Modeling and control of engines and drivelines

Control systems have come to play an important role in the performance of modern vehicles with regards to meeting goals on low emissions and low fuel consumption. To achieve these goals, modeling, simulation, and analysis have become standard tools for the development of control systems in the autom...

Full description

Saved in:
Bibliographic Details
Main Authors Eriksson, Lars, Nielsen, Lars
Format eBook Book
LanguageEnglish
Published Chichester Wiley 2014
John Wiley & Sons
John Wiley & Sons, Incorporated
Wiley-Blackwell
John Wiley & Sons Ltd
Edition1st ed.
SeriesAutomotive series
Subjects
Online AccessGet full text

Cover

Loading…
Table of Contents:
  • 10.8.4 Turbo and Knock Control
  • 8.10 Example-Turbocharged Diesel Engine -- Chapter 9 Engine Management Systems-An Introduction -- 9.1 Engine Management System (EMS) -- 9.1.1 EMS Building Blocks -- 9.1.2 System for Crank and Time-Based Events -- 9.2 Basic Functionality and Software Structure -- 9.2.1 Torque Based Structure -- 9.2.2 Special Modes and Events -- 9.2.3 Automatic Code Generation and Information Exchange -- 9.3 Calibration and Parameter Representation -- 9.3.1 Engine Maps -- 9.3.2 Model-Based Development -- Chapter 10 Basic Control of SI Engines -- 10.1 Three Basic SI Engine Controllers -- 10.1.1 Production System Example -- 10.1.2 Basic Control Using Maps -- 10.1.3 Torque, Air Charge, and Pressure Control -- 10.1.4 Pressure Set Point from Simple Torque Model -- 10.1.5 Set Points from Full Torque Model -- 10.1.6 Pressure Control -- 10.2 Throttle Servo -- 10.2.1 Throttle Control Based on Exact Linearization -- 10.3 Fuel Management and λ Control -- 10.3.1 Feedforward and Feedback λ Control Structure -- 10.3.2 Feedforward λ Control with Basic Fuel Metering -- 10.3.3 Feedback λ Control -- 10.3.4 Fuel Dynamics and Injector Compensation -- 10.3.5 Observer Based λ Control and Adaption -- 10.3.6 Dual and Triple Sensor λ Control -- 10.4 Other Factors that Influence λ Control -- 10.4.1 Full Load Enrichment -- 10.4.2 Engine Overspeed and Overrun -- 10.4.3 Support Systems that Influence Air and Fuel Calculation -- 10.4.4 Cold Start Enrichment -- 10.4.5 Individual Cylinder λ-control -- 10.5 Ignition Control -- 10.5.1 Knock Control-Feedback Control -- 10.5.2 Ignition Energy-Dwell Time Control -- 10.5.3 Long-term Torque, Short-term Torque, and Torque Reserve -- 10.6 Idle Speed Control -- 10.7 Torque Management and Idle Speed Control -- 10.8 Turbo Control -- 10.8.1 Compressor Anti-surge Control -- 10.8.2 Boost Pressure Control -- 10.8.3 Boost Pressure Control with Gain Scheduling
  • 7.8.5 Engine Torque Generation -- 7.9 Mean Value Model for Engine Torque -- 7.9.1 Gross Indicated Work -- 7.9.2 Pumping Work -- 7.9.3 Engine Friction -- 7.9.4 Time Delays in Torque Production -- 7.9.5 Crankshaft Dynamics -- 7.10 Engine-Out Temperature -- 7.11 Heat Transfer and Exhaust Temperatures -- 7.11.1 Temperature Change in a Pipe -- 7.11.2 Heat Transfer Modes in Exhaust Systems -- 7.11.3 Exhaust System Temperature Models -- 7.12 Heat Exchangers and Intercoolers -- 7.12.1 Heat Exchanger Modeling -- 7.13 Throttle Plate Motion -- 7.13.1 Model for Throttle with Throttle Servo -- Chapter 8 Turbocharging Basics and Models -- 8.1 Supercharging and Turbocharging Basics -- 8.2 Turbocharging Basic Principles and Performance -- 8.2.1 Turbochargers in Mean Value Engine Models -- 8.2.2 First Law Analysis of Compressor Performance -- 8.2.3 First Law Analysis of Turbine Performance -- 8.2.4 Connecting the Turbine and Compressor -- 8.2.5 Intake Air Density Increase -- 8.3 Dimensional Analysis -- 8.3.1 Compressible Fluid Analysis -- 8.3.2 Model Structure with Corrected Quantities -- 8.4 Compressor and Turbine Performance Maps -- 8.4.1 The Basic Compressor Map -- 8.4.2 The Basic Turbine Map -- 8.4.3 Measurement Procedures for determining Turbo Maps -- 8.4.4 Turbo Performance Calculation Details -- 8.4.5 Heat Transfer and Turbine Efficiency -- 8.5 Turbocharger Models and Parametrizations -- 8.5.1 Map Interpolation Models -- 8.6 Compressor Operation and Modeling -- 8.6.1 Physical Modeling of a Compressor -- 8.6.2 Compressor Efficiency Models -- 8.6.3 Compressor Flow Models -- 8.6.4 Compressor Choke -- 8.6.5 Compressor Surge -- 8.7 Turbine Operation and Modeling -- 8.7.1 Turbine Mass Flow -- 8.7.2 Turbine Efficiency -- 8.7.3 Variable Geometry Turbine -- 8.8 Transient Response and Turbo Lag -- 8.9 Example-Turbocharged SI Engine
  • 3.3.1 Propagation of Torque Demands and Torque Commands -- 3.3.2 Torque-Based Propulsion Control-Driver Interpretation -- 3.3.3 Torque-Based Propulsion Control-Vehicle Demands -- 3.3.4 Torque-Based Propulsion Control-Driveline management -- 3.3.5 Torque-Based Propulsion Control-Driveline-Engine Integration -- 3.3.6 Handling of Torque Requests-Torque Reserve and Interventions -- 3.4 Hybrid Powertrains -- 3.4.1 ICE Handling -- 3.4.2 Motor Handling -- 3.4.3 Battery Management -- 3.5 Outlook and Simulation -- 3.5.1 Simulation Structures -- 3.5.2 Drive/Driving Cycle -- 3.5.3 Forward Simulation -- 3.5.4 Quasi-Static Inverse Simulation -- 3.5.5 Tracking -- 3.5.6 Inverse Dynamic Simulation -- 3.5.7 Usage and Requirements -- 3.5.8 Same Model Blocks Regardless of Method -- Part II Engine-Fundamentals -- Chapter 4 Engine-Introduction -- 4.1 Air, Fuel, and Air/Fuel Ratio -- 4.1.1 Air -- 4.1.2 Fuels -- 4.1.3 Stoichiometry and (A/F) Ratio -- 4.2 Engine Geometry -- 4.3 Engine Performance -- 4.3.1 Power, Torque, and Mean Effective Pressure -- 4.3.2 Efficiency and Specific Fuel Consumption -- 4.3.3 Volumetric Efficiency -- 4.4 Downsizing and Turbocharging -- 4.4.1 Supercharging and Turbocharging -- Chapter 5 Thermodynamics and Working Cycles -- 5.1 The Four-Stroke Cycle -- 5.1.1 Important Engine Events in the Cycle -- 5.2 Thermodynamic Cycle Analysis -- 5.2.1 Ideal Models of Engine Processes -- 5.2.2 Derivation of Cycle Efficiencies -- 5.2.3 Gas Exchange and Pumping Work -- 5.2.4 Residual Gases and Volumetric Efficiency for Ideal Cycles -- 5.3 Efficiency of Ideal Cycles -- 5.3.1 Load, Pumping Work, and Efficiency -- 5.3.2 (A/F) Ratio and Efficiency -- 5.3.3 Differences between Ideal and Real Cycles -- 5.4 Models for In-Cylinder Processes -- 5.4.1 Single-Zone Models -- 5.4.2 Heat Release and Mass Fraction Burned Analysis
  • 5.4.3 Characterization of Mass Fraction Burned -- 5.4.4 More Single-Zone Model Components -- 5.4.5 A Single-zone Cylinder Pressure Model -- 5.4.6 Multi-zone Models -- 5.4.7 Applications for Zero-dimensional Models -- Chapter 6 Combustion and Emissions -- 6.1 Mixture Preparation and Combustion -- 6.1.1 Fuel Injection -- 6.1.2 Comparing the SI and CI Combustion Process -- 6.2 SI Engine Combustion -- 6.2.1 SI Engine Cycle-to-Cycle Variations -- 6.2.2 Knock and Autoignition -- 6.2.3 Autoignition and Octane Number -- 6.3 CI Engine Combustion -- 6.3.1 Autoignition and Cetane Number -- 6.4 Engine Emissions -- 6.4.1 General Trends for Emission Formation -- 6.4.2 Pollutant Formation in SI Engines -- 6.4.3 Pollutant Formation in CI Engines -- 6.5 Exhaust Gas Treatment -- 6.5.1 Catalyst Efficiency, Temperature, and Light-Off -- 6.5.2 SI Engine Aftertreatment, TWC -- 6.5.3 CI Engine Exhaust Gas Treatment -- 6.5.4 Emission Reduction and Controls -- Part III Engine-Modeling and Control -- Chapter 7 Mean Value Engine Modeling -- 7.1 Engine Sensors and Actuators -- 7.1.1 Sensor, System, and Actuator Responses -- 7.1.2 Engine Component Modeling -- 7.2 Flow Restriction Models -- 7.2.1 Incompressible Flow -- 7.2.2 Compressible Flow -- 7.3 Throttle Flow Modeling -- 7.3.1 Throttle Area and Discharge Coefficient -- 7.4 Mass Flow Into the Cylinders -- 7.4.1 Models for Volumetric Efficiency -- 7.5 Volumes -- 7.6 Example-Intake Manifold -- 7.7 Fuel Path and (A/F) Ratio -- 7.7.1 Fuel Pumps, Fuel Rail, Injector Feed -- 7.7.2 Fuel Injector -- 7.7.3 Fuel Preparation Dynamics -- 7.7.4 Gas Transport and Mixing -- 7.7.5 A/F Sensors -- 7.7.6 Fuel Path Validation -- 7.7.7 Catalyst and Post-Catalyst Sensor -- 7.8 In-Cylinder Pressure and Instantaneous Torque -- 7.8.1 Compression Asymptote -- 7.8.2 Expansion Asymptote -- 7.8.3 Combustion -- 7.8.4 Gas Exhange and Model Compilation
  • Cover -- Title Page -- Copyright -- Contents -- Preface -- Series Preface -- Part I Vehicle-Propulsion Fundamentals -- Chapter 1 Introduction -- 1.1 Trends -- 1.1.1 Energy and Environment -- 1.1.2 Downsizing -- 1.1.3 Hybridization -- 1.1.4 Driver Support Systems and Optimal Driving -- 1.1.5 Engineering Challenges -- 1.2 Vehicle Propulsion -- 1.2.1 Control Enabling Optimal Operation of Powertrains -- 1.2.2 Importance of Powertrain Modeling and Models -- 1.2.3 Sustainability of Model Knowledge -- 1.3 Organization of the Book -- Chapter 2 Vehicle -- 2.1 Vehicle Propulsion Dynamics -- 2.2 Driving Resistance -- 2.2.1 Aerodynamic Drag -- 2.2.2 Cooling Drag and Active Air-Shutters -- 2.2.3 Air Drag When Platooning -- 2.2.4 Rolling Resistance-Physical Background -- 2.2.5 Rolling Resistance-Modeling -- 2.2.6 Wheel Slip (Skid) -- 2.2.7 Rolling Resistance-Including Thermal Modeling -- 2.2.8 Gravitation -- 2.2.9 Relative Size of Components -- 2.3 Driving Resistance Models -- 2.3.1 Models for Driveline Control -- 2.3.2 Standard Driving Resistance Model -- 2.3.3 Modeling for Mission Analysis -- 2.4 Driver Behavior and Road Modeling -- 2.4.1 Simple Driver Model -- 2.4.2 Road Modeling -- 2.5 Mission Simulation -- 2.5.1 Methodology -- 2.6 Vehicle Characterization/Characteristics -- 2.6.1 Performance Measures -- 2.7 Fuel Consumption -- 2.7.1 Energy Density Weight -- 2.7.2 From Tank to Wheel-Sankey Diagram -- 2.7.3 Well-to-Wheel Comparisons -- 2.8 Emission Regulations -- 2.8.1 US and EU Driving Cycles and Regulations -- Chapter 3 Powertrain -- 3.1 Powertrain Architectures -- 3.1.1 Exhaust Gas Energy Recovery -- 3.1.2 Hybrid Powertrains -- 3.1.3 Electrification -- 3.2 Vehicle Propulsion Control -- 3.2.1 Objectives of Vehicle Propulsion Control -- 3.2.2 Implementation Framework -- 3.2.3 Need for a Control Structure -- 3.3 Torque-Based Powertrain Control