Impact of biochar and hydrochar addition on water retention and water repellency of sandy soil
Application of biochar (BC) and hydrochar (HTC) in soils is being increasingly discussed as a means to sequestrate carbon and improve chemical and physical properties for plant growth. Especially the impact on physical properties is not well investigated so far. We study the impacts of biochar (BC)...
Saved in:
Published in | Geoderma Vol. 202-203; pp. 183 - 191 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
01.07.2013
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Application of biochar (BC) and hydrochar (HTC) in soils is being increasingly discussed as a means to sequestrate carbon and improve chemical and physical properties for plant growth. Especially the impact on physical properties is not well investigated so far.
We study the impacts of biochar (BC) and hydrochar (HTC) on water retention characteristics (WRC) as well as on the wettability of sandy soils, using lab and field studies. Sandy soils with different amounts of organic matter were mixed with BCz (feedstock maize) and HTC (feedstock maize silage). Added amounts were 1, 2.5, and 5wt.%, respectively. The mixtures were packed in 100cm3 soil columns. In a field campaign identical amounts of BCf (feedstock beechwood) were added to the soil. Six months after incorporation undisturbed soil samples were taken. For these field samples available water capacity (AWC) was determined. For the packed soil columns the WRC was measured in the pressure head range from saturation to wilting point (−15,848cm). The extent of water repellency was determined for all samples using the water drop penetration time test.
Addition of biochar leads to a decrease in bulk density, an increase in total pore volume as well as an increase in water content at the permanent wilting point. An increase in AWC could be observed for all sandy substrates used, except for the highly humic sand. Notable differences in the effects on the AWC could be measured among the three chars used. Particle size distribution of the chars as well as their consistency had different impacts on the pore size distribution of the soil matrix.
No direct impact of the chars on the wettability of the soils could be observed. Local spots with hydrophobic character were detected among the samples with hydrochar, attributed to fungal colonisation.
•We determined water retention and wettability of biochar and hydrochar amended soils.•Water retention data is described by unimodal and bimodal retention functions.•We observed an increase in available water capacity due to char amendment.•Water content at permanent wilting point is raised.•We did not observe direct impacts on wettability of soil by char admixture. |
---|---|
AbstractList | Application of biochar (BC) and hydrochar (HTC) in soils is being increasingly discussed as a means to sequestrate carbon and improve chemical and physical properties for plant growth. Especially the impact on physical properties is not well investigated so far. We study the impacts of biochar (BC) and hydrochar (HTC) on water retention characteristics (WRC) as well as on the wettability of sandy soils, using lab and field studies. Sandy soils with different amounts of organic matter were mixed with BC sub(z) (feedstock maize) and HTC (feedstock maize silage). Added amounts were 1, 2.5, and 5 wt.%, respectively. The mixtures were packed in 100 cm super(3) soil columns. In a field campaign identical amounts of BC sub(f) (feedstock beechwood) were added to the soil. Six months after incorporation undisturbed soil samples were taken. For these field samples available water capacity (AWC) was determined. For the packed soil columns the WRC was measured in the pressure head range from saturation to wilting point (- 15,848 cm). The extent of water repellency was determined for all samples using the water drop penetration time test. Addition of biochar leads to a decrease in bulk density, an increase in total pore volume as well as an increase in water content at the permanent wilting point. An increase in AWC could be observed for all sandy substrates used, except for the highly humic sand. Notable differences in the effects on the AWC could be measured among the three chars used. Particle size distribution of the chars as well as their consistency had different impacts on the pore size distribution of the soil matrix. No direct impact of the chars on the wettability of the soils could be observed. Local spots with hydrophobic character were detected among the samples with hydrochar, attributed to fungal colonisation. Application of biochar (BC) and hydrochar (HTC) in soils is being increasingly discussed as a means to sequestrate carbon and improve chemical and physical properties for plant growth. Especially the impact on physical properties is not well investigated so far. We study the impacts of biochar (BC) and hydrochar (HTC) on water retention characteristics (WRC) as well as on the wettability of sandy soils, using lab and field studies. Sandy soils with different amounts of organic matter were mixed with BCz (feedstock maize) and HTC (feedstock maize silage). Added amounts were 1, 2.5, and 5wt.%, respectively. The mixtures were packed in 100cm3 soil columns. In a field campaign identical amounts of BCf (feedstock beechwood) were added to the soil. Six months after incorporation undisturbed soil samples were taken. For these field samples available water capacity (AWC) was determined. For the packed soil columns the WRC was measured in the pressure head range from saturation to wilting point (−15,848cm). The extent of water repellency was determined for all samples using the water drop penetration time test. Addition of biochar leads to a decrease in bulk density, an increase in total pore volume as well as an increase in water content at the permanent wilting point. An increase in AWC could be observed for all sandy substrates used, except for the highly humic sand. Notable differences in the effects on the AWC could be measured among the three chars used. Particle size distribution of the chars as well as their consistency had different impacts on the pore size distribution of the soil matrix. No direct impact of the chars on the wettability of the soils could be observed. Local spots with hydrophobic character were detected among the samples with hydrochar, attributed to fungal colonisation. •We determined water retention and wettability of biochar and hydrochar amended soils.•Water retention data is described by unimodal and bimodal retention functions.•We observed an increase in available water capacity due to char amendment.•Water content at permanent wilting point is raised.•We did not observe direct impacts on wettability of soil by char admixture. Application of biochar (BC) and hydrochar (HTC) in soils is being increasingly discussed as a means to sequestrate carbon and improve chemical and physical properties for plant growth. Especially the impact on physical properties is not well investigated so far. We study the impacts of biochar (BC) and hydrochar (HTC) on water retention characteristics (WRC) as well as on the wettability of sandy soils, using lab and field studies. Sandy soils with different amounts of organic matter were mixed with BCz (feedstock maize) and HTC (feedstock maize silage). Added amounts were 1, 2.5, and 5wt.%, respectively. The mixtures were packed in 100cm³ soil columns. In a field campaign identical amounts of BCf (feedstock beechwood) were added to the soil. Six months after incorporation undisturbed soil samples were taken. For these field samples available water capacity (AWC) was determined. For the packed soil columns the WRC was measured in the pressure head range from saturation to wilting point (−15,848cm). The extent of water repellency was determined for all samples using the water drop penetration time test. Addition of biochar leads to a decrease in bulk density, an increase in total pore volume as well as an increase in water content at the permanent wilting point. An increase in AWC could be observed for all sandy substrates used, except for the highly humic sand. Notable differences in the effects on the AWC could be measured among the three chars used. Particle size distribution of the chars as well as their consistency had different impacts on the pore size distribution of the soil matrix. No direct impact of the chars on the wettability of the soils could be observed. Local spots with hydrophobic character were detected among the samples with hydrochar, attributed to fungal colonisation. Application of biochar (BC) and hydrochar (HTC) in soils is being increasingly discussed as a means to sequestrate carbon and improve chemical and physical properties for plant growth. Especially the impact on physical properties is not well investigated so far.We study the impacts of biochar (BC) and hydrochar (HTC) on water retention characteristics (WRC) as well as on the wettability of sandy soils, using lab and field studies. Sandy soils with different amounts of organic matter were mixed with BCz (feedstock maize) and HTC (feedstock maize silage). Added amounts were 1, 2.5, and 5wt.%, respectively. The mixtures were packed in 100cm3 soil columns. In a field campaign identical amounts of BCf (feedstock beechwood) were added to the soil. Six months after incorporation undisturbed soil samples were taken. For these field samples available water capacity (AWC) was determined. For the packed soil columns the WRC was measured in the pressure head range from saturation to wilting point (−15,848cm). The extent of water repellency was determined for all samples using the water drop penetration time test.Addition of biochar leads to a decrease in bulk density, an increase in total pore volume as well as an increase in water content at the permanent wilting point. An increase in AWC could be observed for all sandy substrates used, except for the highly humic sand. Notable differences in the effects on the AWC could be measured among the three chars used. Particle size distribution of the chars as well as their consistency had different impacts on the pore size distribution of the soil matrix.No direct impact of the chars on the wettability of the soils could be observed. Local spots with hydrophobic character were detected among the samples with hydrochar, attributed to fungal colonisation. |
Author | Facklam, Michael Wessolek, Gerd Schonsky, Horst Abel, Stefan Peters, Andre Trinks, Steffen |
Author_xml | – sequence: 1 givenname: Stefan surname: Abel fullname: Abel, Stefan email: stefan.abel@tu-berlin.de – sequence: 2 givenname: Andre surname: Peters fullname: Peters, Andre – sequence: 3 givenname: Steffen surname: Trinks fullname: Trinks, Steffen – sequence: 4 givenname: Horst surname: Schonsky fullname: Schonsky, Horst – sequence: 5 givenname: Michael surname: Facklam fullname: Facklam, Michael – sequence: 6 givenname: Gerd surname: Wessolek fullname: Wessolek, Gerd |
BookMark | eNqNkcFu2zAMhoWhBZp2fYXOx16cUZIlx8AOHYp1C1BghzXXCrRMtwocK5PUDnn7ykt62SUDCAikvp8k-J-zk9GPxNgVhzkHrj-v50_kOwobnAvgcg45QH5gM76oRamFak7YDDJZ1qD5GTuPcZ3TGgTM2ONys0WbCt8XrfP2GUOBY1c877pwyLrOJefHIscfTBSKQInGv6WJfK9taRhotLupU8wfuyJ6N3xkpz0OkS4P7wVb3X17uP1R3v_8vrz9el-iElUqK2ybXgtqUdYgtegbTgtlLaGoSaFCW-keFCdFrW5qQdhjJypeSVu1DbXygl3v-26D__1CMZmNizavhCP5l2i41lJJoTT_D7QSkjeQFzmKKsW1XDSLKqN6j9rgYwzUm21wGww7w8FMNpm1ebfJTDYZyAEyC7_8I7Qu4XTeFNANx-Wf9vIevcGn4KJZ_cqAgmyxbEBk4mZPUL7_q6NgonXZKepcIJtM592xIW-JIr6c |
CitedBy_id | crossref_primary_10_7717_peerj_18748 crossref_primary_10_3382_japr_pfz071 crossref_primary_10_1016_j_geoderma_2022_115826 crossref_primary_10_1111_sum_12781 crossref_primary_10_1007_s11356_015_5520_5 crossref_primary_10_1016_j_wasman_2019_12_029 crossref_primary_10_1016_j_scitotenv_2021_152638 crossref_primary_10_1111_jac_12305 crossref_primary_10_1021_acs_est_9b05864 crossref_primary_10_1016_j_jhydrol_2024_131946 crossref_primary_10_1016_j_geoderma_2017_11_034 crossref_primary_10_3390_agronomy9110758 crossref_primary_10_1016_j_agwat_2024_109170 crossref_primary_10_1016_j_scitotenv_2024_176104 crossref_primary_10_3390_agronomy14112628 crossref_primary_10_1016_j_geoderma_2020_114184 crossref_primary_10_3390_agronomy14112627 crossref_primary_10_1016_j_fuel_2022_127236 crossref_primary_10_3390_hydrology12030044 crossref_primary_10_1016_j_chemosphere_2017_09_066 crossref_primary_10_1016_j_watres_2014_05_026 crossref_primary_10_1016_j_agee_2017_01_025 crossref_primary_10_1038_s41598_023_33466_8 crossref_primary_10_1111_sum_12531 crossref_primary_10_1007_s11600_022_00725_7 crossref_primary_10_1038_s41598_018_33040_7 crossref_primary_10_1007_s10333_015_0521_z crossref_primary_10_1111_sum_12650 crossref_primary_10_1016_j_jiec_2017_08_026 crossref_primary_10_12974_2311_8741_2017_05_01_2 crossref_primary_10_3390_biomass2040014 crossref_primary_10_1007_s12517_021_08242_5 crossref_primary_10_1111_sum_12413 crossref_primary_10_1016_j_agwat_2015_09_017 crossref_primary_10_1016_j_chemosphere_2024_142134 crossref_primary_10_3390_molecules26041026 crossref_primary_10_1016_j_still_2020_104713 crossref_primary_10_1016_j_jclepro_2018_09_037 crossref_primary_10_2139_ssrn_4194413 crossref_primary_10_1007_s13399_021_01346_8 crossref_primary_10_3390_su14020684 crossref_primary_10_1111_gcbb_12933 crossref_primary_10_1038_s41598_022_22149_5 crossref_primary_10_5194_soil_1_475_2015 crossref_primary_10_1007_s00374_014_0982_z crossref_primary_10_1016_j_agee_2017_02_034 crossref_primary_10_1007_s11629_024_9142_6 crossref_primary_10_1007_s13165_018_0217_y crossref_primary_10_1111_gcb_14658 crossref_primary_10_3390_en15249340 crossref_primary_10_1139_cgj_2024_0180 crossref_primary_10_1016_j_geoderma_2014_12_015 crossref_primary_10_1016_j_pedsph_2022_06_058 crossref_primary_10_17660_ActaHortic_2016_1112_48 crossref_primary_10_1007_s00374_014_0980_1 crossref_primary_10_1016_j_scitotenv_2019_03_417 crossref_primary_10_1080_01140671_2022_2079680 crossref_primary_10_25308_aduziraat_405858 crossref_primary_10_3389_fmicb_2019_02423 crossref_primary_10_3390_agronomy12020311 crossref_primary_10_1007_s11368_016_1567_2 crossref_primary_10_1016_j_scitotenv_2018_08_415 crossref_primary_10_3390_agronomy14061288 crossref_primary_10_1016_j_scitotenv_2015_04_005 crossref_primary_10_31545_intagr_144133 crossref_primary_10_2136_sssaj2017_01_0017 crossref_primary_10_3390_land12122117 crossref_primary_10_1016_j_scitotenv_2022_157460 crossref_primary_10_1016_j_geoderma_2016_07_019 crossref_primary_10_1007_s11356_020_11573_7 crossref_primary_10_5897_AJAR2018_13123 crossref_primary_10_1007_s11368_022_03161_8 crossref_primary_10_1016_j_biombioe_2019_105384 crossref_primary_10_1016_j_still_2016_02_003 crossref_primary_10_1016_j_geoderma_2016_07_015 crossref_primary_10_3390_agriculture9060133 crossref_primary_10_3390_agronomy12091996 crossref_primary_10_3390_pr10091756 crossref_primary_10_1016_j_agee_2018_09_017 crossref_primary_10_3390_su15118700 crossref_primary_10_2134_jeq2014_02_0084 crossref_primary_10_5194_se_5_939_2014 crossref_primary_10_3390_agronomy14020317 crossref_primary_10_1016_j_jenvman_2017_12_041 crossref_primary_10_5194_hess_20_875_2016 crossref_primary_10_1016_j_catena_2021_105284 crossref_primary_10_1093_jee_toaa116 crossref_primary_10_1007_s11756_024_01702_9 crossref_primary_10_3390_agronomy10030398 crossref_primary_10_3390_agronomy10121903 crossref_primary_10_1016_j_geoderma_2018_03_021 crossref_primary_10_1097_SS_0000000000000235 crossref_primary_10_1139_cjm_2022_0031 crossref_primary_10_1016_j_scitotenv_2021_150304 crossref_primary_10_1016_j_fuel_2019_02_039 crossref_primary_10_1016_j_eti_2023_103517 crossref_primary_10_1371_journal_pone_0191246 crossref_primary_10_1002_jpln_201300596 crossref_primary_10_1007_s10705_019_09989_w crossref_primary_10_1016_j_enconman_2020_113737 crossref_primary_10_1016_j_ecoleng_2018_04_021 crossref_primary_10_3390_agronomy12010205 crossref_primary_10_1016_j_agwat_2018_08_007 crossref_primary_10_1016_j_rama_2023_06_004 crossref_primary_10_3389_fmicb_2019_01361 crossref_primary_10_1016_j_ejsobi_2022_103447 crossref_primary_10_1111_sum_12642 crossref_primary_10_1007_s42773_023_00235_9 crossref_primary_10_3390_soilsystems6020044 crossref_primary_10_1002_adma_202307412 crossref_primary_10_1051_bioconf_20238003001 crossref_primary_10_1016_j_jenvman_2022_116915 crossref_primary_10_1016_j_catena_2017_05_031 crossref_primary_10_1088_1757_899X_960_4_042018 crossref_primary_10_1016_j_envint_2022_107293 crossref_primary_10_1007_s12517_018_4056_7 crossref_primary_10_1007_s13399_020_01226_7 crossref_primary_10_1016_j_still_2016_03_002 crossref_primary_10_1016_j_geoderma_2016_08_019 crossref_primary_10_3390_su16156397 crossref_primary_10_1016_j_geoderma_2020_114241 crossref_primary_10_1007_s11368_016_1448_8 crossref_primary_10_3390_soilsystems8030069 crossref_primary_10_1186_s40538_021_00210_1 crossref_primary_10_1007_s11440_021_01411_6 crossref_primary_10_1007_s11368_015_1312_2 crossref_primary_10_1088_1755_1315_1230_1_012185 crossref_primary_10_1080_15567036_2021_1916652 crossref_primary_10_2136_sssaj2016_07_0230 crossref_primary_10_1039_C7EW00132K crossref_primary_10_1016_j_orggeochem_2017_06_012 crossref_primary_10_3390_agronomy7030049 crossref_primary_10_1007_s10064_020_01846_3 crossref_primary_10_20961_stjssa_v17i1_37608 crossref_primary_10_1016_j_geoderma_2020_114574 crossref_primary_10_1016_j_geoderma_2023_116470 crossref_primary_10_1016_j_chemosphere_2020_127110 crossref_primary_10_1016_j_geoderma_2018_06_014 crossref_primary_10_1007_s42773_024_00323_4 crossref_primary_10_1016_j_bgtech_2025_100161 crossref_primary_10_1371_journal_pone_0206299 crossref_primary_10_3934_agrfood_2021043 crossref_primary_10_1016_j_scitotenv_2020_137012 crossref_primary_10_1002_vzj2_20266 crossref_primary_10_1016_j_scitotenv_2016_09_025 crossref_primary_10_1016_j_envpol_2019_07_051 crossref_primary_10_1080_03650340_2018_1482536 crossref_primary_10_1002_cjce_24426 crossref_primary_10_1038_s41598_024_76082_w crossref_primary_10_1111_sum_12945 crossref_primary_10_1039_D0EW00027B crossref_primary_10_1016_j_geoderma_2017_05_041 crossref_primary_10_2134_agronj2017_11_0665 crossref_primary_10_5897_AJAR2018_12991 crossref_primary_10_1071_SR20250 crossref_primary_10_3390_agriculture13112053 crossref_primary_10_3390_f14010018 crossref_primary_10_1088_1748_9326_aa67bd crossref_primary_10_1016_j_chemosphere_2014_05_059 crossref_primary_10_3390_agriculture10100471 crossref_primary_10_1111_gcbb_12429 crossref_primary_10_1007_s11368_023_03701_w crossref_primary_10_1016_j_chemosphere_2019_03_170 crossref_primary_10_1111_jac_12252 crossref_primary_10_1007_s11356_024_33807_8 crossref_primary_10_1016_j_agee_2014_01_007 crossref_primary_10_1016_j_scitotenv_2021_150746 crossref_primary_10_1139_cgj_2023_0739 crossref_primary_10_1016_j_catena_2024_108210 crossref_primary_10_1016_j_chemosphere_2022_135792 crossref_primary_10_2134_agronj2018_01_0055 crossref_primary_10_1016_j_geoderma_2016_03_029 crossref_primary_10_1016_j_jhydrol_2023_130267 crossref_primary_10_1016_j_biombioe_2018_10_004 crossref_primary_10_1016_j_chemosphere_2022_133586 crossref_primary_10_1016_j_scitotenv_2022_156236 crossref_primary_10_1016_j_still_2017_06_007 crossref_primary_10_1016_j_indcrop_2024_119972 crossref_primary_10_1016_j_jclepro_2019_119899 crossref_primary_10_1007_s42832_019_0008_8 crossref_primary_10_1007_s11356_017_8904_x crossref_primary_10_1016_j_wasman_2024_08_009 crossref_primary_10_3390_su13031330 crossref_primary_10_1007_s13399_020_00847_2 crossref_primary_10_3390_agriculture11111112 crossref_primary_10_1016_j_jhazmat_2020_122507 crossref_primary_10_1007_s11368_019_02293_8 crossref_primary_10_5194_se_5_477_2014 crossref_primary_10_1016_j_egypro_2017_03_1742 crossref_primary_10_1016_j_agee_2020_107258 crossref_primary_10_2478_agri_2020_0005 crossref_primary_10_3390_agriculture10030062 crossref_primary_10_1016_j_catena_2021_105143 crossref_primary_10_1016_j_geoderma_2020_114209 crossref_primary_10_1007_s11368_024_03741_w crossref_primary_10_1080_15481603_2021_2016262 crossref_primary_10_3390_agronomy11102052 crossref_primary_10_1016_j_jclepro_2018_11_051 crossref_primary_10_3390_pr8101201 crossref_primary_10_3390_f15111914 crossref_primary_10_2478_ats_2024_0016 crossref_primary_10_1016_j_jenvman_2017_11_072 crossref_primary_10_1080_00103624_2017_1358742 crossref_primary_10_2139_ssrn_4175990 crossref_primary_10_1007_s12517_022_11100_7 crossref_primary_10_1016_j_jhazmat_2024_134468 crossref_primary_10_1038_s41598_021_86701_5 crossref_primary_10_1016_j_scitotenv_2020_137690 crossref_primary_10_3390_agronomy11102081 crossref_primary_10_1016_j_jrmge_2020_10_007 crossref_primary_10_1016_j_agee_2016_04_024 crossref_primary_10_1016_j_scitotenv_2022_159806 crossref_primary_10_1080_01904167_2021_1998523 crossref_primary_10_3390_app112210685 crossref_primary_10_1016_j_agwat_2018_06_004 crossref_primary_10_1080_01904167_2024_2369080 crossref_primary_10_1155_2020_8885090 crossref_primary_10_3389_fpls_2023_1163451 crossref_primary_10_1016_j_geoderma_2014_07_002 crossref_primary_10_1080_00103624_2023_2296537 crossref_primary_10_1016_j_anres_2017_04_001 crossref_primary_10_1007_s11270_025_07853_y crossref_primary_10_1016_j_soisec_2023_100091 crossref_primary_10_1016_j_envpol_2017_04_032 crossref_primary_10_1111_ejss_12300 crossref_primary_10_1007_s40518_017_0082_4 crossref_primary_10_1016_j_jenvman_2023_118548 crossref_primary_10_1016_j_scitotenv_2020_139987 crossref_primary_10_1061__ASCE_IR_1943_4774_0001673 crossref_primary_10_1007_s13399_023_05019_6 crossref_primary_10_1016_j_jece_2024_114577 crossref_primary_10_1016_j_catena_2022_106616 crossref_primary_10_1038_srep24731 crossref_primary_10_1002_jpln_201700221 crossref_primary_10_1007_s12649_018_0364_0 crossref_primary_10_1039_C7EW00380C crossref_primary_10_1016_j_chemosphere_2015_05_023 crossref_primary_10_1007_s10706_019_01009_6 crossref_primary_10_1007_s11104_014_2294_3 crossref_primary_10_3923_pjbs_2021_1236_1245 crossref_primary_10_1016_j_cej_2021_133142 crossref_primary_10_3390_su12229528 crossref_primary_10_1007_s11368_016_1360_2 crossref_primary_10_1016_j_chemosphere_2015_06_069 crossref_primary_10_1061__ASCE_EE_1943_7870_0001829 crossref_primary_10_1039_D4GC03071K crossref_primary_10_1016_j_jag_2020_102147 crossref_primary_10_3390_agronomy9040165 crossref_primary_10_1016_j_eti_2025_104118 crossref_primary_10_1016_j_still_2019_01_001 crossref_primary_10_3390_plants9111516 crossref_primary_10_1016_j_wasman_2023_06_035 crossref_primary_10_3390_app10030790 crossref_primary_10_1016_j_scitotenv_2020_139880 crossref_primary_10_1016_j_agwat_2018_06_034 crossref_primary_10_2134_jeq2015_10_0529 crossref_primary_10_3390_app14083472 crossref_primary_10_1007_s42773_024_00336_z crossref_primary_10_1071_SR19296 crossref_primary_10_1016_j_geodrs_2023_e00740 crossref_primary_10_1051_e3sconf_202125102039 crossref_primary_10_1007_s11356_023_30295_0 crossref_primary_10_1016_j_chemosphere_2014_11_074 crossref_primary_10_1007_s12517_020_06358_8 crossref_primary_10_1016_j_jaap_2017_07_017 crossref_primary_10_1016_j_jaap_2021_105132 crossref_primary_10_1016_j_scitotenv_2021_145676 crossref_primary_10_1016_j_scitotenv_2021_145677 crossref_primary_10_1016_j_scitotenv_2023_166813 crossref_primary_10_3390_su141711104 crossref_primary_10_1016_j_geoderma_2020_114734 crossref_primary_10_1021_acssusresmgt_4c00174 crossref_primary_10_1186_s40562_023_00285_8 crossref_primary_10_1016_j_scitotenv_2020_138988 crossref_primary_10_1088_1755_1315_648_1_012147 crossref_primary_10_3389_fpls_2020_00949 crossref_primary_10_1007_s42398_020_00116_y crossref_primary_10_1038_s41598_021_86862_3 crossref_primary_10_2135_cropsci2018_08_0485 crossref_primary_10_1002_jctb_5852 crossref_primary_10_1016_j_jenvman_2024_123673 crossref_primary_10_1016_j_geoderma_2019_03_044 crossref_primary_10_1007_s12649_019_00713_x crossref_primary_10_1016_j_geoderma_2015_03_022 crossref_primary_10_1016_j_geodrs_2023_e00706 crossref_primary_10_1080_1573062X_2022_2062009 crossref_primary_10_1016_j_geoderma_2019_03_027 crossref_primary_10_3389_fmicb_2021_647766 crossref_primary_10_1080_00103624_2024_2319799 crossref_primary_10_1155_2023_7531228 crossref_primary_10_1007_s11356_015_4268_2 crossref_primary_10_1016_j_biortech_2021_125951 crossref_primary_10_1016_j_jenvman_2019_02_010 crossref_primary_10_1016_j_still_2019_05_007 crossref_primary_10_1007_s11356_022_22359_4 crossref_primary_10_1007_s12155_016_9724_4 crossref_primary_10_3390_land12081580 crossref_primary_10_17660_ActaHortic_2019_1266_28 crossref_primary_10_1016_j_geoderma_2018_09_043 crossref_primary_10_1016_j_jaap_2022_105747 crossref_primary_10_17221_15_2018_SWR crossref_primary_10_1007_s40891_024_00588_6 crossref_primary_10_1016_j_agwat_2023_108584 crossref_primary_10_3390_ma14061335 crossref_primary_10_1007_s10706_020_01549_2 crossref_primary_10_1016_j_apsoil_2019_103378 crossref_primary_10_1016_j_scitotenv_2024_171792 crossref_primary_10_3390_su14041987 crossref_primary_10_3390_plants13131736 crossref_primary_10_1002_agj2_20540 crossref_primary_10_1016_j_jhydrol_2021_127040 crossref_primary_10_3390_en13164098 crossref_primary_10_1088_1755_1315_1168_1_012007 crossref_primary_10_1371_journal_pone_0179079 crossref_primary_10_1007_s00374_020_01436_1 crossref_primary_10_1039_D3EW00054K crossref_primary_10_1590_01000683rbcs20140818 crossref_primary_10_1007_s42773_020_00054_2 crossref_primary_10_1590_1983_21252024v3711792rc crossref_primary_10_3390_su12198238 crossref_primary_10_2478_johh_2018_0034 crossref_primary_10_3390_pr9010087 crossref_primary_10_1016_j_jscs_2020_11_003 crossref_primary_10_37281_DRCSF_1_1_9 crossref_primary_10_1016_j_geoderma_2018_02_045 crossref_primary_10_3390_w13040407 crossref_primary_10_1016_j_catena_2017_11_013 crossref_primary_10_1016_j_scitotenv_2018_01_037 crossref_primary_10_3390_f14040658 crossref_primary_10_1016_j_catena_2016_07_037 crossref_primary_10_1007_s12517_020_05337_3 crossref_primary_10_1016_j_still_2014_10_002 crossref_primary_10_3390_pr10040682 crossref_primary_10_1016_j_jenvman_2021_113943 crossref_primary_10_2136_vzj2018_05_0101 crossref_primary_10_1016_j_agee_2016_12_026 crossref_primary_10_1016_j_scitotenv_2016_04_089 crossref_primary_10_1111_jac_12185 crossref_primary_10_3390_toxics8040102 crossref_primary_10_1016_j_geoderma_2015_01_001 crossref_primary_10_1007_s11356_018_3018_7 crossref_primary_10_1039_D0TA05094F crossref_primary_10_1080_03650340_2023_2172167 crossref_primary_10_1016_j_geoderma_2015_01_009 crossref_primary_10_1061__ASCE_MT_1943_5533_0003915 crossref_primary_10_3390_app10124111 crossref_primary_10_3390_app13137781 crossref_primary_10_1080_00103624_2021_1984508 crossref_primary_10_1016_j_ecoenv_2019_109557 crossref_primary_10_1007_s11356_017_1061_4 crossref_primary_10_1007_s11440_024_02254_7 crossref_primary_10_1016_j_rser_2018_03_071 crossref_primary_10_1007_s11368_015_1187_2 crossref_primary_10_1016_S1002_0160_18_60041_4 crossref_primary_10_1016_j_jclepro_2025_145150 crossref_primary_10_1088_1755_1315_418_1_012067 crossref_primary_10_1007_s11368_017_1906_y crossref_primary_10_1186_s12870_023_04397_3 crossref_primary_10_3390_horticulturae9050545 crossref_primary_10_1038_ismej_2016_68 crossref_primary_10_1016_j_biombioe_2018_11_019 crossref_primary_10_3390_ijerph19084762 crossref_primary_10_1016_j_biortech_2017_04_012 crossref_primary_10_1016_j_catena_2021_105607 crossref_primary_10_1007_s44246_022_00003_7 crossref_primary_10_1016_j_fuel_2020_117837 crossref_primary_10_1016_j_geoderma_2019_114055 crossref_primary_10_1016_j_sajb_2019_11_015 crossref_primary_10_18393_ejss_1260911 crossref_primary_10_1016_j_geoderma_2015_02_014 crossref_primary_10_1016_j_still_2021_104992 crossref_primary_10_2166_wcc_2024_072 crossref_primary_10_1080_01904167_2022_2027980 crossref_primary_10_1016_j_scitotenv_2019_133732 crossref_primary_10_3390_w14203343 crossref_primary_10_1002_jsfa_7082 crossref_primary_10_1007_s11948_015_9664_y crossref_primary_10_1016_j_biortech_2018_05_011 crossref_primary_10_1016_j_scitotenv_2015_11_054 crossref_primary_10_1016_j_scitotenv_2019_134829 crossref_primary_10_1039_C9RA08700A crossref_primary_10_1080_21655979_2021_1993536 crossref_primary_10_1038_s41598_024_57755_y crossref_primary_10_1071_SR14330 crossref_primary_10_1088_1755_1315_974_1_012086 crossref_primary_10_1016_S1002_0160_20_60094_7 crossref_primary_10_1016_S1002_0160_15_60041_8 crossref_primary_10_1139_cjss_2022_0086 crossref_primary_10_1016_j_indcrop_2016_08_024 crossref_primary_10_3390_agronomy10071005 crossref_primary_10_3390_agronomy9020058 crossref_primary_10_5194_hess_27_3125_2023 crossref_primary_10_1080_10643389_2017_1418580 crossref_primary_10_1016_j_jenvman_2014_09_033 crossref_primary_10_1007_s11356_024_35318_y crossref_primary_10_1061_JGGEFK_GTENG_11158 crossref_primary_10_3390_app11083432 crossref_primary_10_1080_03650340_2016_1249473 crossref_primary_10_1016_j_scitotenv_2020_138955 crossref_primary_10_1016_j_jenvman_2021_113076 crossref_primary_10_1016_j_scitotenv_2023_162849 crossref_primary_10_1007_s12649_020_01057_7 crossref_primary_10_3390_su13073617 crossref_primary_10_1016_j_bgtech_2023_100040 crossref_primary_10_1016_j_biortech_2020_123428 crossref_primary_10_1007_s11356_020_09482_w crossref_primary_10_1016_j_jobab_2022_03_003 crossref_primary_10_1016_j_geoderma_2017_08_025 crossref_primary_10_1016_j_still_2016_01_011 crossref_primary_10_24326_asphc_2022_5_6 crossref_primary_10_1016_j_scitotenv_2019_135856 crossref_primary_10_1016_j_catena_2022_106281 crossref_primary_10_1016_j_ceja_2024_100613 crossref_primary_10_1007_s41348_021_00495_2 crossref_primary_10_1007_s00253_020_11036_6 crossref_primary_10_1007_s13762_021_03267_5 crossref_primary_10_1071_SR15102 crossref_primary_10_1007_s44246_022_00032_2 crossref_primary_10_1016_j_jhydrol_2022_128256 crossref_primary_10_1016_j_advwatres_2020_103638 crossref_primary_10_1016_j_still_2017_03_009 crossref_primary_10_1016_j_geoderma_2015_12_016 crossref_primary_10_1371_journal_pone_0154091 crossref_primary_10_1155_2022_5703377 crossref_primary_10_1016_j_envpol_2019_03_035 crossref_primary_10_3390_agronomy9060331 crossref_primary_10_1007_s42773_022_00168_9 crossref_primary_10_1590_1809_4430_eng_agric_v38n4p546_552_2018 crossref_primary_10_1139_er_2016_0008 crossref_primary_10_3390_agronomy9060327 crossref_primary_10_1007_s11104_013_1851_5 crossref_primary_10_1016_j_chemosphere_2021_130003 crossref_primary_10_1111_ejss_13279 crossref_primary_10_3390_ma16041737 crossref_primary_10_1021_acs_energyfuels_5b00512 crossref_primary_10_1016_j_envc_2022_100540 crossref_primary_10_1002_ldr_2906 crossref_primary_10_1016_j_geoderma_2017_08_007 crossref_primary_10_1016_j_biortech_2021_126084 crossref_primary_10_1088_1755_1315_1364_1_012052 crossref_primary_10_1111_ejss_13157 crossref_primary_10_1007_s11368_020_02837_3 crossref_primary_10_1080_00103624_2018_1431269 crossref_primary_10_1080_17583004_2014_913360 crossref_primary_10_1016_j_rser_2021_111873 crossref_primary_10_1080_03650340_2019_1660960 crossref_primary_10_1016_j_agee_2016_09_029 crossref_primary_10_1080_03650340_2016_1193785 crossref_primary_10_1016_j_scitotenv_2020_144124 crossref_primary_10_1016_j_sjbs_2021_03_003 crossref_primary_10_1007_s13399_023_04015_0 crossref_primary_10_1038_s41598_025_85915_1 crossref_primary_10_1007_s11104_023_05912_z crossref_primary_10_1007_s42773_020_00064_0 crossref_primary_10_1016_S1002_0160_17_60313_8 crossref_primary_10_1016_j_scitotenv_2021_145502 crossref_primary_10_1007_s42729_021_00522_z crossref_primary_10_1016_j_biosystemseng_2020_01_006 crossref_primary_10_1002_hyp_13881 crossref_primary_10_1007_s13399_021_02060_1 crossref_primary_10_3390_su152015142 crossref_primary_10_1007_s11368_016_1401_x crossref_primary_10_1111_ejss_13138 crossref_primary_10_3390_soilsystems3010014 crossref_primary_10_1021_acs_est_1c02535 crossref_primary_10_1016_j_scitotenv_2020_136857 crossref_primary_10_5338_KJEA_2018_37_1_09 crossref_primary_10_1111_gcbb_12191 crossref_primary_10_3390_agronomy10040496 crossref_primary_10_1016_j_still_2019_104525 crossref_primary_10_1016_j_eti_2020_100668 crossref_primary_10_1016_j_still_2019_104521 crossref_primary_10_1063_5_0024841 crossref_primary_10_3390_su13105332 crossref_primary_10_1007_s12517_023_11774_7 crossref_primary_10_1007_s12517_020_05586_2 crossref_primary_10_4236_gep_2021_910003 crossref_primary_10_1039_D0SE00608D crossref_primary_10_1016_j_agwat_2021_106940 crossref_primary_10_1016_j_jenvman_2020_110959 crossref_primary_10_1016_j_wasman_2018_01_014 crossref_primary_10_1007_s11368_022_03359_w crossref_primary_10_1371_journal_pone_0098523 crossref_primary_10_1021_acsomega_9b03926 crossref_primary_10_3389_fpls_2024_1520272 crossref_primary_10_3390_soilsystems3020027 crossref_primary_10_1007_s42729_021_00756_x crossref_primary_10_1002_saj2_20239 crossref_primary_10_1016_j_jclepro_2021_127255 crossref_primary_10_1007_s42773_022_00135_4 crossref_primary_10_1016_j_geoderma_2019_01_012 crossref_primary_10_1016_j_ijhydene_2022_09_134 crossref_primary_10_29252_jwmr_10_20_38 crossref_primary_10_1016_j_apsoil_2017_06_008 crossref_primary_10_3390_w16101338 crossref_primary_10_1016_j_fcr_2016_07_014 crossref_primary_10_3390_en16248037 crossref_primary_10_1016_j_scitotenv_2024_172951 crossref_primary_10_1016_j_catena_2015_08_013 crossref_primary_10_1016_j_scitotenv_2018_06_231 crossref_primary_10_1016_j_still_2014_07_016 crossref_primary_10_3390_microorganisms12020295 crossref_primary_10_1016_j_chemosphere_2021_132691 crossref_primary_10_1016_S2095_3119_19_62573_6 crossref_primary_10_32964_TJ14_3_195 crossref_primary_10_1021_acssuschemeng_0c00601 crossref_primary_10_1007_s44246_023_00053_5 crossref_primary_10_1007_s10342_019_01217_y crossref_primary_10_4236_ojss_2015_51001 crossref_primary_10_1080_00380768_2018_1447293 crossref_primary_10_1007_s42773_021_00104_3 crossref_primary_10_1080_03650340_2017_1322196 crossref_primary_10_1080_10549811_2017_1386113 crossref_primary_10_1051_e3sconf_20183702004 crossref_primary_10_3390_agronomy10101589 crossref_primary_10_3390_soilsystems3030053 crossref_primary_10_1088_1755_1315_724_1_012014 crossref_primary_10_1016_j_catena_2018_10_021 crossref_primary_10_1016_j_still_2015_08_007 crossref_primary_10_1021_acssuschemeng_7b01569 crossref_primary_10_3390_soilsystems4040069 crossref_primary_10_1007_s40093_016_0146_2 crossref_primary_10_1016_j_envres_2024_119531 crossref_primary_10_1016_j_eti_2023_103229 crossref_primary_10_1016_j_geoderma_2016_06_028 crossref_primary_10_1063_1_4967706 crossref_primary_10_3389_sjss_2024_12814 crossref_primary_10_1021_acssuschemeng_3c06354 crossref_primary_10_5194_soil_2_147_2016 crossref_primary_10_3390_soilsystems3030049 crossref_primary_10_2139_ssrn_4094006 |
Cites_doi | 10.2136/sssaj1992.03615995005600010054x 10.1016/j.geoderma.2010.05.013 10.1007/s00374-006-0152-z 10.1890/1540-9295(2007)5[381:BITB]2.0.CO;2 10.1016/S0012-8252(00)00011-8 10.1021/ef900201b 10.1109/TAC.1974.1100705 10.1016/j.orggeochem.2006.06.022 10.1016/j.soilbio.2009.03.016 10.1097/SS.0b013e3182482784 10.1039/b616045j 10.2134/jeq2006.0427 10.1070/RC1995v064n11ABEH000189 10.1002/jpln.201100172 10.1016/j.pedobi.2005.04.004 10.1029/2008WR007136 10.1002/jpln.200625185 10.1016/j.agee.2010.12.005 10.1016/j.biombioe.2012.01.033 10.2307/1948629 10.1023/A:1022833116184 10.1021/es035034w 10.1016/S0254-0584(01)00473-4 10.1080/00986449108911575 10.1016/j.geoderma.2004.07.004 10.1007/s00374-002-0466-4 10.1039/B819318P 10.1097/SS.0b013e3181cb7f46 10.2134/jeq2011.0237 10.1021/es071361i 10.1016/S0008-6223(01)00138-5 10.1016/j.foreco.2006.05.004 10.2136/sssaj2005.0383 10.1590/S0100-204X2012000500012 10.1016/j.apsoil.2010.04.011 10.1007/s11027-005-9007-4 10.1016/j.fuel.2003.11.015 10.2136/sssaj1980.03615995004400050002x 10.1029/93WR02676 10.1029/2006WR004952 10.1071/SR9810275 10.1016/j.apsoil.2012.02.021 10.1093/biomet/76.2.297 10.1021/cm0707408 |
ContentType | Journal Article |
Copyright | 2013 Elsevier B.V. |
Copyright_xml | – notice: 2013 Elsevier B.V. |
DBID | FBQ AAYXX CITATION 7UA C1K F1W H96 L.G 8FD FR3 KR7 7S9 L.6 |
DOI | 10.1016/j.geoderma.2013.03.003 |
DatabaseName | AGRIS CrossRef Water Resources Abstracts Environmental Sciences and Pollution Management ASFA: Aquatic Sciences and Fisheries Abstracts Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Aquatic Science & Fisheries Abstracts (ASFA) Professional Technology Research Database Engineering Research Database Civil Engineering Abstracts AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef Aquatic Science & Fisheries Abstracts (ASFA) Professional Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources ASFA: Aquatic Sciences and Fisheries Abstracts Water Resources Abstracts Environmental Sciences and Pollution Management Technology Research Database Civil Engineering Abstracts Engineering Research Database AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | Technology Research Database Aquatic Science & Fisheries Abstracts (ASFA) Professional AGRICOLA |
Database_xml | – sequence: 1 dbid: FBQ name: AGRIS url: http://www.fao.org/agris/Centre.asp?Menu_1ID=DB&Menu_2ID=DB1&Language=EN&Content=http://www.fao.org/agris/search?Language=EN sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Agriculture |
EISSN | 1872-6259 |
EndPage | 191 |
ExternalDocumentID | 10_1016_j_geoderma_2013_03_003 US201500013902 S0016706113000803 |
GroupedDBID | --K --M -DZ -~X .~1 0R~ 0SF 1B1 1RT 1~. 1~5 29H 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JM 9JN AABNK AABVA AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALCJ AALRI AAOAW AAQFI AAQXK AATLK AAXUO ABEFU ABFNM ABFRF ABGRD ABJNI ABMAC ABQEM ABQYD ABXDB ABYKQ ACDAQ ACGFO ACGFS ACIUM ACLVX ACRLP ACSBN ADBBV ADEZE ADMUD ADQTV AEBSH AEFWE AEKER AENEX AEQOU AFFNX AFKWA AFTJW AFXIZ AGHFR AGUBO AGYEJ AHHHB AI. AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG ATOGT AVWKF AXJTR AZFZN BKOJK BLXMC CBWCG CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA GROUPED_DOAJ HLV HMA HMC HVGLF HZ~ H~9 IHE IMUCA J1W K-O KOM LW9 LY3 LY9 M41 MO0 N9A O-L O9- OAUVE OHT OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SAB SDF SDG SEN SEP SES SEW SPC SPCBC SSA SSE SSZ T5K VH1 WUQ XPP Y6R ZMT ~02 ~G- ABPIF ABPTK FBQ AAHBH AATTM AAXKI AAYWO AAYXX ABWVN ACRPL ACVFH ADCNI ADNMO ADVLN AEGFY AEIPS AEUPX AFJKZ AFPUW AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH 7UA C1K F1W H96 L.G 8FD FR3 KR7 7S9 L.6 |
ID | FETCH-LOGICAL-a524t-4ab9f62eba370362f91e85ccea27e5a5ac46f051e5eb6972eafad24143c4b9eb3 |
IEDL.DBID | .~1 |
ISSN | 0016-7061 |
IngestDate | Fri Jul 11 01:11:45 EDT 2025 Thu Jul 10 18:18:55 EDT 2025 Fri Jul 11 02:53:13 EDT 2025 Thu Apr 24 23:13:11 EDT 2025 Tue Jul 01 04:04:36 EDT 2025 Wed Dec 27 19:21:52 EST 2023 Fri Feb 23 02:20:28 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Available water capacity Hydrochar Water repellency Water retention characteristics Biochar |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a524t-4ab9f62eba370362f91e85ccea27e5a5ac46f051e5eb6972eafad24143c4b9eb3 |
Notes | http://dx.doi.org/10.1016/j.geoderma.2013.03.003 ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PQID | 1551638984 |
PQPubID | 23462 |
PageCount | 9 |
ParticipantIDs | proquest_miscellaneous_1663532561 proquest_miscellaneous_1642319070 proquest_miscellaneous_1551638984 crossref_primary_10_1016_j_geoderma_2013_03_003 crossref_citationtrail_10_1016_j_geoderma_2013_03_003 fao_agris_US201500013902 elsevier_sciencedirect_doi_10_1016_j_geoderma_2013_03_003 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2013-07-01 |
PublicationDateYYYYMMDD | 2013-07-01 |
PublicationDate_xml | – month: 07 year: 2013 text: 2013-07-01 day: 01 |
PublicationDecade | 2010 |
PublicationTitle | Geoderma |
PublicationYear | 2013 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Brocksiepe (bb0020) 2000 Rillig (bb0185) 2005; 49 Gajić, Koch (bb0060) 2012; 41 Sohi, Lopez-Capel, Krull, Bol (bb0210) 2009; 5 (09) Tryon (bb0240) 1948 van Genuchten (bb0245) 1980; 44 Baccile, Laurent, Babonneau, Fayon, Titirici, Antonietti (bb0010) 2009; 113 King (bb0105) 1981; 19 Rillig, Wagner, Salem, Antunes, George, Ramke, Titirici, Antonietti (bb0190) 2010; 45 George, Wagner, Kücke, Rillig (bb0070) 2012; 59 Liang, Lehmann, Solomon, Kinyangi, Grossman, O'Neill, Skjemstad, Thies, Luizao, Petersen (bb0140) 2006; 70 Hurvich, Tsai (bb0095) 1989; 76 Täumer, Stoffregen, Wessolek (bb0220) 2005; 125 Doerr, Shakesby, Walsh (bb0050) 2000; 51 Titirici, Antonietti (bb0225) 2009; 39 Haas, Nimlos, Donohoe (bb0090) 2009; 23 Liu, Schulz, Brandl, Miehtke, Huwe, Glaser (bb0145) 2012; 172 Titirici, Thomas, Antonietti (bb0230) 2007; 31 Novak, Lima, Xing, Gaskin, Steiner, Das, Ahmedna, Rehrah, Watts, Busscher (bb0150) 2009; 3 Cheng, Lehmann, Thies, Burton, Engelhard (bb0035) 2006; 37 Guo, Yang, Yu, Zhao, Wang, Xu (bb0085) 2002; 74 Chun, Sheng, Chiou, Xing (bb0040) 2004; 38 Kinney, Masiello, Dugan, Hockaday, Dean, Zygourakis, Barnes (bb0110) 2012; 41 Karhu, Mattila, Bergström, Regina (bb0100) 2011; 140 Glaser, Lehmann, Zech (bb0075) 2002; 35 Peters, Durner (bb0175) 2006; 42 Peters, Durner (bb0180) 2008; 44 Gundale, DeLuca (bb0080) 2006; 231 Ogawa, Okimori, Takahashi (bb0160) 2006; 11 Dekker, Jungerius (bb0045) 1990; 18 Vartapetyan, Voloshchuk (bb0250) 1995; 64 Chan (bb0030) 1992; 56 Scheffer, Schachtschabel (bb0200) 2002 Durner (bb0055) 1994; 30 Laird, Fleming, Davis, Horton, Wang, Karlen (bb0125) 2010; 158 Gaunt, Lehmann (bb0065) 2008; 42 Lehmann (bb0130) 2007; 5 Busscher, Novak, Evans, Watts, Niandou, Ahmedna (bb0025) 2010; 175 Lehmann, Pereira da Silva, Steiner, Nehls, Zech, Glaser (bb0135) 2003; 249 Oberlin (bb0155) 2002; 40 Rondon, Lehmann, Ramirez, Hurtado (bb0195) 2007; 43 Sharma, Wooten, Baliga, Lin, Geoffrey Chan, Hajaligol (bb0205) 2004; 83 Akaike (bb0005) 1974; 19 Briggs, Breiner, Graham (bb0015) 2012; 177 Oguntunde, Abiodun, Ajayi, van de Giesen (bb0165) 2008; 171 Titirici, Thomas, Yu, Müller, Antonietti (bb0235) 2007; 19 Steinbeiss, Gleixner, Antonietti (bb0215) 2009; 41 Pereira, Heinemann, Madari, Carvalho, Kliemann, Santos (bb0170) 2012; 47 Klitzke, Lang (bb0115) 2007; 36 Laine, Simoni, Calles (bb0120) 1991; 99 Akaike (10.1016/j.geoderma.2013.03.003_bb0005) 1974; 19 King (10.1016/j.geoderma.2013.03.003_bb0105) 1981; 19 Laird (10.1016/j.geoderma.2013.03.003_bb0125) 2010; 158 Glaser (10.1016/j.geoderma.2013.03.003_bb0075) 2002; 35 Hurvich (10.1016/j.geoderma.2013.03.003_bb0095) 1989; 76 Tryon (10.1016/j.geoderma.2013.03.003_bb0240) 1948 Brocksiepe (10.1016/j.geoderma.2013.03.003_bb0020) 2000 Täumer (10.1016/j.geoderma.2013.03.003_bb0220) 2005; 125 Peters (10.1016/j.geoderma.2013.03.003_bb0180) 2008; 44 Kinney (10.1016/j.geoderma.2013.03.003_bb0110) 2012; 41 Titirici (10.1016/j.geoderma.2013.03.003_bb0230) 2007; 31 Oguntunde (10.1016/j.geoderma.2013.03.003_bb0165) 2008; 171 Gundale (10.1016/j.geoderma.2013.03.003_bb0080) 2006; 231 George (10.1016/j.geoderma.2013.03.003_bb0070) 2012; 59 van Genuchten (10.1016/j.geoderma.2013.03.003_bb0245) 1980; 44 Baccile (10.1016/j.geoderma.2013.03.003_bb0010) 2009; 113 Briggs (10.1016/j.geoderma.2013.03.003_bb0015) 2012; 177 Chan (10.1016/j.geoderma.2013.03.003_bb0030) 1992; 56 Titirici (10.1016/j.geoderma.2013.03.003_bb0225) 2009; 39 Klitzke (10.1016/j.geoderma.2013.03.003_bb0115) 2007; 36 Rillig (10.1016/j.geoderma.2013.03.003_bb0190) 2010; 45 Peters (10.1016/j.geoderma.2013.03.003_bb0175) 2006; 42 Lehmann (10.1016/j.geoderma.2013.03.003_bb0130) 2007; 5 Liang (10.1016/j.geoderma.2013.03.003_bb0140) 2006; 70 Pereira (10.1016/j.geoderma.2013.03.003_bb0170) 2012; 47 Karhu (10.1016/j.geoderma.2013.03.003_bb0100) 2011; 140 Lehmann (10.1016/j.geoderma.2013.03.003_bb0135) 2003; 249 Scheffer (10.1016/j.geoderma.2013.03.003_bb0200) 2002 Gajić (10.1016/j.geoderma.2013.03.003_bb0060) 2012; 41 Steinbeiss (10.1016/j.geoderma.2013.03.003_bb0215) 2009; 41 Novak (10.1016/j.geoderma.2013.03.003_bb0150) 2009; 3 Gaunt (10.1016/j.geoderma.2013.03.003_bb0065) 2008; 42 Sohi (10.1016/j.geoderma.2013.03.003_bb0210) 2009; 5 (09) Busscher (10.1016/j.geoderma.2013.03.003_bb0025) 2010; 175 Durner (10.1016/j.geoderma.2013.03.003_bb0055) 1994; 30 Ogawa (10.1016/j.geoderma.2013.03.003_bb0160) 2006; 11 Haas (10.1016/j.geoderma.2013.03.003_bb0090) 2009; 23 Guo (10.1016/j.geoderma.2013.03.003_bb0085) 2002; 74 Titirici (10.1016/j.geoderma.2013.03.003_bb0235) 2007; 19 Vartapetyan (10.1016/j.geoderma.2013.03.003_bb0250) 1995; 64 Oberlin (10.1016/j.geoderma.2013.03.003_bb0155) 2002; 40 Sharma (10.1016/j.geoderma.2013.03.003_bb0205) 2004; 83 Laine (10.1016/j.geoderma.2013.03.003_bb0120) 1991; 99 Rillig (10.1016/j.geoderma.2013.03.003_bb0185) 2005; 49 Rondon (10.1016/j.geoderma.2013.03.003_bb0195) 2007; 43 Liu (10.1016/j.geoderma.2013.03.003_bb0145) 2012; 172 Dekker (10.1016/j.geoderma.2013.03.003_bb0045) 1990; 18 Doerr (10.1016/j.geoderma.2013.03.003_bb0050) 2000; 51 Cheng (10.1016/j.geoderma.2013.03.003_bb0035) 2006; 37 Chun (10.1016/j.geoderma.2013.03.003_bb0040) 2004; 38 |
References_xml | – volume: 44 year: 2008 ident: bb0180 article-title: A simple model for describing hydraulic conductivity in unsaturated porous media accounting for film and capillary flow publication-title: Water Resources Research – volume: 125 start-page: 107 year: 2005 end-page: 115 ident: bb0220 article-title: Determination of repellency distribution using soil organic matter and water content publication-title: Geoderma – volume: 19 start-page: 716 year: 1974 end-page: 723 ident: bb0005 article-title: A new look at the statistical model identification publication-title: IEEE Transactions on Automatic Control – volume: 76 start-page: 297 year: 1989 end-page: 307 ident: bb0095 article-title: Regression and time series model selection in small samples publication-title: Biometrika – volume: 41 start-page: 1067 year: 2012 end-page: 1075 ident: bb0060 article-title: Sugar beet (l.) growth reduction caused by hydrochar is related to nitrogen supply publication-title: Journal of Environmental Quality – volume: 5 (09) start-page: 17 year: 2009 end-page: 31 ident: bb0210 article-title: Biochar, climate change and soil: a review to guide future research publication-title: CSIRO Land and Water Science Report – volume: 44 start-page: 892 year: 1980 end-page: 898 ident: bb0245 article-title: A closed-form equation for predicting the hydraulic conductivity of unsaturated soils publication-title: Soil Science Society of America Journal – volume: 38 start-page: 4649 year: 2004 end-page: 4655 ident: bb0040 article-title: Compositions and sorptive properties of crop residue-derived chars publication-title: Environmental Science and Technology – volume: 175 start-page: 10 year: 2010 end-page: 14 ident: bb0025 article-title: Influence of pecan biochar on physical properties of a Norfolk loamy sand publication-title: Soil Science – volume: 99 start-page: 15 year: 1991 end-page: 23 ident: bb0120 article-title: Preparation of activated carbon from coconut shell in a small scale cocurrent flow rotary kiln publication-title: Chemical Engineering Communications – volume: 64 start-page: 985 year: 1995 end-page: 1001 ident: bb0250 article-title: The mechanism of the adsorption of water molecules on carbon adsorbents publication-title: Russian Chemical Reviews – start-page: 81 year: 1948 end-page: 115 ident: bb0240 article-title: Effect of charcoal on certain physical, chemical, and biological properties of forest soils publication-title: Ecological Monographs – volume: 40 start-page: 7 year: 2002 end-page: 24 ident: bb0155 article-title: Pyrocarbons publication-title: Carbon – volume: 74 start-page: 320 year: 2002 end-page: 323 ident: bb0085 article-title: The preparation and mechanism studies of rice husk based porous carbon publication-title: Materials Chemistry and Physics – volume: 23 start-page: 3810 year: 2009 end-page: 3817 ident: bb0090 article-title: Real-time and post-reaction microscopic structural analysis of biomass undergoing pyrolysis publication-title: Energy & Fuels – volume: 51 start-page: 33 year: 2000 end-page: 65 ident: bb0050 article-title: Soil water repellency: its causes, characteristics and hydro-geomorphological significance publication-title: Earth-Science Reviews – volume: 231 start-page: 86 year: 2006 end-page: 93 ident: bb0080 article-title: Temperature and source material influence ecological attributes of ponderosa pine and Douglas-fir charcoal publication-title: Forest Ecology and Management – volume: 41 start-page: 1301 year: 2009 end-page: 1310 ident: bb0215 article-title: Effect of biochar amendment on soil carbon balance and soil microbial activity publication-title: Soil Biology and Biochemistry – volume: 31 start-page: 787 year: 2007 end-page: 789 ident: bb0230 article-title: Back in the black: hydrothermal carbonization of plant material as an efficient chemical process to treat the CO publication-title: New Journal of Chemistry – volume: 113 start-page: 9644 year: 2009 end-page: 9654 ident: bb0010 article-title: Structural characterization of hydrothermal carbon spheres by advanced solid-state MAS publication-title: Journal of Physical Chemistry – volume: 35 start-page: 219 year: 2002 end-page: 230 ident: bb0075 article-title: Ameliorating physical and chemical properties of highly weathered soils in the tropics with charcoal—a review publication-title: Biology and Fertility of Soils – volume: 42 start-page: 4152 year: 2008 end-page: 4158 ident: bb0065 article-title: Energy balance and emissions associated with biochar sequestration and pyrolysis bioenergy production publication-title: Environmental Science and Technology – volume: 70 start-page: 1719 year: 2006 end-page: 1730 ident: bb0140 article-title: Black carbon increases cation exchange capacity in soils publication-title: Soil Science Society of America Journal – volume: 19 start-page: 4205 year: 2007 end-page: 4212 ident: bb0235 article-title: A direct synthesis of mesoporous carbons with bicontinuous pore morphology from crude plant material by hydrothermal carbonization publication-title: Chemistry of Materials – volume: 37 start-page: 1477 year: 2006 end-page: 1488 ident: bb0035 article-title: Oxidation of black carbon by biotic and abiotic processes publication-title: Organic Geochemistry – volume: 42 year: 2006 ident: bb0175 article-title: Improved estimation of soil water retention characteristics from hydrostatic column experiments publication-title: Water Resources Research – volume: 3 start-page: 195 year: 2009 end-page: 206 ident: bb0150 article-title: Characterization of designer biochar produced at different temperatures and their effects on a loamy sand publication-title: Annals of Environmental Science – volume: 49 start-page: 395 year: 2005 end-page: 399 ident: bb0185 article-title: A connection between fungal hydrophobins and soil water repellency? publication-title: Pedobiologia – volume: 43 start-page: 699 year: 2007 end-page: 708 ident: bb0195 article-title: Biological nitrogen fixation by common beans ( publication-title: Biology and Fertility of Soils – volume: 172 start-page: 698 year: 2012 end-page: 707 ident: bb0145 article-title: Short-term effect of biochar and compost on soil fertility and water status of a dystric cambisol in NE Germany under field conditions publication-title: Journal of Plant Nutrition and Soil Science – volume: 140 start-page: 309 year: 2011 end-page: 313 ident: bb0100 article-title: Biochar addition to agricultural soil increased CH publication-title: Agriculture, Ecosystems and Environment – volume: 36 start-page: 1187 year: 2007 end-page: 1193 ident: bb0115 article-title: Hydrophobicity of soil colloids and heavy metal mobilization publication-title: Journal of Environmental Quality – volume: 249 start-page: 343 year: 2003 end-page: 357 ident: bb0135 article-title: Nutrient availability and leaching in an archaeological Anthrosol and a Ferralsol of the Central Amazon basin: fertilizer, manure and charcoal amendments publication-title: Plant and Soil – volume: 177 start-page: 263 year: 2012 end-page: 268 ident: bb0015 article-title: Physical and chemical properties of publication-title: Soil Science – year: 2000 ident: bb0020 article-title: Charcoal publication-title: Ullmann's Encyclopedia of Industrial Chemistry – volume: 18 start-page: 173 year: 1990 end-page: 183 ident: bb0045 article-title: Water repellency in the dunes with special reference to the Netherlands publication-title: Catena Supplement – volume: 5 start-page: 381 year: 2007 end-page: 387 ident: bb0130 article-title: Bio-energy in the black publication-title: Frontiers in Ecology and the Environment – volume: 47 start-page: 716 year: 2012 end-page: 721 ident: bb0170 article-title: Transpiration response of upland rice to water deficit changed by different levels of eucalyptus biochar publication-title: Pesquisa Agropecuária Brasileira – volume: 59 start-page: 68 year: 2012 end-page: 72 ident: bb0070 article-title: Divergent consequences of hydrochar in the plant–soil system: arbuscular mycorrhiza, nodulation, plant growth and soil aggregation effects publication-title: Applied Soil Ecology – volume: 39 start-page: 103 year: 2009 end-page: 116 ident: bb0225 article-title: Chemistry and materials options of sustainable carbon materials made by hydrothermal carbonization publication-title: Chemical Society Reviews – volume: 30 start-page: 211 year: 1994 end-page: 223 ident: bb0055 article-title: Hydraulic conductivity estimation for soils with heterogeneous pore structure publication-title: Water Resources Research – volume: 41 start-page: 34 year: 2012 end-page: 43 ident: bb0110 article-title: Hydrologic properties of biochars produced at different temperatures publication-title: Biomass and Bioenergy – volume: 158 start-page: 443 year: 2010 end-page: 449 ident: bb0125 article-title: Impact of biochar amendments on the quality of a typical midwestern agricultural soil publication-title: Geoderma – volume: 56 start-page: 326 year: 1992 end-page: 329 ident: bb0030 article-title: Development of seasonal water repellence under direct drilling publication-title: Soil Science Society of America Journal – year: 2002 ident: bb0200 article-title: Lehrbuch der Bodenkunde – volume: 19 start-page: 275 year: 1981 end-page: 285 ident: bb0105 article-title: Comparison of methods for measuring severity of water repellence of sandy soils and assessment of some factors that affect its measurement publication-title: Soil Research – volume: 83 start-page: 1469 year: 2004 end-page: 1482 ident: bb0205 article-title: Characterization of chars from pyrolysis of lignin publication-title: Fuel – volume: 45 start-page: 238 year: 2010 end-page: 242 ident: bb0190 article-title: Material derived from hydrothermal carbonization: effects on plant growth and arbuscular mycorrhiza publication-title: Applied Soil Ecology – volume: 11 start-page: 421 year: 2006 end-page: 436 ident: bb0160 article-title: Carbon sequestration by carbonization of biomass and forestation: three case studies publication-title: Mitigation and Adaptation Strategies for Global Change – volume: 171 start-page: 591 year: 2008 end-page: 596 ident: bb0165 article-title: Effects of charcoal production on soil physical properties in Ghana publication-title: Journal of Plant Nutrition and Soil Science – year: 2002 ident: 10.1016/j.geoderma.2013.03.003_bb0200 – volume: 56 start-page: 326 issue: 1 year: 1992 ident: 10.1016/j.geoderma.2013.03.003_bb0030 article-title: Development of seasonal water repellence under direct drilling publication-title: Soil Science Society of America Journal doi: 10.2136/sssaj1992.03615995005600010054x – volume: 158 start-page: 443 issue: 3–4 year: 2010 ident: 10.1016/j.geoderma.2013.03.003_bb0125 article-title: Impact of biochar amendments on the quality of a typical midwestern agricultural soil publication-title: Geoderma doi: 10.1016/j.geoderma.2010.05.013 – volume: 43 start-page: 699 issue: 6 year: 2007 ident: 10.1016/j.geoderma.2013.03.003_bb0195 article-title: Biological nitrogen fixation by common beans (Phaseolus vulgaris L.) increases with bio-char additions publication-title: Biology and Fertility of Soils doi: 10.1007/s00374-006-0152-z – volume: 5 start-page: 381 issue: 7 year: 2007 ident: 10.1016/j.geoderma.2013.03.003_bb0130 article-title: Bio-energy in the black publication-title: Frontiers in Ecology and the Environment doi: 10.1890/1540-9295(2007)5[381:BITB]2.0.CO;2 – volume: 51 start-page: 33 issue: 1 year: 2000 ident: 10.1016/j.geoderma.2013.03.003_bb0050 article-title: Soil water repellency: its causes, characteristics and hydro-geomorphological significance publication-title: Earth-Science Reviews doi: 10.1016/S0012-8252(00)00011-8 – volume: 23 start-page: 3810 issue: 7 year: 2009 ident: 10.1016/j.geoderma.2013.03.003_bb0090 article-title: Real-time and post-reaction microscopic structural analysis of biomass undergoing pyrolysis publication-title: Energy & Fuels doi: 10.1021/ef900201b – volume: 19 start-page: 716 issue: 6 year: 1974 ident: 10.1016/j.geoderma.2013.03.003_bb0005 article-title: A new look at the statistical model identification publication-title: IEEE Transactions on Automatic Control doi: 10.1109/TAC.1974.1100705 – volume: 37 start-page: 1477 issue: 11 year: 2006 ident: 10.1016/j.geoderma.2013.03.003_bb0035 article-title: Oxidation of black carbon by biotic and abiotic processes publication-title: Organic Geochemistry doi: 10.1016/j.orggeochem.2006.06.022 – volume: 41 start-page: 1301 issue: 6 year: 2009 ident: 10.1016/j.geoderma.2013.03.003_bb0215 article-title: Effect of biochar amendment on soil carbon balance and soil microbial activity publication-title: Soil Biology and Biochemistry doi: 10.1016/j.soilbio.2009.03.016 – volume: 177 start-page: 263 issue: 4 year: 2012 ident: 10.1016/j.geoderma.2013.03.003_bb0015 article-title: Physical and chemical properties of Pinus ponderosa charcoal: implications for soil modification publication-title: Soil Science doi: 10.1097/SS.0b013e3182482784 – volume: 31 start-page: 787 issue: 6 year: 2007 ident: 10.1016/j.geoderma.2013.03.003_bb0230 article-title: Back in the black: hydrothermal carbonization of plant material as an efficient chemical process to treat the CO2 problem? publication-title: New Journal of Chemistry doi: 10.1039/b616045j – year: 2000 ident: 10.1016/j.geoderma.2013.03.003_bb0020 article-title: Charcoal – volume: 36 start-page: 1187 issue: 4 year: 2007 ident: 10.1016/j.geoderma.2013.03.003_bb0115 article-title: Hydrophobicity of soil colloids and heavy metal mobilization publication-title: Journal of Environmental Quality doi: 10.2134/jeq2006.0427 – volume: 64 start-page: 985 issue: 11 year: 1995 ident: 10.1016/j.geoderma.2013.03.003_bb0250 article-title: The mechanism of the adsorption of water molecules on carbon adsorbents publication-title: Russian Chemical Reviews doi: 10.1070/RC1995v064n11ABEH000189 – volume: 172 start-page: 698 issue: 5 year: 2012 ident: 10.1016/j.geoderma.2013.03.003_bb0145 article-title: Short-term effect of biochar and compost on soil fertility and water status of a dystric cambisol in NE Germany under field conditions publication-title: Journal of Plant Nutrition and Soil Science doi: 10.1002/jpln.201100172 – volume: 113 start-page: 9644 issue: 22 year: 2009 ident: 10.1016/j.geoderma.2013.03.003_bb0010 article-title: Structural characterization of hydrothermal carbon spheres by advanced solid-state MAS 13C NMR investigations publication-title: Journal of Physical Chemistry – volume: 49 start-page: 395 issue: 5 year: 2005 ident: 10.1016/j.geoderma.2013.03.003_bb0185 article-title: A connection between fungal hydrophobins and soil water repellency? publication-title: Pedobiologia doi: 10.1016/j.pedobi.2005.04.004 – volume: 44 issue: 11 year: 2008 ident: 10.1016/j.geoderma.2013.03.003_bb0180 article-title: A simple model for describing hydraulic conductivity in unsaturated porous media accounting for film and capillary flow publication-title: Water Resources Research doi: 10.1029/2008WR007136 – volume: 171 start-page: 591 issue: 4 year: 2008 ident: 10.1016/j.geoderma.2013.03.003_bb0165 article-title: Effects of charcoal production on soil physical properties in Ghana publication-title: Journal of Plant Nutrition and Soil Science doi: 10.1002/jpln.200625185 – volume: 140 start-page: 309 issue: 1 year: 2011 ident: 10.1016/j.geoderma.2013.03.003_bb0100 article-title: Biochar addition to agricultural soil increased CH4 uptake and water holding capacity—results from a short-term pilot field study publication-title: Agriculture, Ecosystems and Environment doi: 10.1016/j.agee.2010.12.005 – volume: 41 start-page: 34 year: 2012 ident: 10.1016/j.geoderma.2013.03.003_bb0110 article-title: Hydrologic properties of biochars produced at different temperatures publication-title: Biomass and Bioenergy doi: 10.1016/j.biombioe.2012.01.033 – start-page: 81 year: 1948 ident: 10.1016/j.geoderma.2013.03.003_bb0240 article-title: Effect of charcoal on certain physical, chemical, and biological properties of forest soils publication-title: Ecological Monographs doi: 10.2307/1948629 – volume: 249 start-page: 343 issue: 2 year: 2003 ident: 10.1016/j.geoderma.2013.03.003_bb0135 article-title: Nutrient availability and leaching in an archaeological Anthrosol and a Ferralsol of the Central Amazon basin: fertilizer, manure and charcoal amendments publication-title: Plant and Soil doi: 10.1023/A:1022833116184 – volume: 38 start-page: 4649 issue: 17 year: 2004 ident: 10.1016/j.geoderma.2013.03.003_bb0040 article-title: Compositions and sorptive properties of crop residue-derived chars publication-title: Environmental Science and Technology doi: 10.1021/es035034w – volume: 74 start-page: 320 issue: 3 year: 2002 ident: 10.1016/j.geoderma.2013.03.003_bb0085 article-title: The preparation and mechanism studies of rice husk based porous carbon publication-title: Materials Chemistry and Physics doi: 10.1016/S0254-0584(01)00473-4 – volume: 18 start-page: 173 year: 1990 ident: 10.1016/j.geoderma.2013.03.003_bb0045 article-title: Water repellency in the dunes with special reference to the Netherlands publication-title: Catena Supplement – volume: 99 start-page: 15 issue: 1 year: 1991 ident: 10.1016/j.geoderma.2013.03.003_bb0120 article-title: Preparation of activated carbon from coconut shell in a small scale cocurrent flow rotary kiln publication-title: Chemical Engineering Communications doi: 10.1080/00986449108911575 – volume: 125 start-page: 107 issue: 1 year: 2005 ident: 10.1016/j.geoderma.2013.03.003_bb0220 article-title: Determination of repellency distribution using soil organic matter and water content publication-title: Geoderma doi: 10.1016/j.geoderma.2004.07.004 – volume: 5 (09) start-page: 17 year: 2009 ident: 10.1016/j.geoderma.2013.03.003_bb0210 article-title: Biochar, climate change and soil: a review to guide future research – volume: 3 start-page: 195 year: 2009 ident: 10.1016/j.geoderma.2013.03.003_bb0150 article-title: Characterization of designer biochar produced at different temperatures and their effects on a loamy sand publication-title: Annals of Environmental Science – volume: 35 start-page: 219 issue: 4 year: 2002 ident: 10.1016/j.geoderma.2013.03.003_bb0075 article-title: Ameliorating physical and chemical properties of highly weathered soils in the tropics with charcoal—a review publication-title: Biology and Fertility of Soils doi: 10.1007/s00374-002-0466-4 – volume: 39 start-page: 103 issue: 1 year: 2009 ident: 10.1016/j.geoderma.2013.03.003_bb0225 article-title: Chemistry and materials options of sustainable carbon materials made by hydrothermal carbonization publication-title: Chemical Society Reviews doi: 10.1039/B819318P – volume: 175 start-page: 10 issue: 1 year: 2010 ident: 10.1016/j.geoderma.2013.03.003_bb0025 article-title: Influence of pecan biochar on physical properties of a Norfolk loamy sand publication-title: Soil Science doi: 10.1097/SS.0b013e3181cb7f46 – volume: 41 start-page: 1067 issue: 4 year: 2012 ident: 10.1016/j.geoderma.2013.03.003_bb0060 article-title: Sugar beet (l.) growth reduction caused by hydrochar is related to nitrogen supply publication-title: Journal of Environmental Quality doi: 10.2134/jeq2011.0237 – volume: 42 start-page: 4152 issue: 11 year: 2008 ident: 10.1016/j.geoderma.2013.03.003_bb0065 article-title: Energy balance and emissions associated with biochar sequestration and pyrolysis bioenergy production publication-title: Environmental Science and Technology doi: 10.1021/es071361i – volume: 40 start-page: 7 issue: 1 year: 2002 ident: 10.1016/j.geoderma.2013.03.003_bb0155 article-title: Pyrocarbons publication-title: Carbon doi: 10.1016/S0008-6223(01)00138-5 – volume: 231 start-page: 86 issue: 1–3 year: 2006 ident: 10.1016/j.geoderma.2013.03.003_bb0080 article-title: Temperature and source material influence ecological attributes of ponderosa pine and Douglas-fir charcoal publication-title: Forest Ecology and Management doi: 10.1016/j.foreco.2006.05.004 – volume: 70 start-page: 1719 issue: 5 year: 2006 ident: 10.1016/j.geoderma.2013.03.003_bb0140 article-title: Black carbon increases cation exchange capacity in soils publication-title: Soil Science Society of America Journal doi: 10.2136/sssaj2005.0383 – volume: 47 start-page: 716 issue: 5 year: 2012 ident: 10.1016/j.geoderma.2013.03.003_bb0170 article-title: Transpiration response of upland rice to water deficit changed by different levels of eucalyptus biochar publication-title: Pesquisa Agropecuária Brasileira doi: 10.1590/S0100-204X2012000500012 – volume: 45 start-page: 238 issue: 3 year: 2010 ident: 10.1016/j.geoderma.2013.03.003_bb0190 article-title: Material derived from hydrothermal carbonization: effects on plant growth and arbuscular mycorrhiza publication-title: Applied Soil Ecology doi: 10.1016/j.apsoil.2010.04.011 – volume: 11 start-page: 421 issue: 2 year: 2006 ident: 10.1016/j.geoderma.2013.03.003_bb0160 article-title: Carbon sequestration by carbonization of biomass and forestation: three case studies publication-title: Mitigation and Adaptation Strategies for Global Change doi: 10.1007/s11027-005-9007-4 – volume: 83 start-page: 1469 issue: 11 year: 2004 ident: 10.1016/j.geoderma.2013.03.003_bb0205 article-title: Characterization of chars from pyrolysis of lignin publication-title: Fuel doi: 10.1016/j.fuel.2003.11.015 – volume: 44 start-page: 892 issue: 5 year: 1980 ident: 10.1016/j.geoderma.2013.03.003_bb0245 article-title: A closed-form equation for predicting the hydraulic conductivity of unsaturated soils publication-title: Soil Science Society of America Journal doi: 10.2136/sssaj1980.03615995004400050002x – volume: 30 start-page: 211 issue: 2 year: 1994 ident: 10.1016/j.geoderma.2013.03.003_bb0055 article-title: Hydraulic conductivity estimation for soils with heterogeneous pore structure publication-title: Water Resources Research doi: 10.1029/93WR02676 – volume: 42 issue: 11 year: 2006 ident: 10.1016/j.geoderma.2013.03.003_bb0175 article-title: Improved estimation of soil water retention characteristics from hydrostatic column experiments publication-title: Water Resources Research doi: 10.1029/2006WR004952 – volume: 19 start-page: 275 issue: 3 year: 1981 ident: 10.1016/j.geoderma.2013.03.003_bb0105 article-title: Comparison of methods for measuring severity of water repellence of sandy soils and assessment of some factors that affect its measurement publication-title: Soil Research doi: 10.1071/SR9810275 – volume: 59 start-page: 68 year: 2012 ident: 10.1016/j.geoderma.2013.03.003_bb0070 article-title: Divergent consequences of hydrochar in the plant–soil system: arbuscular mycorrhiza, nodulation, plant growth and soil aggregation effects publication-title: Applied Soil Ecology doi: 10.1016/j.apsoil.2012.02.021 – volume: 76 start-page: 297 issue: 2 year: 1989 ident: 10.1016/j.geoderma.2013.03.003_bb0095 article-title: Regression and time series model selection in small samples publication-title: Biometrika doi: 10.1093/biomet/76.2.297 – volume: 19 start-page: 4205 issue: 17 year: 2007 ident: 10.1016/j.geoderma.2013.03.003_bb0235 article-title: A direct synthesis of mesoporous carbons with bicontinuous pore morphology from crude plant material by hydrothermal carbonization publication-title: Chemistry of Materials doi: 10.1021/cm0707408 |
SSID | ssj0017020 |
Score | 2.5828195 |
Snippet | Application of biochar (BC) and hydrochar (HTC) in soils is being increasingly discussed as a means to sequestrate carbon and improve chemical and physical... |
SourceID | proquest crossref fao elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 183 |
SubjectTerms | Available water capacity Biochar bulk density carbon Chars Combustion corn corn silage Feedstock feedstocks fungi Hydrochar hydrophobicity Maize organic matter particle size distribution plant growth Sand Sandy soils soil sampling Soils water content Water repellency Water retention characteristics Wettability wilting point |
Title | Impact of biochar and hydrochar addition on water retention and water repellency of sandy soil |
URI | https://dx.doi.org/10.1016/j.geoderma.2013.03.003 https://www.proquest.com/docview/1551638984 https://www.proquest.com/docview/1642319070 https://www.proquest.com/docview/1663532561 |
Volume | 202-203 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwELZ4XOBQ0ZaK5SVX6jVs4tgJPq4QaGlVLnQlTljj2CmLUIKyiyou_HZmvA6iQsABKZc4dpR47JkvmZlvGPtBNUMyWftEOyUSxLe4pYgZ0RFblbVQCiCP7u-zYjyRPy_UxRI76nNhKKwy6v6FTg_aOrYM42wOb6dTyvHNihLNETlkEPcQ46eUJa3yg4enMI-sTCM1Y1Yk1PtZlvA1yogKjgX-oSxfkJ3mrxmo5RraFwo7WKGTDfYpwkc-WjzhZ7bkmy9sffS3ixQa_iu7PA2Jj7ytuZ22lFXFoXH86t518cy5EKfF8fiHULPjHSHn0EQ9-zbyy1BiJt1phhfu-ayd3myyycnxn6NxEqsoJKCEnCcSrK4L4S3kRLYlap35Q1VVHkTpFSioZFHj1vTK20KXwkMNDu26zCtpNX5rf2MrTdv4LcYR2wrtCi1SaaUtU8hA6aJSymsHQtUDpvqpM1WkGKdKFzemjyW7Nv2UG5pyk-ZETjpgw6dxtwuSjXdH6F4y5r_lYtASvDt2C0VpAEUzM5NzQf98AhJOxYB97-VrcJuR7wQa397NTHAoIrg7lG_0wW851GioRN_qgwgvR5yZbX_gFXbYmghlOShseJetzLs7v4fgaG73w-rfZ6uj01_js0eqqQ1Q |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LbxMxEB615QAcEE81PI0ExyW7Xnu3PnCogCqhjwuN1BPGXntLqmq32k1V5cKf4g8y43grEKI9oEq5xLFXyYw98zkz8w3AG-oZkonaJ8pJniC-xSNFzIiO2KqsNSU3FNHdPygmM_H5SB6twc-hFobSKqPtX9n0YK3jyDhKc3w2n1ONb1aU6I4oIIO4Z-hgveuXF3hv699PP6KS33K-8-nwwySJrQUSI7lYJMJYVRfcW5MTAxWvVea3ZFV5w0svjTSVKGrcr156W6iSe1Mbh85O5JWwCi-g-Nx1uCXQXFDbhHc_LvNKsjKNXJBZkdDX-60s-QQ3BXU4C4RHWb5iV83_5RHXa9P-5SGC29u5D_ciXmXbK5E8gDXfPIS728dd5Ozwj-DrNFRasrZmdt5SGRczjWPfl66L75wLiWEMXxeIbTvWEVQPQzRzGKNAEFWC0pN6_GDJ-nZ--hhmNyLbJ7DRtI3fBIZgmitXKJ4KK2yZmsxIVVRSeuUMl_UI5CA6XUVOc2qtcaqH5LUTPYhck8h1mhMb6gjGl-vOVqwe165Qg2b0H_tTo-u5du0mqlIbVE2vZ184_ckUoHfKR_B60K_Gc03BGtP49rzXIYKJaHJLXDEHL49oQtFqXzUHIWWOwDZ7-h8_4RXcnhzu7-m96cHuM7jDQ08Qyll-DhuL7ty_QGS2sC_DSWDw7aaP3i_npEqA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Impact+of+biochar+and+hydrochar+addition+on+water+retention+and+water+repellency+of+sandy+soil&rft.jtitle=Geoderma&rft.au=Abel%2C+Stefan&rft.au=Peters%2C+Andre&rft.au=Trinks%2C+Steffen&rft.au=Schonsky%2C+Horst&rft.date=2013-07-01&rft.issn=0016-7061&rft.volume=202-203&rft.spage=183&rft.epage=191&rft_id=info:doi/10.1016%2Fj.geoderma.2013.03.003&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0016-7061&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0016-7061&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0016-7061&client=summon |