Impact of biochar and hydrochar addition on water retention and water repellency of sandy soil

Application of biochar (BC) and hydrochar (HTC) in soils is being increasingly discussed as a means to sequestrate carbon and improve chemical and physical properties for plant growth. Especially the impact on physical properties is not well investigated so far. We study the impacts of biochar (BC)...

Full description

Saved in:
Bibliographic Details
Published inGeoderma Vol. 202-203; pp. 183 - 191
Main Authors Abel, Stefan, Peters, Andre, Trinks, Steffen, Schonsky, Horst, Facklam, Michael, Wessolek, Gerd
Format Journal Article
LanguageEnglish
Published Elsevier B.V 01.07.2013
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Application of biochar (BC) and hydrochar (HTC) in soils is being increasingly discussed as a means to sequestrate carbon and improve chemical and physical properties for plant growth. Especially the impact on physical properties is not well investigated so far. We study the impacts of biochar (BC) and hydrochar (HTC) on water retention characteristics (WRC) as well as on the wettability of sandy soils, using lab and field studies. Sandy soils with different amounts of organic matter were mixed with BCz (feedstock maize) and HTC (feedstock maize silage). Added amounts were 1, 2.5, and 5wt.%, respectively. The mixtures were packed in 100cm3 soil columns. In a field campaign identical amounts of BCf (feedstock beechwood) were added to the soil. Six months after incorporation undisturbed soil samples were taken. For these field samples available water capacity (AWC) was determined. For the packed soil columns the WRC was measured in the pressure head range from saturation to wilting point (−15,848cm). The extent of water repellency was determined for all samples using the water drop penetration time test. Addition of biochar leads to a decrease in bulk density, an increase in total pore volume as well as an increase in water content at the permanent wilting point. An increase in AWC could be observed for all sandy substrates used, except for the highly humic sand. Notable differences in the effects on the AWC could be measured among the three chars used. Particle size distribution of the chars as well as their consistency had different impacts on the pore size distribution of the soil matrix. No direct impact of the chars on the wettability of the soils could be observed. Local spots with hydrophobic character were detected among the samples with hydrochar, attributed to fungal colonisation. •We determined water retention and wettability of biochar and hydrochar amended soils.•Water retention data is described by unimodal and bimodal retention functions.•We observed an increase in available water capacity due to char amendment.•Water content at permanent wilting point is raised.•We did not observe direct impacts on wettability of soil by char admixture.
AbstractList Application of biochar (BC) and hydrochar (HTC) in soils is being increasingly discussed as a means to sequestrate carbon and improve chemical and physical properties for plant growth. Especially the impact on physical properties is not well investigated so far. We study the impacts of biochar (BC) and hydrochar (HTC) on water retention characteristics (WRC) as well as on the wettability of sandy soils, using lab and field studies. Sandy soils with different amounts of organic matter were mixed with BC sub(z) (feedstock maize) and HTC (feedstock maize silage). Added amounts were 1, 2.5, and 5 wt.%, respectively. The mixtures were packed in 100 cm super(3) soil columns. In a field campaign identical amounts of BC sub(f) (feedstock beechwood) were added to the soil. Six months after incorporation undisturbed soil samples were taken. For these field samples available water capacity (AWC) was determined. For the packed soil columns the WRC was measured in the pressure head range from saturation to wilting point (- 15,848 cm). The extent of water repellency was determined for all samples using the water drop penetration time test. Addition of biochar leads to a decrease in bulk density, an increase in total pore volume as well as an increase in water content at the permanent wilting point. An increase in AWC could be observed for all sandy substrates used, except for the highly humic sand. Notable differences in the effects on the AWC could be measured among the three chars used. Particle size distribution of the chars as well as their consistency had different impacts on the pore size distribution of the soil matrix. No direct impact of the chars on the wettability of the soils could be observed. Local spots with hydrophobic character were detected among the samples with hydrochar, attributed to fungal colonisation.
Application of biochar (BC) and hydrochar (HTC) in soils is being increasingly discussed as a means to sequestrate carbon and improve chemical and physical properties for plant growth. Especially the impact on physical properties is not well investigated so far. We study the impacts of biochar (BC) and hydrochar (HTC) on water retention characteristics (WRC) as well as on the wettability of sandy soils, using lab and field studies. Sandy soils with different amounts of organic matter were mixed with BCz (feedstock maize) and HTC (feedstock maize silage). Added amounts were 1, 2.5, and 5wt.%, respectively. The mixtures were packed in 100cm3 soil columns. In a field campaign identical amounts of BCf (feedstock beechwood) were added to the soil. Six months after incorporation undisturbed soil samples were taken. For these field samples available water capacity (AWC) was determined. For the packed soil columns the WRC was measured in the pressure head range from saturation to wilting point (−15,848cm). The extent of water repellency was determined for all samples using the water drop penetration time test. Addition of biochar leads to a decrease in bulk density, an increase in total pore volume as well as an increase in water content at the permanent wilting point. An increase in AWC could be observed for all sandy substrates used, except for the highly humic sand. Notable differences in the effects on the AWC could be measured among the three chars used. Particle size distribution of the chars as well as their consistency had different impacts on the pore size distribution of the soil matrix. No direct impact of the chars on the wettability of the soils could be observed. Local spots with hydrophobic character were detected among the samples with hydrochar, attributed to fungal colonisation. •We determined water retention and wettability of biochar and hydrochar amended soils.•Water retention data is described by unimodal and bimodal retention functions.•We observed an increase in available water capacity due to char amendment.•Water content at permanent wilting point is raised.•We did not observe direct impacts on wettability of soil by char admixture.
Application of biochar (BC) and hydrochar (HTC) in soils is being increasingly discussed as a means to sequestrate carbon and improve chemical and physical properties for plant growth. Especially the impact on physical properties is not well investigated so far. We study the impacts of biochar (BC) and hydrochar (HTC) on water retention characteristics (WRC) as well as on the wettability of sandy soils, using lab and field studies. Sandy soils with different amounts of organic matter were mixed with BCz (feedstock maize) and HTC (feedstock maize silage). Added amounts were 1, 2.5, and 5wt.%, respectively. The mixtures were packed in 100cm³ soil columns. In a field campaign identical amounts of BCf (feedstock beechwood) were added to the soil. Six months after incorporation undisturbed soil samples were taken. For these field samples available water capacity (AWC) was determined. For the packed soil columns the WRC was measured in the pressure head range from saturation to wilting point (−15,848cm). The extent of water repellency was determined for all samples using the water drop penetration time test. Addition of biochar leads to a decrease in bulk density, an increase in total pore volume as well as an increase in water content at the permanent wilting point. An increase in AWC could be observed for all sandy substrates used, except for the highly humic sand. Notable differences in the effects on the AWC could be measured among the three chars used. Particle size distribution of the chars as well as their consistency had different impacts on the pore size distribution of the soil matrix. No direct impact of the chars on the wettability of the soils could be observed. Local spots with hydrophobic character were detected among the samples with hydrochar, attributed to fungal colonisation.
Application of biochar (BC) and hydrochar (HTC) in soils is being increasingly discussed as a means to sequestrate carbon and improve chemical and physical properties for plant growth. Especially the impact on physical properties is not well investigated so far.We study the impacts of biochar (BC) and hydrochar (HTC) on water retention characteristics (WRC) as well as on the wettability of sandy soils, using lab and field studies. Sandy soils with different amounts of organic matter were mixed with BCz (feedstock maize) and HTC (feedstock maize silage). Added amounts were 1, 2.5, and 5wt.%, respectively. The mixtures were packed in 100cm3 soil columns. In a field campaign identical amounts of BCf (feedstock beechwood) were added to the soil. Six months after incorporation undisturbed soil samples were taken. For these field samples available water capacity (AWC) was determined. For the packed soil columns the WRC was measured in the pressure head range from saturation to wilting point (−15,848cm). The extent of water repellency was determined for all samples using the water drop penetration time test.Addition of biochar leads to a decrease in bulk density, an increase in total pore volume as well as an increase in water content at the permanent wilting point. An increase in AWC could be observed for all sandy substrates used, except for the highly humic sand. Notable differences in the effects on the AWC could be measured among the three chars used. Particle size distribution of the chars as well as their consistency had different impacts on the pore size distribution of the soil matrix.No direct impact of the chars on the wettability of the soils could be observed. Local spots with hydrophobic character were detected among the samples with hydrochar, attributed to fungal colonisation.
Author Facklam, Michael
Wessolek, Gerd
Schonsky, Horst
Abel, Stefan
Peters, Andre
Trinks, Steffen
Author_xml – sequence: 1
  givenname: Stefan
  surname: Abel
  fullname: Abel, Stefan
  email: stefan.abel@tu-berlin.de
– sequence: 2
  givenname: Andre
  surname: Peters
  fullname: Peters, Andre
– sequence: 3
  givenname: Steffen
  surname: Trinks
  fullname: Trinks, Steffen
– sequence: 4
  givenname: Horst
  surname: Schonsky
  fullname: Schonsky, Horst
– sequence: 5
  givenname: Michael
  surname: Facklam
  fullname: Facklam, Michael
– sequence: 6
  givenname: Gerd
  surname: Wessolek
  fullname: Wessolek, Gerd
BookMark eNqNkcFu2zAMhoWhBZp2fYXOx16cUZIlx8AOHYp1C1BghzXXCrRMtwocK5PUDnn7ykt62SUDCAikvp8k-J-zk9GPxNgVhzkHrj-v50_kOwobnAvgcg45QH5gM76oRamFak7YDDJZ1qD5GTuPcZ3TGgTM2ONys0WbCt8XrfP2GUOBY1c877pwyLrOJefHIscfTBSKQInGv6WJfK9taRhotLupU8wfuyJ6N3xkpz0OkS4P7wVb3X17uP1R3v_8vrz9el-iElUqK2ybXgtqUdYgtegbTgtlLaGoSaFCW-keFCdFrW5qQdhjJypeSVu1DbXygl3v-26D__1CMZmNizavhCP5l2i41lJJoTT_D7QSkjeQFzmKKsW1XDSLKqN6j9rgYwzUm21wGww7w8FMNpm1ebfJTDYZyAEyC7_8I7Qu4XTeFNANx-Wf9vIevcGn4KJZ_cqAgmyxbEBk4mZPUL7_q6NgonXZKepcIJtM592xIW-JIr6c
CitedBy_id crossref_primary_10_7717_peerj_18748
crossref_primary_10_3382_japr_pfz071
crossref_primary_10_1016_j_geoderma_2022_115826
crossref_primary_10_1111_sum_12781
crossref_primary_10_1007_s11356_015_5520_5
crossref_primary_10_1016_j_wasman_2019_12_029
crossref_primary_10_1016_j_scitotenv_2021_152638
crossref_primary_10_1111_jac_12305
crossref_primary_10_1021_acs_est_9b05864
crossref_primary_10_1016_j_jhydrol_2024_131946
crossref_primary_10_1016_j_geoderma_2017_11_034
crossref_primary_10_3390_agronomy9110758
crossref_primary_10_1016_j_agwat_2024_109170
crossref_primary_10_1016_j_scitotenv_2024_176104
crossref_primary_10_3390_agronomy14112628
crossref_primary_10_1016_j_geoderma_2020_114184
crossref_primary_10_3390_agronomy14112627
crossref_primary_10_1016_j_fuel_2022_127236
crossref_primary_10_3390_hydrology12030044
crossref_primary_10_1016_j_chemosphere_2017_09_066
crossref_primary_10_1016_j_watres_2014_05_026
crossref_primary_10_1016_j_agee_2017_01_025
crossref_primary_10_1038_s41598_023_33466_8
crossref_primary_10_1111_sum_12531
crossref_primary_10_1007_s11600_022_00725_7
crossref_primary_10_1038_s41598_018_33040_7
crossref_primary_10_1007_s10333_015_0521_z
crossref_primary_10_1111_sum_12650
crossref_primary_10_1016_j_jiec_2017_08_026
crossref_primary_10_12974_2311_8741_2017_05_01_2
crossref_primary_10_3390_biomass2040014
crossref_primary_10_1007_s12517_021_08242_5
crossref_primary_10_1111_sum_12413
crossref_primary_10_1016_j_agwat_2015_09_017
crossref_primary_10_1016_j_chemosphere_2024_142134
crossref_primary_10_3390_molecules26041026
crossref_primary_10_1016_j_still_2020_104713
crossref_primary_10_1016_j_jclepro_2018_09_037
crossref_primary_10_2139_ssrn_4194413
crossref_primary_10_1007_s13399_021_01346_8
crossref_primary_10_3390_su14020684
crossref_primary_10_1111_gcbb_12933
crossref_primary_10_1038_s41598_022_22149_5
crossref_primary_10_5194_soil_1_475_2015
crossref_primary_10_1007_s00374_014_0982_z
crossref_primary_10_1016_j_agee_2017_02_034
crossref_primary_10_1007_s11629_024_9142_6
crossref_primary_10_1007_s13165_018_0217_y
crossref_primary_10_1111_gcb_14658
crossref_primary_10_3390_en15249340
crossref_primary_10_1139_cgj_2024_0180
crossref_primary_10_1016_j_geoderma_2014_12_015
crossref_primary_10_1016_j_pedsph_2022_06_058
crossref_primary_10_17660_ActaHortic_2016_1112_48
crossref_primary_10_1007_s00374_014_0980_1
crossref_primary_10_1016_j_scitotenv_2019_03_417
crossref_primary_10_1080_01140671_2022_2079680
crossref_primary_10_25308_aduziraat_405858
crossref_primary_10_3389_fmicb_2019_02423
crossref_primary_10_3390_agronomy12020311
crossref_primary_10_1007_s11368_016_1567_2
crossref_primary_10_1016_j_scitotenv_2018_08_415
crossref_primary_10_3390_agronomy14061288
crossref_primary_10_1016_j_scitotenv_2015_04_005
crossref_primary_10_31545_intagr_144133
crossref_primary_10_2136_sssaj2017_01_0017
crossref_primary_10_3390_land12122117
crossref_primary_10_1016_j_scitotenv_2022_157460
crossref_primary_10_1016_j_geoderma_2016_07_019
crossref_primary_10_1007_s11356_020_11573_7
crossref_primary_10_5897_AJAR2018_13123
crossref_primary_10_1007_s11368_022_03161_8
crossref_primary_10_1016_j_biombioe_2019_105384
crossref_primary_10_1016_j_still_2016_02_003
crossref_primary_10_1016_j_geoderma_2016_07_015
crossref_primary_10_3390_agriculture9060133
crossref_primary_10_3390_agronomy12091996
crossref_primary_10_3390_pr10091756
crossref_primary_10_1016_j_agee_2018_09_017
crossref_primary_10_3390_su15118700
crossref_primary_10_2134_jeq2014_02_0084
crossref_primary_10_5194_se_5_939_2014
crossref_primary_10_3390_agronomy14020317
crossref_primary_10_1016_j_jenvman_2017_12_041
crossref_primary_10_5194_hess_20_875_2016
crossref_primary_10_1016_j_catena_2021_105284
crossref_primary_10_1093_jee_toaa116
crossref_primary_10_1007_s11756_024_01702_9
crossref_primary_10_3390_agronomy10030398
crossref_primary_10_3390_agronomy10121903
crossref_primary_10_1016_j_geoderma_2018_03_021
crossref_primary_10_1097_SS_0000000000000235
crossref_primary_10_1139_cjm_2022_0031
crossref_primary_10_1016_j_scitotenv_2021_150304
crossref_primary_10_1016_j_fuel_2019_02_039
crossref_primary_10_1016_j_eti_2023_103517
crossref_primary_10_1371_journal_pone_0191246
crossref_primary_10_1002_jpln_201300596
crossref_primary_10_1007_s10705_019_09989_w
crossref_primary_10_1016_j_enconman_2020_113737
crossref_primary_10_1016_j_ecoleng_2018_04_021
crossref_primary_10_3390_agronomy12010205
crossref_primary_10_1016_j_agwat_2018_08_007
crossref_primary_10_1016_j_rama_2023_06_004
crossref_primary_10_3389_fmicb_2019_01361
crossref_primary_10_1016_j_ejsobi_2022_103447
crossref_primary_10_1111_sum_12642
crossref_primary_10_1007_s42773_023_00235_9
crossref_primary_10_3390_soilsystems6020044
crossref_primary_10_1002_adma_202307412
crossref_primary_10_1051_bioconf_20238003001
crossref_primary_10_1016_j_jenvman_2022_116915
crossref_primary_10_1016_j_catena_2017_05_031
crossref_primary_10_1088_1757_899X_960_4_042018
crossref_primary_10_1016_j_envint_2022_107293
crossref_primary_10_1007_s12517_018_4056_7
crossref_primary_10_1007_s13399_020_01226_7
crossref_primary_10_1016_j_still_2016_03_002
crossref_primary_10_1016_j_geoderma_2016_08_019
crossref_primary_10_3390_su16156397
crossref_primary_10_1016_j_geoderma_2020_114241
crossref_primary_10_1007_s11368_016_1448_8
crossref_primary_10_3390_soilsystems8030069
crossref_primary_10_1186_s40538_021_00210_1
crossref_primary_10_1007_s11440_021_01411_6
crossref_primary_10_1007_s11368_015_1312_2
crossref_primary_10_1088_1755_1315_1230_1_012185
crossref_primary_10_1080_15567036_2021_1916652
crossref_primary_10_2136_sssaj2016_07_0230
crossref_primary_10_1039_C7EW00132K
crossref_primary_10_1016_j_orggeochem_2017_06_012
crossref_primary_10_3390_agronomy7030049
crossref_primary_10_1007_s10064_020_01846_3
crossref_primary_10_20961_stjssa_v17i1_37608
crossref_primary_10_1016_j_geoderma_2020_114574
crossref_primary_10_1016_j_geoderma_2023_116470
crossref_primary_10_1016_j_chemosphere_2020_127110
crossref_primary_10_1016_j_geoderma_2018_06_014
crossref_primary_10_1007_s42773_024_00323_4
crossref_primary_10_1016_j_bgtech_2025_100161
crossref_primary_10_1371_journal_pone_0206299
crossref_primary_10_3934_agrfood_2021043
crossref_primary_10_1016_j_scitotenv_2020_137012
crossref_primary_10_1002_vzj2_20266
crossref_primary_10_1016_j_scitotenv_2016_09_025
crossref_primary_10_1016_j_envpol_2019_07_051
crossref_primary_10_1080_03650340_2018_1482536
crossref_primary_10_1002_cjce_24426
crossref_primary_10_1038_s41598_024_76082_w
crossref_primary_10_1111_sum_12945
crossref_primary_10_1039_D0EW00027B
crossref_primary_10_1016_j_geoderma_2017_05_041
crossref_primary_10_2134_agronj2017_11_0665
crossref_primary_10_5897_AJAR2018_12991
crossref_primary_10_1071_SR20250
crossref_primary_10_3390_agriculture13112053
crossref_primary_10_3390_f14010018
crossref_primary_10_1088_1748_9326_aa67bd
crossref_primary_10_1016_j_chemosphere_2014_05_059
crossref_primary_10_3390_agriculture10100471
crossref_primary_10_1111_gcbb_12429
crossref_primary_10_1007_s11368_023_03701_w
crossref_primary_10_1016_j_chemosphere_2019_03_170
crossref_primary_10_1111_jac_12252
crossref_primary_10_1007_s11356_024_33807_8
crossref_primary_10_1016_j_agee_2014_01_007
crossref_primary_10_1016_j_scitotenv_2021_150746
crossref_primary_10_1139_cgj_2023_0739
crossref_primary_10_1016_j_catena_2024_108210
crossref_primary_10_1016_j_chemosphere_2022_135792
crossref_primary_10_2134_agronj2018_01_0055
crossref_primary_10_1016_j_geoderma_2016_03_029
crossref_primary_10_1016_j_jhydrol_2023_130267
crossref_primary_10_1016_j_biombioe_2018_10_004
crossref_primary_10_1016_j_chemosphere_2022_133586
crossref_primary_10_1016_j_scitotenv_2022_156236
crossref_primary_10_1016_j_still_2017_06_007
crossref_primary_10_1016_j_indcrop_2024_119972
crossref_primary_10_1016_j_jclepro_2019_119899
crossref_primary_10_1007_s42832_019_0008_8
crossref_primary_10_1007_s11356_017_8904_x
crossref_primary_10_1016_j_wasman_2024_08_009
crossref_primary_10_3390_su13031330
crossref_primary_10_1007_s13399_020_00847_2
crossref_primary_10_3390_agriculture11111112
crossref_primary_10_1016_j_jhazmat_2020_122507
crossref_primary_10_1007_s11368_019_02293_8
crossref_primary_10_5194_se_5_477_2014
crossref_primary_10_1016_j_egypro_2017_03_1742
crossref_primary_10_1016_j_agee_2020_107258
crossref_primary_10_2478_agri_2020_0005
crossref_primary_10_3390_agriculture10030062
crossref_primary_10_1016_j_catena_2021_105143
crossref_primary_10_1016_j_geoderma_2020_114209
crossref_primary_10_1007_s11368_024_03741_w
crossref_primary_10_1080_15481603_2021_2016262
crossref_primary_10_3390_agronomy11102052
crossref_primary_10_1016_j_jclepro_2018_11_051
crossref_primary_10_3390_pr8101201
crossref_primary_10_3390_f15111914
crossref_primary_10_2478_ats_2024_0016
crossref_primary_10_1016_j_jenvman_2017_11_072
crossref_primary_10_1080_00103624_2017_1358742
crossref_primary_10_2139_ssrn_4175990
crossref_primary_10_1007_s12517_022_11100_7
crossref_primary_10_1016_j_jhazmat_2024_134468
crossref_primary_10_1038_s41598_021_86701_5
crossref_primary_10_1016_j_scitotenv_2020_137690
crossref_primary_10_3390_agronomy11102081
crossref_primary_10_1016_j_jrmge_2020_10_007
crossref_primary_10_1016_j_agee_2016_04_024
crossref_primary_10_1016_j_scitotenv_2022_159806
crossref_primary_10_1080_01904167_2021_1998523
crossref_primary_10_3390_app112210685
crossref_primary_10_1016_j_agwat_2018_06_004
crossref_primary_10_1080_01904167_2024_2369080
crossref_primary_10_1155_2020_8885090
crossref_primary_10_3389_fpls_2023_1163451
crossref_primary_10_1016_j_geoderma_2014_07_002
crossref_primary_10_1080_00103624_2023_2296537
crossref_primary_10_1016_j_anres_2017_04_001
crossref_primary_10_1007_s11270_025_07853_y
crossref_primary_10_1016_j_soisec_2023_100091
crossref_primary_10_1016_j_envpol_2017_04_032
crossref_primary_10_1111_ejss_12300
crossref_primary_10_1007_s40518_017_0082_4
crossref_primary_10_1016_j_jenvman_2023_118548
crossref_primary_10_1016_j_scitotenv_2020_139987
crossref_primary_10_1061__ASCE_IR_1943_4774_0001673
crossref_primary_10_1007_s13399_023_05019_6
crossref_primary_10_1016_j_jece_2024_114577
crossref_primary_10_1016_j_catena_2022_106616
crossref_primary_10_1038_srep24731
crossref_primary_10_1002_jpln_201700221
crossref_primary_10_1007_s12649_018_0364_0
crossref_primary_10_1039_C7EW00380C
crossref_primary_10_1016_j_chemosphere_2015_05_023
crossref_primary_10_1007_s10706_019_01009_6
crossref_primary_10_1007_s11104_014_2294_3
crossref_primary_10_3923_pjbs_2021_1236_1245
crossref_primary_10_1016_j_cej_2021_133142
crossref_primary_10_3390_su12229528
crossref_primary_10_1007_s11368_016_1360_2
crossref_primary_10_1016_j_chemosphere_2015_06_069
crossref_primary_10_1061__ASCE_EE_1943_7870_0001829
crossref_primary_10_1039_D4GC03071K
crossref_primary_10_1016_j_jag_2020_102147
crossref_primary_10_3390_agronomy9040165
crossref_primary_10_1016_j_eti_2025_104118
crossref_primary_10_1016_j_still_2019_01_001
crossref_primary_10_3390_plants9111516
crossref_primary_10_1016_j_wasman_2023_06_035
crossref_primary_10_3390_app10030790
crossref_primary_10_1016_j_scitotenv_2020_139880
crossref_primary_10_1016_j_agwat_2018_06_034
crossref_primary_10_2134_jeq2015_10_0529
crossref_primary_10_3390_app14083472
crossref_primary_10_1007_s42773_024_00336_z
crossref_primary_10_1071_SR19296
crossref_primary_10_1016_j_geodrs_2023_e00740
crossref_primary_10_1051_e3sconf_202125102039
crossref_primary_10_1007_s11356_023_30295_0
crossref_primary_10_1016_j_chemosphere_2014_11_074
crossref_primary_10_1007_s12517_020_06358_8
crossref_primary_10_1016_j_jaap_2017_07_017
crossref_primary_10_1016_j_jaap_2021_105132
crossref_primary_10_1016_j_scitotenv_2021_145676
crossref_primary_10_1016_j_scitotenv_2021_145677
crossref_primary_10_1016_j_scitotenv_2023_166813
crossref_primary_10_3390_su141711104
crossref_primary_10_1016_j_geoderma_2020_114734
crossref_primary_10_1021_acssusresmgt_4c00174
crossref_primary_10_1186_s40562_023_00285_8
crossref_primary_10_1016_j_scitotenv_2020_138988
crossref_primary_10_1088_1755_1315_648_1_012147
crossref_primary_10_3389_fpls_2020_00949
crossref_primary_10_1007_s42398_020_00116_y
crossref_primary_10_1038_s41598_021_86862_3
crossref_primary_10_2135_cropsci2018_08_0485
crossref_primary_10_1002_jctb_5852
crossref_primary_10_1016_j_jenvman_2024_123673
crossref_primary_10_1016_j_geoderma_2019_03_044
crossref_primary_10_1007_s12649_019_00713_x
crossref_primary_10_1016_j_geoderma_2015_03_022
crossref_primary_10_1016_j_geodrs_2023_e00706
crossref_primary_10_1080_1573062X_2022_2062009
crossref_primary_10_1016_j_geoderma_2019_03_027
crossref_primary_10_3389_fmicb_2021_647766
crossref_primary_10_1080_00103624_2024_2319799
crossref_primary_10_1155_2023_7531228
crossref_primary_10_1007_s11356_015_4268_2
crossref_primary_10_1016_j_biortech_2021_125951
crossref_primary_10_1016_j_jenvman_2019_02_010
crossref_primary_10_1016_j_still_2019_05_007
crossref_primary_10_1007_s11356_022_22359_4
crossref_primary_10_1007_s12155_016_9724_4
crossref_primary_10_3390_land12081580
crossref_primary_10_17660_ActaHortic_2019_1266_28
crossref_primary_10_1016_j_geoderma_2018_09_043
crossref_primary_10_1016_j_jaap_2022_105747
crossref_primary_10_17221_15_2018_SWR
crossref_primary_10_1007_s40891_024_00588_6
crossref_primary_10_1016_j_agwat_2023_108584
crossref_primary_10_3390_ma14061335
crossref_primary_10_1007_s10706_020_01549_2
crossref_primary_10_1016_j_apsoil_2019_103378
crossref_primary_10_1016_j_scitotenv_2024_171792
crossref_primary_10_3390_su14041987
crossref_primary_10_3390_plants13131736
crossref_primary_10_1002_agj2_20540
crossref_primary_10_1016_j_jhydrol_2021_127040
crossref_primary_10_3390_en13164098
crossref_primary_10_1088_1755_1315_1168_1_012007
crossref_primary_10_1371_journal_pone_0179079
crossref_primary_10_1007_s00374_020_01436_1
crossref_primary_10_1039_D3EW00054K
crossref_primary_10_1590_01000683rbcs20140818
crossref_primary_10_1007_s42773_020_00054_2
crossref_primary_10_1590_1983_21252024v3711792rc
crossref_primary_10_3390_su12198238
crossref_primary_10_2478_johh_2018_0034
crossref_primary_10_3390_pr9010087
crossref_primary_10_1016_j_jscs_2020_11_003
crossref_primary_10_37281_DRCSF_1_1_9
crossref_primary_10_1016_j_geoderma_2018_02_045
crossref_primary_10_3390_w13040407
crossref_primary_10_1016_j_catena_2017_11_013
crossref_primary_10_1016_j_scitotenv_2018_01_037
crossref_primary_10_3390_f14040658
crossref_primary_10_1016_j_catena_2016_07_037
crossref_primary_10_1007_s12517_020_05337_3
crossref_primary_10_1016_j_still_2014_10_002
crossref_primary_10_3390_pr10040682
crossref_primary_10_1016_j_jenvman_2021_113943
crossref_primary_10_2136_vzj2018_05_0101
crossref_primary_10_1016_j_agee_2016_12_026
crossref_primary_10_1016_j_scitotenv_2016_04_089
crossref_primary_10_1111_jac_12185
crossref_primary_10_3390_toxics8040102
crossref_primary_10_1016_j_geoderma_2015_01_001
crossref_primary_10_1007_s11356_018_3018_7
crossref_primary_10_1039_D0TA05094F
crossref_primary_10_1080_03650340_2023_2172167
crossref_primary_10_1016_j_geoderma_2015_01_009
crossref_primary_10_1061__ASCE_MT_1943_5533_0003915
crossref_primary_10_3390_app10124111
crossref_primary_10_3390_app13137781
crossref_primary_10_1080_00103624_2021_1984508
crossref_primary_10_1016_j_ecoenv_2019_109557
crossref_primary_10_1007_s11356_017_1061_4
crossref_primary_10_1007_s11440_024_02254_7
crossref_primary_10_1016_j_rser_2018_03_071
crossref_primary_10_1007_s11368_015_1187_2
crossref_primary_10_1016_S1002_0160_18_60041_4
crossref_primary_10_1016_j_jclepro_2025_145150
crossref_primary_10_1088_1755_1315_418_1_012067
crossref_primary_10_1007_s11368_017_1906_y
crossref_primary_10_1186_s12870_023_04397_3
crossref_primary_10_3390_horticulturae9050545
crossref_primary_10_1038_ismej_2016_68
crossref_primary_10_1016_j_biombioe_2018_11_019
crossref_primary_10_3390_ijerph19084762
crossref_primary_10_1016_j_biortech_2017_04_012
crossref_primary_10_1016_j_catena_2021_105607
crossref_primary_10_1007_s44246_022_00003_7
crossref_primary_10_1016_j_fuel_2020_117837
crossref_primary_10_1016_j_geoderma_2019_114055
crossref_primary_10_1016_j_sajb_2019_11_015
crossref_primary_10_18393_ejss_1260911
crossref_primary_10_1016_j_geoderma_2015_02_014
crossref_primary_10_1016_j_still_2021_104992
crossref_primary_10_2166_wcc_2024_072
crossref_primary_10_1080_01904167_2022_2027980
crossref_primary_10_1016_j_scitotenv_2019_133732
crossref_primary_10_3390_w14203343
crossref_primary_10_1002_jsfa_7082
crossref_primary_10_1007_s11948_015_9664_y
crossref_primary_10_1016_j_biortech_2018_05_011
crossref_primary_10_1016_j_scitotenv_2015_11_054
crossref_primary_10_1016_j_scitotenv_2019_134829
crossref_primary_10_1039_C9RA08700A
crossref_primary_10_1080_21655979_2021_1993536
crossref_primary_10_1038_s41598_024_57755_y
crossref_primary_10_1071_SR14330
crossref_primary_10_1088_1755_1315_974_1_012086
crossref_primary_10_1016_S1002_0160_20_60094_7
crossref_primary_10_1016_S1002_0160_15_60041_8
crossref_primary_10_1139_cjss_2022_0086
crossref_primary_10_1016_j_indcrop_2016_08_024
crossref_primary_10_3390_agronomy10071005
crossref_primary_10_3390_agronomy9020058
crossref_primary_10_5194_hess_27_3125_2023
crossref_primary_10_1080_10643389_2017_1418580
crossref_primary_10_1016_j_jenvman_2014_09_033
crossref_primary_10_1007_s11356_024_35318_y
crossref_primary_10_1061_JGGEFK_GTENG_11158
crossref_primary_10_3390_app11083432
crossref_primary_10_1080_03650340_2016_1249473
crossref_primary_10_1016_j_scitotenv_2020_138955
crossref_primary_10_1016_j_jenvman_2021_113076
crossref_primary_10_1016_j_scitotenv_2023_162849
crossref_primary_10_1007_s12649_020_01057_7
crossref_primary_10_3390_su13073617
crossref_primary_10_1016_j_bgtech_2023_100040
crossref_primary_10_1016_j_biortech_2020_123428
crossref_primary_10_1007_s11356_020_09482_w
crossref_primary_10_1016_j_jobab_2022_03_003
crossref_primary_10_1016_j_geoderma_2017_08_025
crossref_primary_10_1016_j_still_2016_01_011
crossref_primary_10_24326_asphc_2022_5_6
crossref_primary_10_1016_j_scitotenv_2019_135856
crossref_primary_10_1016_j_catena_2022_106281
crossref_primary_10_1016_j_ceja_2024_100613
crossref_primary_10_1007_s41348_021_00495_2
crossref_primary_10_1007_s00253_020_11036_6
crossref_primary_10_1007_s13762_021_03267_5
crossref_primary_10_1071_SR15102
crossref_primary_10_1007_s44246_022_00032_2
crossref_primary_10_1016_j_jhydrol_2022_128256
crossref_primary_10_1016_j_advwatres_2020_103638
crossref_primary_10_1016_j_still_2017_03_009
crossref_primary_10_1016_j_geoderma_2015_12_016
crossref_primary_10_1371_journal_pone_0154091
crossref_primary_10_1155_2022_5703377
crossref_primary_10_1016_j_envpol_2019_03_035
crossref_primary_10_3390_agronomy9060331
crossref_primary_10_1007_s42773_022_00168_9
crossref_primary_10_1590_1809_4430_eng_agric_v38n4p546_552_2018
crossref_primary_10_1139_er_2016_0008
crossref_primary_10_3390_agronomy9060327
crossref_primary_10_1007_s11104_013_1851_5
crossref_primary_10_1016_j_chemosphere_2021_130003
crossref_primary_10_1111_ejss_13279
crossref_primary_10_3390_ma16041737
crossref_primary_10_1021_acs_energyfuels_5b00512
crossref_primary_10_1016_j_envc_2022_100540
crossref_primary_10_1002_ldr_2906
crossref_primary_10_1016_j_geoderma_2017_08_007
crossref_primary_10_1016_j_biortech_2021_126084
crossref_primary_10_1088_1755_1315_1364_1_012052
crossref_primary_10_1111_ejss_13157
crossref_primary_10_1007_s11368_020_02837_3
crossref_primary_10_1080_00103624_2018_1431269
crossref_primary_10_1080_17583004_2014_913360
crossref_primary_10_1016_j_rser_2021_111873
crossref_primary_10_1080_03650340_2019_1660960
crossref_primary_10_1016_j_agee_2016_09_029
crossref_primary_10_1080_03650340_2016_1193785
crossref_primary_10_1016_j_scitotenv_2020_144124
crossref_primary_10_1016_j_sjbs_2021_03_003
crossref_primary_10_1007_s13399_023_04015_0
crossref_primary_10_1038_s41598_025_85915_1
crossref_primary_10_1007_s11104_023_05912_z
crossref_primary_10_1007_s42773_020_00064_0
crossref_primary_10_1016_S1002_0160_17_60313_8
crossref_primary_10_1016_j_scitotenv_2021_145502
crossref_primary_10_1007_s42729_021_00522_z
crossref_primary_10_1016_j_biosystemseng_2020_01_006
crossref_primary_10_1002_hyp_13881
crossref_primary_10_1007_s13399_021_02060_1
crossref_primary_10_3390_su152015142
crossref_primary_10_1007_s11368_016_1401_x
crossref_primary_10_1111_ejss_13138
crossref_primary_10_3390_soilsystems3010014
crossref_primary_10_1021_acs_est_1c02535
crossref_primary_10_1016_j_scitotenv_2020_136857
crossref_primary_10_5338_KJEA_2018_37_1_09
crossref_primary_10_1111_gcbb_12191
crossref_primary_10_3390_agronomy10040496
crossref_primary_10_1016_j_still_2019_104525
crossref_primary_10_1016_j_eti_2020_100668
crossref_primary_10_1016_j_still_2019_104521
crossref_primary_10_1063_5_0024841
crossref_primary_10_3390_su13105332
crossref_primary_10_1007_s12517_023_11774_7
crossref_primary_10_1007_s12517_020_05586_2
crossref_primary_10_4236_gep_2021_910003
crossref_primary_10_1039_D0SE00608D
crossref_primary_10_1016_j_agwat_2021_106940
crossref_primary_10_1016_j_jenvman_2020_110959
crossref_primary_10_1016_j_wasman_2018_01_014
crossref_primary_10_1007_s11368_022_03359_w
crossref_primary_10_1371_journal_pone_0098523
crossref_primary_10_1021_acsomega_9b03926
crossref_primary_10_3389_fpls_2024_1520272
crossref_primary_10_3390_soilsystems3020027
crossref_primary_10_1007_s42729_021_00756_x
crossref_primary_10_1002_saj2_20239
crossref_primary_10_1016_j_jclepro_2021_127255
crossref_primary_10_1007_s42773_022_00135_4
crossref_primary_10_1016_j_geoderma_2019_01_012
crossref_primary_10_1016_j_ijhydene_2022_09_134
crossref_primary_10_29252_jwmr_10_20_38
crossref_primary_10_1016_j_apsoil_2017_06_008
crossref_primary_10_3390_w16101338
crossref_primary_10_1016_j_fcr_2016_07_014
crossref_primary_10_3390_en16248037
crossref_primary_10_1016_j_scitotenv_2024_172951
crossref_primary_10_1016_j_catena_2015_08_013
crossref_primary_10_1016_j_scitotenv_2018_06_231
crossref_primary_10_1016_j_still_2014_07_016
crossref_primary_10_3390_microorganisms12020295
crossref_primary_10_1016_j_chemosphere_2021_132691
crossref_primary_10_1016_S2095_3119_19_62573_6
crossref_primary_10_32964_TJ14_3_195
crossref_primary_10_1021_acssuschemeng_0c00601
crossref_primary_10_1007_s44246_023_00053_5
crossref_primary_10_1007_s10342_019_01217_y
crossref_primary_10_4236_ojss_2015_51001
crossref_primary_10_1080_00380768_2018_1447293
crossref_primary_10_1007_s42773_021_00104_3
crossref_primary_10_1080_03650340_2017_1322196
crossref_primary_10_1080_10549811_2017_1386113
crossref_primary_10_1051_e3sconf_20183702004
crossref_primary_10_3390_agronomy10101589
crossref_primary_10_3390_soilsystems3030053
crossref_primary_10_1088_1755_1315_724_1_012014
crossref_primary_10_1016_j_catena_2018_10_021
crossref_primary_10_1016_j_still_2015_08_007
crossref_primary_10_1021_acssuschemeng_7b01569
crossref_primary_10_3390_soilsystems4040069
crossref_primary_10_1007_s40093_016_0146_2
crossref_primary_10_1016_j_envres_2024_119531
crossref_primary_10_1016_j_eti_2023_103229
crossref_primary_10_1016_j_geoderma_2016_06_028
crossref_primary_10_1063_1_4967706
crossref_primary_10_3389_sjss_2024_12814
crossref_primary_10_1021_acssuschemeng_3c06354
crossref_primary_10_5194_soil_2_147_2016
crossref_primary_10_3390_soilsystems3030049
crossref_primary_10_2139_ssrn_4094006
Cites_doi 10.2136/sssaj1992.03615995005600010054x
10.1016/j.geoderma.2010.05.013
10.1007/s00374-006-0152-z
10.1890/1540-9295(2007)5[381:BITB]2.0.CO;2
10.1016/S0012-8252(00)00011-8
10.1021/ef900201b
10.1109/TAC.1974.1100705
10.1016/j.orggeochem.2006.06.022
10.1016/j.soilbio.2009.03.016
10.1097/SS.0b013e3182482784
10.1039/b616045j
10.2134/jeq2006.0427
10.1070/RC1995v064n11ABEH000189
10.1002/jpln.201100172
10.1016/j.pedobi.2005.04.004
10.1029/2008WR007136
10.1002/jpln.200625185
10.1016/j.agee.2010.12.005
10.1016/j.biombioe.2012.01.033
10.2307/1948629
10.1023/A:1022833116184
10.1021/es035034w
10.1016/S0254-0584(01)00473-4
10.1080/00986449108911575
10.1016/j.geoderma.2004.07.004
10.1007/s00374-002-0466-4
10.1039/B819318P
10.1097/SS.0b013e3181cb7f46
10.2134/jeq2011.0237
10.1021/es071361i
10.1016/S0008-6223(01)00138-5
10.1016/j.foreco.2006.05.004
10.2136/sssaj2005.0383
10.1590/S0100-204X2012000500012
10.1016/j.apsoil.2010.04.011
10.1007/s11027-005-9007-4
10.1016/j.fuel.2003.11.015
10.2136/sssaj1980.03615995004400050002x
10.1029/93WR02676
10.1029/2006WR004952
10.1071/SR9810275
10.1016/j.apsoil.2012.02.021
10.1093/biomet/76.2.297
10.1021/cm0707408
ContentType Journal Article
Copyright 2013 Elsevier B.V.
Copyright_xml – notice: 2013 Elsevier B.V.
DBID FBQ
AAYXX
CITATION
7UA
C1K
F1W
H96
L.G
8FD
FR3
KR7
7S9
L.6
DOI 10.1016/j.geoderma.2013.03.003
DatabaseName AGRIS
CrossRef
Water Resources Abstracts
Environmental Sciences and Pollution Management
ASFA: Aquatic Sciences and Fisheries Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Technology Research Database
Engineering Research Database
Civil Engineering Abstracts
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
ASFA: Aquatic Sciences and Fisheries Abstracts
Water Resources Abstracts
Environmental Sciences and Pollution Management
Technology Research Database
Civil Engineering Abstracts
Engineering Research Database
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList Technology Research Database


Aquatic Science & Fisheries Abstracts (ASFA) Professional
AGRICOLA
Database_xml – sequence: 1
  dbid: FBQ
  name: AGRIS
  url: http://www.fao.org/agris/Centre.asp?Menu_1ID=DB&Menu_2ID=DB1&Language=EN&Content=http://www.fao.org/agris/search?Language=EN
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Agriculture
EISSN 1872-6259
EndPage 191
ExternalDocumentID 10_1016_j_geoderma_2013_03_003
US201500013902
S0016706113000803
GroupedDBID --K
--M
-DZ
-~X
.~1
0R~
0SF
1B1
1RT
1~.
1~5
29H
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JM
9JN
AABNK
AABVA
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALCJ
AALRI
AAOAW
AAQFI
AAQXK
AATLK
AAXUO
ABEFU
ABFNM
ABFRF
ABGRD
ABJNI
ABMAC
ABQEM
ABQYD
ABXDB
ABYKQ
ACDAQ
ACGFO
ACGFS
ACIUM
ACLVX
ACRLP
ACSBN
ADBBV
ADEZE
ADMUD
ADQTV
AEBSH
AEFWE
AEKER
AENEX
AEQOU
AFFNX
AFKWA
AFTJW
AFXIZ
AGHFR
AGUBO
AGYEJ
AHHHB
AI.
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
ATOGT
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
CBWCG
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
GROUPED_DOAJ
HLV
HMA
HMC
HVGLF
HZ~
H~9
IHE
IMUCA
J1W
K-O
KOM
LW9
LY3
LY9
M41
MO0
N9A
O-L
O9-
OAUVE
OHT
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SAB
SDF
SDG
SEN
SEP
SES
SEW
SPC
SPCBC
SSA
SSE
SSZ
T5K
VH1
WUQ
XPP
Y6R
ZMT
~02
~G-
ABPIF
ABPTK
FBQ
AAHBH
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
ADVLN
AEGFY
AEIPS
AEUPX
AFJKZ
AFPUW
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
7UA
C1K
F1W
H96
L.G
8FD
FR3
KR7
7S9
L.6
ID FETCH-LOGICAL-a524t-4ab9f62eba370362f91e85ccea27e5a5ac46f051e5eb6972eafad24143c4b9eb3
IEDL.DBID .~1
ISSN 0016-7061
IngestDate Fri Jul 11 01:11:45 EDT 2025
Thu Jul 10 18:18:55 EDT 2025
Fri Jul 11 02:53:13 EDT 2025
Thu Apr 24 23:13:11 EDT 2025
Tue Jul 01 04:04:36 EDT 2025
Wed Dec 27 19:21:52 EST 2023
Fri Feb 23 02:20:28 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Available water capacity
Hydrochar
Water repellency
Water retention characteristics
Biochar
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a524t-4ab9f62eba370362f91e85ccea27e5a5ac46f051e5eb6972eafad24143c4b9eb3
Notes http://dx.doi.org/10.1016/j.geoderma.2013.03.003
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PQID 1551638984
PQPubID 23462
PageCount 9
ParticipantIDs proquest_miscellaneous_1663532561
proquest_miscellaneous_1642319070
proquest_miscellaneous_1551638984
crossref_primary_10_1016_j_geoderma_2013_03_003
crossref_citationtrail_10_1016_j_geoderma_2013_03_003
fao_agris_US201500013902
elsevier_sciencedirect_doi_10_1016_j_geoderma_2013_03_003
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2013-07-01
PublicationDateYYYYMMDD 2013-07-01
PublicationDate_xml – month: 07
  year: 2013
  text: 2013-07-01
  day: 01
PublicationDecade 2010
PublicationTitle Geoderma
PublicationYear 2013
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Brocksiepe (bb0020) 2000
Rillig (bb0185) 2005; 49
Gajić, Koch (bb0060) 2012; 41
Sohi, Lopez-Capel, Krull, Bol (bb0210) 2009; 5 (09)
Tryon (bb0240) 1948
van Genuchten (bb0245) 1980; 44
Baccile, Laurent, Babonneau, Fayon, Titirici, Antonietti (bb0010) 2009; 113
King (bb0105) 1981; 19
Rillig, Wagner, Salem, Antunes, George, Ramke, Titirici, Antonietti (bb0190) 2010; 45
George, Wagner, Kücke, Rillig (bb0070) 2012; 59
Liang, Lehmann, Solomon, Kinyangi, Grossman, O'Neill, Skjemstad, Thies, Luizao, Petersen (bb0140) 2006; 70
Hurvich, Tsai (bb0095) 1989; 76
Täumer, Stoffregen, Wessolek (bb0220) 2005; 125
Doerr, Shakesby, Walsh (bb0050) 2000; 51
Titirici, Antonietti (bb0225) 2009; 39
Haas, Nimlos, Donohoe (bb0090) 2009; 23
Liu, Schulz, Brandl, Miehtke, Huwe, Glaser (bb0145) 2012; 172
Titirici, Thomas, Antonietti (bb0230) 2007; 31
Novak, Lima, Xing, Gaskin, Steiner, Das, Ahmedna, Rehrah, Watts, Busscher (bb0150) 2009; 3
Cheng, Lehmann, Thies, Burton, Engelhard (bb0035) 2006; 37
Guo, Yang, Yu, Zhao, Wang, Xu (bb0085) 2002; 74
Chun, Sheng, Chiou, Xing (bb0040) 2004; 38
Kinney, Masiello, Dugan, Hockaday, Dean, Zygourakis, Barnes (bb0110) 2012; 41
Karhu, Mattila, Bergström, Regina (bb0100) 2011; 140
Glaser, Lehmann, Zech (bb0075) 2002; 35
Peters, Durner (bb0175) 2006; 42
Peters, Durner (bb0180) 2008; 44
Gundale, DeLuca (bb0080) 2006; 231
Ogawa, Okimori, Takahashi (bb0160) 2006; 11
Dekker, Jungerius (bb0045) 1990; 18
Vartapetyan, Voloshchuk (bb0250) 1995; 64
Chan (bb0030) 1992; 56
Scheffer, Schachtschabel (bb0200) 2002
Durner (bb0055) 1994; 30
Laird, Fleming, Davis, Horton, Wang, Karlen (bb0125) 2010; 158
Gaunt, Lehmann (bb0065) 2008; 42
Lehmann (bb0130) 2007; 5
Busscher, Novak, Evans, Watts, Niandou, Ahmedna (bb0025) 2010; 175
Lehmann, Pereira da Silva, Steiner, Nehls, Zech, Glaser (bb0135) 2003; 249
Oberlin (bb0155) 2002; 40
Rondon, Lehmann, Ramirez, Hurtado (bb0195) 2007; 43
Sharma, Wooten, Baliga, Lin, Geoffrey Chan, Hajaligol (bb0205) 2004; 83
Akaike (bb0005) 1974; 19
Briggs, Breiner, Graham (bb0015) 2012; 177
Oguntunde, Abiodun, Ajayi, van de Giesen (bb0165) 2008; 171
Titirici, Thomas, Yu, Müller, Antonietti (bb0235) 2007; 19
Steinbeiss, Gleixner, Antonietti (bb0215) 2009; 41
Pereira, Heinemann, Madari, Carvalho, Kliemann, Santos (bb0170) 2012; 47
Klitzke, Lang (bb0115) 2007; 36
Laine, Simoni, Calles (bb0120) 1991; 99
Akaike (10.1016/j.geoderma.2013.03.003_bb0005) 1974; 19
King (10.1016/j.geoderma.2013.03.003_bb0105) 1981; 19
Laird (10.1016/j.geoderma.2013.03.003_bb0125) 2010; 158
Glaser (10.1016/j.geoderma.2013.03.003_bb0075) 2002; 35
Hurvich (10.1016/j.geoderma.2013.03.003_bb0095) 1989; 76
Tryon (10.1016/j.geoderma.2013.03.003_bb0240) 1948
Brocksiepe (10.1016/j.geoderma.2013.03.003_bb0020) 2000
Täumer (10.1016/j.geoderma.2013.03.003_bb0220) 2005; 125
Peters (10.1016/j.geoderma.2013.03.003_bb0180) 2008; 44
Kinney (10.1016/j.geoderma.2013.03.003_bb0110) 2012; 41
Titirici (10.1016/j.geoderma.2013.03.003_bb0230) 2007; 31
Oguntunde (10.1016/j.geoderma.2013.03.003_bb0165) 2008; 171
Gundale (10.1016/j.geoderma.2013.03.003_bb0080) 2006; 231
George (10.1016/j.geoderma.2013.03.003_bb0070) 2012; 59
van Genuchten (10.1016/j.geoderma.2013.03.003_bb0245) 1980; 44
Baccile (10.1016/j.geoderma.2013.03.003_bb0010) 2009; 113
Briggs (10.1016/j.geoderma.2013.03.003_bb0015) 2012; 177
Chan (10.1016/j.geoderma.2013.03.003_bb0030) 1992; 56
Titirici (10.1016/j.geoderma.2013.03.003_bb0225) 2009; 39
Klitzke (10.1016/j.geoderma.2013.03.003_bb0115) 2007; 36
Rillig (10.1016/j.geoderma.2013.03.003_bb0190) 2010; 45
Peters (10.1016/j.geoderma.2013.03.003_bb0175) 2006; 42
Lehmann (10.1016/j.geoderma.2013.03.003_bb0130) 2007; 5
Liang (10.1016/j.geoderma.2013.03.003_bb0140) 2006; 70
Pereira (10.1016/j.geoderma.2013.03.003_bb0170) 2012; 47
Karhu (10.1016/j.geoderma.2013.03.003_bb0100) 2011; 140
Lehmann (10.1016/j.geoderma.2013.03.003_bb0135) 2003; 249
Scheffer (10.1016/j.geoderma.2013.03.003_bb0200) 2002
Gajić (10.1016/j.geoderma.2013.03.003_bb0060) 2012; 41
Steinbeiss (10.1016/j.geoderma.2013.03.003_bb0215) 2009; 41
Novak (10.1016/j.geoderma.2013.03.003_bb0150) 2009; 3
Gaunt (10.1016/j.geoderma.2013.03.003_bb0065) 2008; 42
Sohi (10.1016/j.geoderma.2013.03.003_bb0210) 2009; 5 (09)
Busscher (10.1016/j.geoderma.2013.03.003_bb0025) 2010; 175
Durner (10.1016/j.geoderma.2013.03.003_bb0055) 1994; 30
Ogawa (10.1016/j.geoderma.2013.03.003_bb0160) 2006; 11
Haas (10.1016/j.geoderma.2013.03.003_bb0090) 2009; 23
Guo (10.1016/j.geoderma.2013.03.003_bb0085) 2002; 74
Titirici (10.1016/j.geoderma.2013.03.003_bb0235) 2007; 19
Vartapetyan (10.1016/j.geoderma.2013.03.003_bb0250) 1995; 64
Oberlin (10.1016/j.geoderma.2013.03.003_bb0155) 2002; 40
Sharma (10.1016/j.geoderma.2013.03.003_bb0205) 2004; 83
Laine (10.1016/j.geoderma.2013.03.003_bb0120) 1991; 99
Rillig (10.1016/j.geoderma.2013.03.003_bb0185) 2005; 49
Rondon (10.1016/j.geoderma.2013.03.003_bb0195) 2007; 43
Liu (10.1016/j.geoderma.2013.03.003_bb0145) 2012; 172
Dekker (10.1016/j.geoderma.2013.03.003_bb0045) 1990; 18
Doerr (10.1016/j.geoderma.2013.03.003_bb0050) 2000; 51
Cheng (10.1016/j.geoderma.2013.03.003_bb0035) 2006; 37
Chun (10.1016/j.geoderma.2013.03.003_bb0040) 2004; 38
References_xml – volume: 44
  year: 2008
  ident: bb0180
  article-title: A simple model for describing hydraulic conductivity in unsaturated porous media accounting for film and capillary flow
  publication-title: Water Resources Research
– volume: 125
  start-page: 107
  year: 2005
  end-page: 115
  ident: bb0220
  article-title: Determination of repellency distribution using soil organic matter and water content
  publication-title: Geoderma
– volume: 19
  start-page: 716
  year: 1974
  end-page: 723
  ident: bb0005
  article-title: A new look at the statistical model identification
  publication-title: IEEE Transactions on Automatic Control
– volume: 76
  start-page: 297
  year: 1989
  end-page: 307
  ident: bb0095
  article-title: Regression and time series model selection in small samples
  publication-title: Biometrika
– volume: 41
  start-page: 1067
  year: 2012
  end-page: 1075
  ident: bb0060
  article-title: Sugar beet (l.) growth reduction caused by hydrochar is related to nitrogen supply
  publication-title: Journal of Environmental Quality
– volume: 5 (09)
  start-page: 17
  year: 2009
  end-page: 31
  ident: bb0210
  article-title: Biochar, climate change and soil: a review to guide future research
  publication-title: CSIRO Land and Water Science Report
– volume: 44
  start-page: 892
  year: 1980
  end-page: 898
  ident: bb0245
  article-title: A closed-form equation for predicting the hydraulic conductivity of unsaturated soils
  publication-title: Soil Science Society of America Journal
– volume: 38
  start-page: 4649
  year: 2004
  end-page: 4655
  ident: bb0040
  article-title: Compositions and sorptive properties of crop residue-derived chars
  publication-title: Environmental Science and Technology
– volume: 175
  start-page: 10
  year: 2010
  end-page: 14
  ident: bb0025
  article-title: Influence of pecan biochar on physical properties of a Norfolk loamy sand
  publication-title: Soil Science
– volume: 99
  start-page: 15
  year: 1991
  end-page: 23
  ident: bb0120
  article-title: Preparation of activated carbon from coconut shell in a small scale cocurrent flow rotary kiln
  publication-title: Chemical Engineering Communications
– volume: 64
  start-page: 985
  year: 1995
  end-page: 1001
  ident: bb0250
  article-title: The mechanism of the adsorption of water molecules on carbon adsorbents
  publication-title: Russian Chemical Reviews
– start-page: 81
  year: 1948
  end-page: 115
  ident: bb0240
  article-title: Effect of charcoal on certain physical, chemical, and biological properties of forest soils
  publication-title: Ecological Monographs
– volume: 40
  start-page: 7
  year: 2002
  end-page: 24
  ident: bb0155
  article-title: Pyrocarbons
  publication-title: Carbon
– volume: 74
  start-page: 320
  year: 2002
  end-page: 323
  ident: bb0085
  article-title: The preparation and mechanism studies of rice husk based porous carbon
  publication-title: Materials Chemistry and Physics
– volume: 23
  start-page: 3810
  year: 2009
  end-page: 3817
  ident: bb0090
  article-title: Real-time and post-reaction microscopic structural analysis of biomass undergoing pyrolysis
  publication-title: Energy & Fuels
– volume: 51
  start-page: 33
  year: 2000
  end-page: 65
  ident: bb0050
  article-title: Soil water repellency: its causes, characteristics and hydro-geomorphological significance
  publication-title: Earth-Science Reviews
– volume: 231
  start-page: 86
  year: 2006
  end-page: 93
  ident: bb0080
  article-title: Temperature and source material influence ecological attributes of ponderosa pine and Douglas-fir charcoal
  publication-title: Forest Ecology and Management
– volume: 41
  start-page: 1301
  year: 2009
  end-page: 1310
  ident: bb0215
  article-title: Effect of biochar amendment on soil carbon balance and soil microbial activity
  publication-title: Soil Biology and Biochemistry
– volume: 31
  start-page: 787
  year: 2007
  end-page: 789
  ident: bb0230
  article-title: Back in the black: hydrothermal carbonization of plant material as an efficient chemical process to treat the CO
  publication-title: New Journal of Chemistry
– volume: 113
  start-page: 9644
  year: 2009
  end-page: 9654
  ident: bb0010
  article-title: Structural characterization of hydrothermal carbon spheres by advanced solid-state MAS
  publication-title: Journal of Physical Chemistry
– volume: 35
  start-page: 219
  year: 2002
  end-page: 230
  ident: bb0075
  article-title: Ameliorating physical and chemical properties of highly weathered soils in the tropics with charcoal—a review
  publication-title: Biology and Fertility of Soils
– volume: 42
  start-page: 4152
  year: 2008
  end-page: 4158
  ident: bb0065
  article-title: Energy balance and emissions associated with biochar sequestration and pyrolysis bioenergy production
  publication-title: Environmental Science and Technology
– volume: 70
  start-page: 1719
  year: 2006
  end-page: 1730
  ident: bb0140
  article-title: Black carbon increases cation exchange capacity in soils
  publication-title: Soil Science Society of America Journal
– volume: 19
  start-page: 4205
  year: 2007
  end-page: 4212
  ident: bb0235
  article-title: A direct synthesis of mesoporous carbons with bicontinuous pore morphology from crude plant material by hydrothermal carbonization
  publication-title: Chemistry of Materials
– volume: 37
  start-page: 1477
  year: 2006
  end-page: 1488
  ident: bb0035
  article-title: Oxidation of black carbon by biotic and abiotic processes
  publication-title: Organic Geochemistry
– volume: 42
  year: 2006
  ident: bb0175
  article-title: Improved estimation of soil water retention characteristics from hydrostatic column experiments
  publication-title: Water Resources Research
– volume: 3
  start-page: 195
  year: 2009
  end-page: 206
  ident: bb0150
  article-title: Characterization of designer biochar produced at different temperatures and their effects on a loamy sand
  publication-title: Annals of Environmental Science
– volume: 49
  start-page: 395
  year: 2005
  end-page: 399
  ident: bb0185
  article-title: A connection between fungal hydrophobins and soil water repellency?
  publication-title: Pedobiologia
– volume: 43
  start-page: 699
  year: 2007
  end-page: 708
  ident: bb0195
  article-title: Biological nitrogen fixation by common beans (
  publication-title: Biology and Fertility of Soils
– volume: 172
  start-page: 698
  year: 2012
  end-page: 707
  ident: bb0145
  article-title: Short-term effect of biochar and compost on soil fertility and water status of a dystric cambisol in NE Germany under field conditions
  publication-title: Journal of Plant Nutrition and Soil Science
– volume: 140
  start-page: 309
  year: 2011
  end-page: 313
  ident: bb0100
  article-title: Biochar addition to agricultural soil increased CH
  publication-title: Agriculture, Ecosystems and Environment
– volume: 36
  start-page: 1187
  year: 2007
  end-page: 1193
  ident: bb0115
  article-title: Hydrophobicity of soil colloids and heavy metal mobilization
  publication-title: Journal of Environmental Quality
– volume: 249
  start-page: 343
  year: 2003
  end-page: 357
  ident: bb0135
  article-title: Nutrient availability and leaching in an archaeological Anthrosol and a Ferralsol of the Central Amazon basin: fertilizer, manure and charcoal amendments
  publication-title: Plant and Soil
– volume: 177
  start-page: 263
  year: 2012
  end-page: 268
  ident: bb0015
  article-title: Physical and chemical properties of
  publication-title: Soil Science
– year: 2000
  ident: bb0020
  article-title: Charcoal
  publication-title: Ullmann's Encyclopedia of Industrial Chemistry
– volume: 18
  start-page: 173
  year: 1990
  end-page: 183
  ident: bb0045
  article-title: Water repellency in the dunes with special reference to the Netherlands
  publication-title: Catena Supplement
– volume: 5
  start-page: 381
  year: 2007
  end-page: 387
  ident: bb0130
  article-title: Bio-energy in the black
  publication-title: Frontiers in Ecology and the Environment
– volume: 47
  start-page: 716
  year: 2012
  end-page: 721
  ident: bb0170
  article-title: Transpiration response of upland rice to water deficit changed by different levels of eucalyptus biochar
  publication-title: Pesquisa Agropecuária Brasileira
– volume: 59
  start-page: 68
  year: 2012
  end-page: 72
  ident: bb0070
  article-title: Divergent consequences of hydrochar in the plant–soil system: arbuscular mycorrhiza, nodulation, plant growth and soil aggregation effects
  publication-title: Applied Soil Ecology
– volume: 39
  start-page: 103
  year: 2009
  end-page: 116
  ident: bb0225
  article-title: Chemistry and materials options of sustainable carbon materials made by hydrothermal carbonization
  publication-title: Chemical Society Reviews
– volume: 30
  start-page: 211
  year: 1994
  end-page: 223
  ident: bb0055
  article-title: Hydraulic conductivity estimation for soils with heterogeneous pore structure
  publication-title: Water Resources Research
– volume: 41
  start-page: 34
  year: 2012
  end-page: 43
  ident: bb0110
  article-title: Hydrologic properties of biochars produced at different temperatures
  publication-title: Biomass and Bioenergy
– volume: 158
  start-page: 443
  year: 2010
  end-page: 449
  ident: bb0125
  article-title: Impact of biochar amendments on the quality of a typical midwestern agricultural soil
  publication-title: Geoderma
– volume: 56
  start-page: 326
  year: 1992
  end-page: 329
  ident: bb0030
  article-title: Development of seasonal water repellence under direct drilling
  publication-title: Soil Science Society of America Journal
– year: 2002
  ident: bb0200
  article-title: Lehrbuch der Bodenkunde
– volume: 19
  start-page: 275
  year: 1981
  end-page: 285
  ident: bb0105
  article-title: Comparison of methods for measuring severity of water repellence of sandy soils and assessment of some factors that affect its measurement
  publication-title: Soil Research
– volume: 83
  start-page: 1469
  year: 2004
  end-page: 1482
  ident: bb0205
  article-title: Characterization of chars from pyrolysis of lignin
  publication-title: Fuel
– volume: 45
  start-page: 238
  year: 2010
  end-page: 242
  ident: bb0190
  article-title: Material derived from hydrothermal carbonization: effects on plant growth and arbuscular mycorrhiza
  publication-title: Applied Soil Ecology
– volume: 11
  start-page: 421
  year: 2006
  end-page: 436
  ident: bb0160
  article-title: Carbon sequestration by carbonization of biomass and forestation: three case studies
  publication-title: Mitigation and Adaptation Strategies for Global Change
– volume: 171
  start-page: 591
  year: 2008
  end-page: 596
  ident: bb0165
  article-title: Effects of charcoal production on soil physical properties in Ghana
  publication-title: Journal of Plant Nutrition and Soil Science
– year: 2002
  ident: 10.1016/j.geoderma.2013.03.003_bb0200
– volume: 56
  start-page: 326
  issue: 1
  year: 1992
  ident: 10.1016/j.geoderma.2013.03.003_bb0030
  article-title: Development of seasonal water repellence under direct drilling
  publication-title: Soil Science Society of America Journal
  doi: 10.2136/sssaj1992.03615995005600010054x
– volume: 158
  start-page: 443
  issue: 3–4
  year: 2010
  ident: 10.1016/j.geoderma.2013.03.003_bb0125
  article-title: Impact of biochar amendments on the quality of a typical midwestern agricultural soil
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2010.05.013
– volume: 43
  start-page: 699
  issue: 6
  year: 2007
  ident: 10.1016/j.geoderma.2013.03.003_bb0195
  article-title: Biological nitrogen fixation by common beans (Phaseolus vulgaris L.) increases with bio-char additions
  publication-title: Biology and Fertility of Soils
  doi: 10.1007/s00374-006-0152-z
– volume: 5
  start-page: 381
  issue: 7
  year: 2007
  ident: 10.1016/j.geoderma.2013.03.003_bb0130
  article-title: Bio-energy in the black
  publication-title: Frontiers in Ecology and the Environment
  doi: 10.1890/1540-9295(2007)5[381:BITB]2.0.CO;2
– volume: 51
  start-page: 33
  issue: 1
  year: 2000
  ident: 10.1016/j.geoderma.2013.03.003_bb0050
  article-title: Soil water repellency: its causes, characteristics and hydro-geomorphological significance
  publication-title: Earth-Science Reviews
  doi: 10.1016/S0012-8252(00)00011-8
– volume: 23
  start-page: 3810
  issue: 7
  year: 2009
  ident: 10.1016/j.geoderma.2013.03.003_bb0090
  article-title: Real-time and post-reaction microscopic structural analysis of biomass undergoing pyrolysis
  publication-title: Energy & Fuels
  doi: 10.1021/ef900201b
– volume: 19
  start-page: 716
  issue: 6
  year: 1974
  ident: 10.1016/j.geoderma.2013.03.003_bb0005
  article-title: A new look at the statistical model identification
  publication-title: IEEE Transactions on Automatic Control
  doi: 10.1109/TAC.1974.1100705
– volume: 37
  start-page: 1477
  issue: 11
  year: 2006
  ident: 10.1016/j.geoderma.2013.03.003_bb0035
  article-title: Oxidation of black carbon by biotic and abiotic processes
  publication-title: Organic Geochemistry
  doi: 10.1016/j.orggeochem.2006.06.022
– volume: 41
  start-page: 1301
  issue: 6
  year: 2009
  ident: 10.1016/j.geoderma.2013.03.003_bb0215
  article-title: Effect of biochar amendment on soil carbon balance and soil microbial activity
  publication-title: Soil Biology and Biochemistry
  doi: 10.1016/j.soilbio.2009.03.016
– volume: 177
  start-page: 263
  issue: 4
  year: 2012
  ident: 10.1016/j.geoderma.2013.03.003_bb0015
  article-title: Physical and chemical properties of Pinus ponderosa charcoal: implications for soil modification
  publication-title: Soil Science
  doi: 10.1097/SS.0b013e3182482784
– volume: 31
  start-page: 787
  issue: 6
  year: 2007
  ident: 10.1016/j.geoderma.2013.03.003_bb0230
  article-title: Back in the black: hydrothermal carbonization of plant material as an efficient chemical process to treat the CO2 problem?
  publication-title: New Journal of Chemistry
  doi: 10.1039/b616045j
– year: 2000
  ident: 10.1016/j.geoderma.2013.03.003_bb0020
  article-title: Charcoal
– volume: 36
  start-page: 1187
  issue: 4
  year: 2007
  ident: 10.1016/j.geoderma.2013.03.003_bb0115
  article-title: Hydrophobicity of soil colloids and heavy metal mobilization
  publication-title: Journal of Environmental Quality
  doi: 10.2134/jeq2006.0427
– volume: 64
  start-page: 985
  issue: 11
  year: 1995
  ident: 10.1016/j.geoderma.2013.03.003_bb0250
  article-title: The mechanism of the adsorption of water molecules on carbon adsorbents
  publication-title: Russian Chemical Reviews
  doi: 10.1070/RC1995v064n11ABEH000189
– volume: 172
  start-page: 698
  issue: 5
  year: 2012
  ident: 10.1016/j.geoderma.2013.03.003_bb0145
  article-title: Short-term effect of biochar and compost on soil fertility and water status of a dystric cambisol in NE Germany under field conditions
  publication-title: Journal of Plant Nutrition and Soil Science
  doi: 10.1002/jpln.201100172
– volume: 113
  start-page: 9644
  issue: 22
  year: 2009
  ident: 10.1016/j.geoderma.2013.03.003_bb0010
  article-title: Structural characterization of hydrothermal carbon spheres by advanced solid-state MAS 13C NMR investigations
  publication-title: Journal of Physical Chemistry
– volume: 49
  start-page: 395
  issue: 5
  year: 2005
  ident: 10.1016/j.geoderma.2013.03.003_bb0185
  article-title: A connection between fungal hydrophobins and soil water repellency?
  publication-title: Pedobiologia
  doi: 10.1016/j.pedobi.2005.04.004
– volume: 44
  issue: 11
  year: 2008
  ident: 10.1016/j.geoderma.2013.03.003_bb0180
  article-title: A simple model for describing hydraulic conductivity in unsaturated porous media accounting for film and capillary flow
  publication-title: Water Resources Research
  doi: 10.1029/2008WR007136
– volume: 171
  start-page: 591
  issue: 4
  year: 2008
  ident: 10.1016/j.geoderma.2013.03.003_bb0165
  article-title: Effects of charcoal production on soil physical properties in Ghana
  publication-title: Journal of Plant Nutrition and Soil Science
  doi: 10.1002/jpln.200625185
– volume: 140
  start-page: 309
  issue: 1
  year: 2011
  ident: 10.1016/j.geoderma.2013.03.003_bb0100
  article-title: Biochar addition to agricultural soil increased CH4 uptake and water holding capacity—results from a short-term pilot field study
  publication-title: Agriculture, Ecosystems and Environment
  doi: 10.1016/j.agee.2010.12.005
– volume: 41
  start-page: 34
  year: 2012
  ident: 10.1016/j.geoderma.2013.03.003_bb0110
  article-title: Hydrologic properties of biochars produced at different temperatures
  publication-title: Biomass and Bioenergy
  doi: 10.1016/j.biombioe.2012.01.033
– start-page: 81
  year: 1948
  ident: 10.1016/j.geoderma.2013.03.003_bb0240
  article-title: Effect of charcoal on certain physical, chemical, and biological properties of forest soils
  publication-title: Ecological Monographs
  doi: 10.2307/1948629
– volume: 249
  start-page: 343
  issue: 2
  year: 2003
  ident: 10.1016/j.geoderma.2013.03.003_bb0135
  article-title: Nutrient availability and leaching in an archaeological Anthrosol and a Ferralsol of the Central Amazon basin: fertilizer, manure and charcoal amendments
  publication-title: Plant and Soil
  doi: 10.1023/A:1022833116184
– volume: 38
  start-page: 4649
  issue: 17
  year: 2004
  ident: 10.1016/j.geoderma.2013.03.003_bb0040
  article-title: Compositions and sorptive properties of crop residue-derived chars
  publication-title: Environmental Science and Technology
  doi: 10.1021/es035034w
– volume: 74
  start-page: 320
  issue: 3
  year: 2002
  ident: 10.1016/j.geoderma.2013.03.003_bb0085
  article-title: The preparation and mechanism studies of rice husk based porous carbon
  publication-title: Materials Chemistry and Physics
  doi: 10.1016/S0254-0584(01)00473-4
– volume: 18
  start-page: 173
  year: 1990
  ident: 10.1016/j.geoderma.2013.03.003_bb0045
  article-title: Water repellency in the dunes with special reference to the Netherlands
  publication-title: Catena Supplement
– volume: 99
  start-page: 15
  issue: 1
  year: 1991
  ident: 10.1016/j.geoderma.2013.03.003_bb0120
  article-title: Preparation of activated carbon from coconut shell in a small scale cocurrent flow rotary kiln
  publication-title: Chemical Engineering Communications
  doi: 10.1080/00986449108911575
– volume: 125
  start-page: 107
  issue: 1
  year: 2005
  ident: 10.1016/j.geoderma.2013.03.003_bb0220
  article-title: Determination of repellency distribution using soil organic matter and water content
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2004.07.004
– volume: 5 (09)
  start-page: 17
  year: 2009
  ident: 10.1016/j.geoderma.2013.03.003_bb0210
  article-title: Biochar, climate change and soil: a review to guide future research
– volume: 3
  start-page: 195
  year: 2009
  ident: 10.1016/j.geoderma.2013.03.003_bb0150
  article-title: Characterization of designer biochar produced at different temperatures and their effects on a loamy sand
  publication-title: Annals of Environmental Science
– volume: 35
  start-page: 219
  issue: 4
  year: 2002
  ident: 10.1016/j.geoderma.2013.03.003_bb0075
  article-title: Ameliorating physical and chemical properties of highly weathered soils in the tropics with charcoal—a review
  publication-title: Biology and Fertility of Soils
  doi: 10.1007/s00374-002-0466-4
– volume: 39
  start-page: 103
  issue: 1
  year: 2009
  ident: 10.1016/j.geoderma.2013.03.003_bb0225
  article-title: Chemistry and materials options of sustainable carbon materials made by hydrothermal carbonization
  publication-title: Chemical Society Reviews
  doi: 10.1039/B819318P
– volume: 175
  start-page: 10
  issue: 1
  year: 2010
  ident: 10.1016/j.geoderma.2013.03.003_bb0025
  article-title: Influence of pecan biochar on physical properties of a Norfolk loamy sand
  publication-title: Soil Science
  doi: 10.1097/SS.0b013e3181cb7f46
– volume: 41
  start-page: 1067
  issue: 4
  year: 2012
  ident: 10.1016/j.geoderma.2013.03.003_bb0060
  article-title: Sugar beet (l.) growth reduction caused by hydrochar is related to nitrogen supply
  publication-title: Journal of Environmental Quality
  doi: 10.2134/jeq2011.0237
– volume: 42
  start-page: 4152
  issue: 11
  year: 2008
  ident: 10.1016/j.geoderma.2013.03.003_bb0065
  article-title: Energy balance and emissions associated with biochar sequestration and pyrolysis bioenergy production
  publication-title: Environmental Science and Technology
  doi: 10.1021/es071361i
– volume: 40
  start-page: 7
  issue: 1
  year: 2002
  ident: 10.1016/j.geoderma.2013.03.003_bb0155
  article-title: Pyrocarbons
  publication-title: Carbon
  doi: 10.1016/S0008-6223(01)00138-5
– volume: 231
  start-page: 86
  issue: 1–3
  year: 2006
  ident: 10.1016/j.geoderma.2013.03.003_bb0080
  article-title: Temperature and source material influence ecological attributes of ponderosa pine and Douglas-fir charcoal
  publication-title: Forest Ecology and Management
  doi: 10.1016/j.foreco.2006.05.004
– volume: 70
  start-page: 1719
  issue: 5
  year: 2006
  ident: 10.1016/j.geoderma.2013.03.003_bb0140
  article-title: Black carbon increases cation exchange capacity in soils
  publication-title: Soil Science Society of America Journal
  doi: 10.2136/sssaj2005.0383
– volume: 47
  start-page: 716
  issue: 5
  year: 2012
  ident: 10.1016/j.geoderma.2013.03.003_bb0170
  article-title: Transpiration response of upland rice to water deficit changed by different levels of eucalyptus biochar
  publication-title: Pesquisa Agropecuária Brasileira
  doi: 10.1590/S0100-204X2012000500012
– volume: 45
  start-page: 238
  issue: 3
  year: 2010
  ident: 10.1016/j.geoderma.2013.03.003_bb0190
  article-title: Material derived from hydrothermal carbonization: effects on plant growth and arbuscular mycorrhiza
  publication-title: Applied Soil Ecology
  doi: 10.1016/j.apsoil.2010.04.011
– volume: 11
  start-page: 421
  issue: 2
  year: 2006
  ident: 10.1016/j.geoderma.2013.03.003_bb0160
  article-title: Carbon sequestration by carbonization of biomass and forestation: three case studies
  publication-title: Mitigation and Adaptation Strategies for Global Change
  doi: 10.1007/s11027-005-9007-4
– volume: 83
  start-page: 1469
  issue: 11
  year: 2004
  ident: 10.1016/j.geoderma.2013.03.003_bb0205
  article-title: Characterization of chars from pyrolysis of lignin
  publication-title: Fuel
  doi: 10.1016/j.fuel.2003.11.015
– volume: 44
  start-page: 892
  issue: 5
  year: 1980
  ident: 10.1016/j.geoderma.2013.03.003_bb0245
  article-title: A closed-form equation for predicting the hydraulic conductivity of unsaturated soils
  publication-title: Soil Science Society of America Journal
  doi: 10.2136/sssaj1980.03615995004400050002x
– volume: 30
  start-page: 211
  issue: 2
  year: 1994
  ident: 10.1016/j.geoderma.2013.03.003_bb0055
  article-title: Hydraulic conductivity estimation for soils with heterogeneous pore structure
  publication-title: Water Resources Research
  doi: 10.1029/93WR02676
– volume: 42
  issue: 11
  year: 2006
  ident: 10.1016/j.geoderma.2013.03.003_bb0175
  article-title: Improved estimation of soil water retention characteristics from hydrostatic column experiments
  publication-title: Water Resources Research
  doi: 10.1029/2006WR004952
– volume: 19
  start-page: 275
  issue: 3
  year: 1981
  ident: 10.1016/j.geoderma.2013.03.003_bb0105
  article-title: Comparison of methods for measuring severity of water repellence of sandy soils and assessment of some factors that affect its measurement
  publication-title: Soil Research
  doi: 10.1071/SR9810275
– volume: 59
  start-page: 68
  year: 2012
  ident: 10.1016/j.geoderma.2013.03.003_bb0070
  article-title: Divergent consequences of hydrochar in the plant–soil system: arbuscular mycorrhiza, nodulation, plant growth and soil aggregation effects
  publication-title: Applied Soil Ecology
  doi: 10.1016/j.apsoil.2012.02.021
– volume: 76
  start-page: 297
  issue: 2
  year: 1989
  ident: 10.1016/j.geoderma.2013.03.003_bb0095
  article-title: Regression and time series model selection in small samples
  publication-title: Biometrika
  doi: 10.1093/biomet/76.2.297
– volume: 19
  start-page: 4205
  issue: 17
  year: 2007
  ident: 10.1016/j.geoderma.2013.03.003_bb0235
  article-title: A direct synthesis of mesoporous carbons with bicontinuous pore morphology from crude plant material by hydrothermal carbonization
  publication-title: Chemistry of Materials
  doi: 10.1021/cm0707408
SSID ssj0017020
Score 2.5828195
Snippet Application of biochar (BC) and hydrochar (HTC) in soils is being increasingly discussed as a means to sequestrate carbon and improve chemical and physical...
SourceID proquest
crossref
fao
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 183
SubjectTerms Available water capacity
Biochar
bulk density
carbon
Chars
Combustion
corn
corn silage
Feedstock
feedstocks
fungi
Hydrochar
hydrophobicity
Maize
organic matter
particle size distribution
plant growth
Sand
Sandy soils
soil sampling
Soils
water content
Water repellency
Water retention characteristics
Wettability
wilting point
Title Impact of biochar and hydrochar addition on water retention and water repellency of sandy soil
URI https://dx.doi.org/10.1016/j.geoderma.2013.03.003
https://www.proquest.com/docview/1551638984
https://www.proquest.com/docview/1642319070
https://www.proquest.com/docview/1663532561
Volume 202-203
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwELZ4XOBQ0ZaK5SVX6jVs4tgJPq4QaGlVLnQlTljj2CmLUIKyiyou_HZmvA6iQsABKZc4dpR47JkvmZlvGPtBNUMyWftEOyUSxLe4pYgZ0RFblbVQCiCP7u-zYjyRPy_UxRI76nNhKKwy6v6FTg_aOrYM42wOb6dTyvHNihLNETlkEPcQ46eUJa3yg4enMI-sTCM1Y1Yk1PtZlvA1yogKjgX-oSxfkJ3mrxmo5RraFwo7WKGTDfYpwkc-WjzhZ7bkmy9sffS3ixQa_iu7PA2Jj7ytuZ22lFXFoXH86t518cy5EKfF8fiHULPjHSHn0EQ9-zbyy1BiJt1phhfu-ayd3myyycnxn6NxEqsoJKCEnCcSrK4L4S3kRLYlap35Q1VVHkTpFSioZFHj1vTK20KXwkMNDu26zCtpNX5rf2MrTdv4LcYR2wrtCi1SaaUtU8hA6aJSymsHQtUDpvqpM1WkGKdKFzemjyW7Nv2UG5pyk-ZETjpgw6dxtwuSjXdH6F4y5r_lYtASvDt2C0VpAEUzM5NzQf98AhJOxYB97-VrcJuR7wQa397NTHAoIrg7lG_0wW851GioRN_qgwgvR5yZbX_gFXbYmghlOShseJetzLs7v4fgaG73w-rfZ6uj01_js0eqqQ1Q
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LbxMxEB615QAcEE81PI0ExyW7Xnu3PnCogCqhjwuN1BPGXntLqmq32k1V5cKf4g8y43grEKI9oEq5xLFXyYw98zkz8w3AG-oZkonaJ8pJniC-xSNFzIiO2KqsNSU3FNHdPygmM_H5SB6twc-hFobSKqPtX9n0YK3jyDhKc3w2n1ONb1aU6I4oIIO4Z-hgveuXF3hv699PP6KS33K-8-nwwySJrQUSI7lYJMJYVRfcW5MTAxWvVea3ZFV5w0svjTSVKGrcr156W6iSe1Mbh85O5JWwCi-g-Nx1uCXQXFDbhHc_LvNKsjKNXJBZkdDX-60s-QQ3BXU4C4RHWb5iV83_5RHXa9P-5SGC29u5D_ciXmXbK5E8gDXfPIS728dd5Ozwj-DrNFRasrZmdt5SGRczjWPfl66L75wLiWEMXxeIbTvWEVQPQzRzGKNAEFWC0pN6_GDJ-nZ--hhmNyLbJ7DRtI3fBIZgmitXKJ4KK2yZmsxIVVRSeuUMl_UI5CA6XUVOc2qtcaqH5LUTPYhck8h1mhMb6gjGl-vOVqwe165Qg2b0H_tTo-u5du0mqlIbVE2vZ184_ckUoHfKR_B60K_Gc03BGtP49rzXIYKJaHJLXDEHL49oQtFqXzUHIWWOwDZ7-h8_4RXcnhzu7-m96cHuM7jDQ08Qyll-DhuL7ty_QGS2sC_DSWDw7aaP3i_npEqA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Impact+of+biochar+and+hydrochar+addition+on+water+retention+and+water+repellency+of+sandy+soil&rft.jtitle=Geoderma&rft.au=Abel%2C+Stefan&rft.au=Peters%2C+Andre&rft.au=Trinks%2C+Steffen&rft.au=Schonsky%2C+Horst&rft.date=2013-07-01&rft.issn=0016-7061&rft.volume=202-203&rft.spage=183&rft.epage=191&rft_id=info:doi/10.1016%2Fj.geoderma.2013.03.003&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0016-7061&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0016-7061&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0016-7061&client=summon