Bayesian Formal Synthesis of Unknown Systems via Robust Simulation Relations

This paper addresses the problem of data-driven computation of controllers that are correct by design for safety-critical systems and can provably satisfy (complex) functional requirements. With a focus on continuous-space stochastic systems with parametric uncertainty, we propose a two-stage approa...

Full description

Saved in:
Bibliographic Details
Published inarXiv.org
Main Authors Schön, Oliver, Birgit van Huijgevoort, Haesaert, Sofie, Soudjani, Sadegh
Format Paper Journal Article
LanguageEnglish
Published Ithaca Cornell University Library, arXiv.org 12.02.2024
Subjects
Online AccessGet full text

Cover

Loading…
Abstract This paper addresses the problem of data-driven computation of controllers that are correct by design for safety-critical systems and can provably satisfy (complex) functional requirements. With a focus on continuous-space stochastic systems with parametric uncertainty, we propose a two-stage approach that decomposes the problem into a learning stage and a robust formal controller synthesis stage. The first stage utilizes available Bayesian regression results to compute robust credible sets for the true parameters of the system. For the second stage, we introduce methods for systems subject to both stochastic and parametric uncertainties. We provide simulation relations for enabling correct-by-design control refinement that are founded on coupling uncertainties of stochastic systems via sub-probability measures. The presented relations are essential for constructing abstract models that are related to not only one model but to a set of parameterized models. The results are demonstrated on three case studies, including a nonlinear and a high-dimensional system.
AbstractList This paper addresses the problem of data-driven computation of controllers that are correct by design for safety-critical systems and can provably satisfy (complex) functional requirements. With a focus on continuous-space stochastic systems with parametric uncertainty, we propose a two-stage approach that decomposes the problem into a learning stage and a robust formal controller synthesis stage. The first stage utilizes available Bayesian regression results to compute robust credible sets for the true parameters of the system. For the second stage, we introduce methods for systems subject to both stochastic and parametric uncertainties. We provide simulation relations for enabling correct-by-design control refinement that are founded on coupling uncertainties of stochastic systems via sub-probability measures. The presented relations are essential for constructing abstract models that are related to not only one model but to a set of parameterized models. The results are demonstrated on three case studies, including a nonlinear and a high-dimensional system.
This paper addresses the problem of data-driven computation of controllers that are correct by design for safety-critical systems and can provably satisfy (complex) functional requirements. With a focus on continuous-space stochastic systems with parametric uncertainty, we propose a two-stage approach that decomposes the problem into a learning stage and a robust formal controller synthesis stage. The first stage utilizes available Bayesian regression results to compute robust credible sets for the true parameters of the system. For the second stage, we introduce methods for systems subject to both stochastic and parametric uncertainties. We provide simulation relations for enabling correct-by-design control refinement that are founded on coupling uncertainties of stochastic systems via sub-probability measures. The presented relations are essential for constructing abstract models that are related to not only one model but to a set of parameterized models. The results are demonstrated on three case studies, including a nonlinear and a high-dimensional system.
Author Haesaert, Sofie
Soudjani, Sadegh
Birgit van Huijgevoort
Schön, Oliver
Author_xml – sequence: 1
  givenname: Oliver
  surname: Schön
  fullname: Schön, Oliver
– sequence: 2
  fullname: Birgit van Huijgevoort
– sequence: 3
  givenname: Sofie
  surname: Haesaert
  fullname: Haesaert, Sofie
– sequence: 4
  givenname: Sadegh
  surname: Soudjani
  fullname: Soudjani, Sadegh
BackLink https://doi.org/10.48550/arXiv.2304.07428$$DView paper in arXiv
https://doi.org/10.1109/TAC.2024.3459308$$DView published paper (Access to full text may be restricted)
BookMark eNotj1FLwzAUhYMoOOd-gE8GfO5Mb3LT9FGHU2EgbPO5XLcEO9dkNu1c_7118-kcDofD-a7YuQ_eMnaTirEyiOKe6kO5H4MUaiwyBeaMDUDKNDEK4JKNYtwIIUBngCgHbPZInY0leT4NdUVbvuh889knkQfH3_2XDz--D2Njq8j3JfF5-Ghjwxdl1W6pKYPnc3sy8ZpdONpGO_rXIVtOn5aTl2T29vw6eZglhIAJOrtCACclrbRbpaQyoxzhWpq1ztZIeYqQozEWtHEGMi1ylMopleWObCqH7PY0e0QtdnVZUd0Vf8jFEblv3J0auzp8tzY2xSa0te8_FWB6eJ2jRvkLCnpa1g
ContentType Paper
Journal Article
Copyright 2024. This work is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
http://creativecommons.org/licenses/by-nc-nd/4.0
Copyright_xml – notice: 2024. This work is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: http://creativecommons.org/licenses/by-nc-nd/4.0
DBID 8FE
8FG
ABJCF
ABUWG
AFKRA
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
HCIFZ
L6V
M7S
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
AKY
GOX
DOI 10.48550/arxiv.2304.07428
DatabaseName ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
Technology Collection
ProQuest One Community College
ProQuest Central Korea
SciTech Premium Collection
ProQuest Engineering Collection
Engineering Database (Proquest)
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering collection
arXiv Computer Science
arXiv.org
DatabaseTitle Publicly Available Content Database
Engineering Database
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
ProQuest One Academic UKI Edition
ProQuest Central Korea
Materials Science & Engineering Collection
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
Engineering Collection
DatabaseTitleList Publicly Available Content Database

Database_xml – sequence: 1
  dbid: GOX
  name: arXiv.org
  url: http://arxiv.org/find
  sourceTypes: Open Access Repository
– sequence: 2
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 2331-8422
ExternalDocumentID 2304_07428
Genre Working Paper/Pre-Print
GroupedDBID 8FE
8FG
ABJCF
ABUWG
AFKRA
ALMA_UNASSIGNED_HOLDINGS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
FRJ
HCIFZ
L6V
M7S
M~E
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
AKY
GOX
ID FETCH-LOGICAL-a525-5fec522f33ac6fc1a4784fa5d38d67d5a91529588e268f827609534f4479fae13
IEDL.DBID BENPR
IngestDate Tue Jul 22 23:31:29 EDT 2025
Mon Jun 30 09:26:25 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a525-5fec522f33ac6fc1a4784fa5d38d67d5a91529588e268f827609534f4479fae13
Notes SourceType-Working Papers-1
ObjectType-Working Paper/Pre-Print-1
content type line 50
OpenAccessLink https://www.proquest.com/docview/2802669565?pq-origsite=%requestingapplication%
PQID 2802669565
PQPubID 2050157
ParticipantIDs arxiv_primary_2304_07428
proquest_journals_2802669565
PublicationCentury 2000
PublicationDate 20240212
PublicationDateYYYYMMDD 2024-02-12
PublicationDate_xml – month: 02
  year: 2024
  text: 20240212
  day: 12
PublicationDecade 2020
PublicationPlace Ithaca
PublicationPlace_xml – name: Ithaca
PublicationTitle arXiv.org
PublicationYear 2024
Publisher Cornell University Library, arXiv.org
Publisher_xml – name: Cornell University Library, arXiv.org
SSID ssj0002672553
Score 1.8626856
SecondaryResourceType preprint
Snippet This paper addresses the problem of data-driven computation of controllers that are correct by design for safety-critical systems and can provably satisfy...
This paper addresses the problem of data-driven computation of controllers that are correct by design for safety-critical systems and can provably satisfy...
SourceID arxiv
proquest
SourceType Open Access Repository
Aggregation Database
SubjectTerms Bayesian analysis
Computer Science - Logic in Computer Science
Computer Science - Systems and Control
Robust control
Safety critical
Statistical analysis
Stochastic systems
Temporal logic
Uncertainty
SummonAdditionalLinks – databaseName: arXiv.org
  dbid: GOX
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwdV3PS8MwFH5sO3kRRWXTKTl4jdo0adOjilPEH-A22K0kaQIF7WTdhvvvzUs7PYjXkubwEvJ9Ly_v-wDODXeZBy5H0c6Y8qhgVDMsIRqfbZjM8lhjN_LzS_Iw5Y8zMesA2fbCqMVXuW70gXV9iTeWF5i9yS50GcMnW_evs6Y4GaS42vG_4zzHDJ_-HK0BL0Z7sNsSPXLdrMw-dGx1AE83amOxbZGMkCu-k_Gm8gysLmsyd2Ra4Q1XRVoVcbIuFXmb61W9JOPyo_XZIj_P1w5hMrqb3D7Q1s-AKsEEFc4az3ZcHCuTOBMpnkrulChiWSRpIVQWYdVNSssS6SRLgxYcd5ynmVM2io-gV80r2wdiYhfsobVCeNZ-Hm210AzJgXDsagD9EIX8s5GsyDFAeQjQAIbbwOTtdq1zJn0qlvhUSRz__-cJ7DCP6DS4oQyht1ys7KlH5KU-C8vyDVXcilE
  priority: 102
  providerName: Cornell University
Title Bayesian Formal Synthesis of Unknown Systems via Robust Simulation Relations
URI https://www.proquest.com/docview/2802669565
https://arxiv.org/abs/2304.07428
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3Na8IwFA-bMthtn-jmJIddM9c0adPTwGGVMZ34Ad5KkiYgbK2zKvOyv31JrO4w2CWQBHJ4Ce_93kfeD4B7SXRkDJdGls4YES_FSGCbQpTG25CRIr6wv5H7g6A3JS8zOisDbkVZVrnXiU5Rp7m0MfIWZsZbCAyap0-LT2RZo2x2taTQOAZVo4KZcb6q7c5gODpEWXAQGszs79KZrnlXiy-_5htb_0werF_IDCp1S3-UsbMw8RmoDvlCLc_BkcouwIkrzJTFJXht862yHx1hbNHlOxxvM4PZinkBcw2nmY2JZbDsOw43cw5HuVgXKzief5TMXPBQ8HYFJnFn8txDJQMC4hRTRLWSBh9p3-cy0NLjJGREc5r6LA3ClPLIs3k6xhQOmGY4dN3jiCYkjDRXnn8NKlmeqRqA0teOUFpwa9CFOUcoQQW2cIJq_FgHNSeFZLFrcpFYASVOQHXQ2AsmKR94kfxex83_27fgFBscgByHSgNUVsu1ujN2fCWa4JjF3WZ5ZWbWfZuZsf_d-QG2D5-O
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LSwMxEB60InrzidWqOehx1eaxmz2I4KNWrSJawduSZBMo6LZ266M_yv9oJm31IHjzmkAOM8nkm-cHsGO4S_3H5SKkM454PaeRpphCNN7bMKnlTGM38vVN3Hzgl4_icQo-J70wWFY5sYnBUOddgzHyfSq9txB7NC-Oei8RskZhdnVCoTG6Fld2-O5dtvLw4tTrd5fSxln7pBmNWQUiJaiIhLPGYw7HmDKxM3XFE8mdEjmTeZzkQqV1zH1JaWksnaRJmMjGHedJ6pStM3_sNMxwxlJ8ULJx_h3SoXHiATob5U7DpLB91f_ovGGxNd9DJ1R6CByWfln-8J01FmDmVvVsfxGmbLEEs6EK1JTL0DpWQ4tdlaSBUPaJ3A8LDxDLTkm6jjwUGIAryHjIOXnrKHLX1a_lgNx3nsc0YOS7um4F2v8hmFWoFN3CrgExzAX2aq0QPWh_jrZaaIrYRTh6UIW1IIWsN5qokaGAsiCgKtQmgsnGr6nMfnS__vf2Nsw129etrHVxc7UB89QDkCiQt9SgMui_2k0PIAZ6K6iNQPbP1-QL4vDV7A
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Bayesian+Formal+Synthesis+of+Unknown+Systems+via+Robust+Simulation+Relations&rft.jtitle=arXiv.org&rft.au=Sch%C3%B6n%2C+Oliver&rft.au=Birgit+van+Huijgevoort&rft.au=Haesaert%2C+Sofie&rft.au=Soudjani%2C+Sadegh&rft.date=2024-02-12&rft.pub=Cornell+University+Library%2C+arXiv.org&rft.eissn=2331-8422&rft_id=info:doi/10.48550%2Farxiv.2304.07428