVrfCbTCR8jhXBqataU4zHWSBZoblHGK0MYqlHjq22hSW86Kwl2pu5aquxfDXpegnCbiyKA4SD312g0zZVFJJ940CPJKlyeqMPOqMhE2pOt3HYDSdGQ_6I2HbbNIKK0f-EJCxtSnhPEct_tm5hz5u7Kwj5vv8d7998HolQsCeUXj4fzHv0d7gajwSo-Hk5xv01C6ojb1hfIR6TbXK3wKoarJ3buf8BQ0CHPg |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3db9MwELdYJwEvCAZogQHWxNdL1DixE4cX1H1ULaxVNRjam-XY8VqpS0qSIvW_55y6Y3nhMbZzcnznu9_F5zuE3kehosSkxpeg7Hywx9LPGI18gM4GAHms8qyN8p3Goyv67Zpdu_in2oVV7nRiq6h1qew_8n7IOQE0ETPSNy4sYnY2_Lr67dsKUvak1ZXT2EP7YBWDsIf2T86ns8udXqb2xMi6X5xQH1AL3Sb6AQRD-2rlkxQEhsEkgzDq2Kg2lf-dwt6b23jJ-2D0foLR1igNn6InDk3iwZb9z9CDvDhAj1xh8_nmAHkTAMVl1f47xx_x6XIBCLV9eo5uQUTwfKOrnf7DagNUsCw0BqsmC6wWlXLlvXBpMGBFPJE2C9Jtjm1aK0CoRYMXRdszWy7grSL_gsGDXy-bGturK23zZDwLX6Cr4fnP05Hvqi_4koWs8VlgmEwMJ0pGmimlkzBKVKoojQynhCtpEqNjpUFlpuDnEGYMdCkAWGGSmDh6iXpFWeSHCHOlgkwTIBfkVBvCuQQ_iRjAFlnMSe6hz7v1Fqttkg0BzolljVArQVJhWSMsazx0YvlxN8xmx24byupGuM0mUh7nysC0Nc1ppoMs0MywnIO9Nkax1EPHlpvC5r8orCTdyHVdi_GPSzFIElBrURwkHvrkBpmyqaSS7r4CfJJNmdUZedQZCRtUdbqPQWg6Mx4NLoRtsw4srBz5Q4DGTqaE0yK1-CfzHvqwlbMOmbPFr0H74fVahIBDo_DV_8m8Qw9h04iL8fT7a_TYrqc1w2F8hHpNtc7fAL5qsrdu4_wFjCkhJQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+hydrological+cycle+and+ocean+circulation+of+the+Maritime+Continent+in+the+Pliocene%3A+results+from+PlioMIP2&rft.jtitle=Climate+of+the+past&rft.au=Ren%2C+Xin&rft.au=Lunt%2C+Daniel+J&rft.au=Hendy%2C+Erica&rft.au=von+der+Heydt%2C+Anna&rft.date=2023-10-26&rft.pub=Copernicus+GmbH&rft.issn=1814-9332&rft.volume=19&rft.issue=10&rft.spage=2053&rft_id=info:doi/10.5194%2Fcp-19-2053-2023&rft.externalDocID=A770403607 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1814-9332&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1814-9332&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1814-9332&client=summon |