Documentation Matters: Human-Centered AI System to Assist Data Science Code Documentation in Computational Notebooks

Computational notebooks allow data scientists to express their ideas through a combination of code and documentation. However, data scientists often pay attention only to the code, and neglect creating or updating their documentation during quick iterations. Inspired by human documentation practices...

Full description

Saved in:
Bibliographic Details
Published inarXiv.org
Main Authors April Yi Wang, Wang, Dakuo, Drozdal, Jaimie, Muller, Michael, Park, Soya, Weisz, Justin D, Liu, Xuye, Wu, Lingfei, Dugan, Casey
Format Paper Journal Article
LanguageEnglish
Published Ithaca Cornell University Library, arXiv.org 17.08.2022
Subjects
Online AccessGet full text
ISSN2331-8422
DOI10.48550/arxiv.2102.12592

Cover

Loading…
Abstract Computational notebooks allow data scientists to express their ideas through a combination of code and documentation. However, data scientists often pay attention only to the code, and neglect creating or updating their documentation during quick iterations. Inspired by human documentation practices learned from 80 highly-voted Kaggle notebooks, we design and implement Themisto, an automated documentation generation system to explore how human-centered AI systems can support human data scientists in the machine learning code documentation scenario. Themisto facilitates the creation of documentation via three approaches: a deep-learning-based approach to generate documentation for source code, a query-based approach to retrieve online API documentation for source code, and a user prompt approach to nudge users to write documentation. We evaluated Themisto in a within-subjects experiment with 24 data science practitioners, and found that automated documentation generation techniques reduced the time for writing documentation, reminded participants to document code they would have ignored, and improved participants' satisfaction with their computational notebook.
AbstractList Computational notebooks allow data scientists to express their ideas through a combination of code and documentation. However, data scientists often pay attention only to the code, and neglect creating or updating their documentation during quick iterations. Inspired by human documentation practices learned from 80 highly-voted Kaggle notebooks, we design and implement Themisto, an automated documentation generation system to explore how human-centered AI systems can support human data scientists in the machine learning code documentation scenario. Themisto facilitates the creation of documentation via three approaches: a deep-learning-based approach to generate documentation for source code, a query-based approach to retrieve online API documentation for source code, and a user prompt approach to nudge users to write documentation. We evaluated Themisto in a within-subjects experiment with 24 data science practitioners, and found that automated documentation generation techniques reduced the time for writing documentation, reminded participants to document code they would have ignored, and improved participants' satisfaction with their computational notebook.
ACM Trans. Comput.-Hum. Interact. 29, 2, Article 17 (April 2022), 33 pages Computational notebooks allow data scientists to express their ideas through a combination of code and documentation. However, data scientists often pay attention only to the code, and neglect creating or updating their documentation during quick iterations. Inspired by human documentation practices learned from 80 highly-voted Kaggle notebooks, we design and implement Themisto, an automated documentation generation system to explore how human-centered AI systems can support human data scientists in the machine learning code documentation scenario. Themisto facilitates the creation of documentation via three approaches: a deep-learning-based approach to generate documentation for source code, a query-based approach to retrieve online API documentation for source code, and a user prompt approach to nudge users to write documentation. We evaluated Themisto in a within-subjects experiment with 24 data science practitioners, and found that automated documentation generation techniques reduced the time for writing documentation, reminded participants to document code they would have ignored, and improved participants' satisfaction with their computational notebook.
Author April Yi Wang
Muller, Michael
Liu, Xuye
Park, Soya
Weisz, Justin D
Wu, Lingfei
Drozdal, Jaimie
Wang, Dakuo
Dugan, Casey
Author_xml – sequence: 1
  fullname: April Yi Wang
– sequence: 2
  givenname: Dakuo
  surname: Wang
  fullname: Wang, Dakuo
– sequence: 3
  givenname: Jaimie
  surname: Drozdal
  fullname: Drozdal, Jaimie
– sequence: 4
  givenname: Michael
  surname: Muller
  fullname: Muller, Michael
– sequence: 5
  givenname: Soya
  surname: Park
  fullname: Park, Soya
– sequence: 6
  givenname: Justin
  surname: Weisz
  middlename: D
  fullname: Weisz, Justin D
– sequence: 7
  givenname: Xuye
  surname: Liu
  fullname: Liu, Xuye
– sequence: 8
  givenname: Lingfei
  surname: Wu
  fullname: Wu, Lingfei
– sequence: 9
  givenname: Casey
  surname: Dugan
  fullname: Dugan, Casey
BackLink https://doi.org/10.1145/3489465$$DView published paper (Access to full text may be restricted)
https://doi.org/10.48550/arXiv.2102.12592$$DView paper in arXiv
BookMark eNpVkE9PwjAYhxujiYh8AE828Tzs3q7r5o0MFBLUA9yXdnuXDFmLbWfk2zvBi6f33y9P3jw35NJYg4TcxWyaZEKwR-W-268pxAymMYgcLsgIOI-jLAG4JhPvd4wxSCUIwUckzG3Vd2iCCq019FWFgM4_0WXfKRMVwwEd1nS2opujD9jRYOnM-9YHOldB0U3VoqmQFrZG-p_VmmHbHfrzqPb0zQbU1n74W3LVqL3HyV8dk-3zYlsso_X7y6qYrSMlIIkkS1imJUOd5QxrjrGqIK21HFoJNYLmTEFeS5HmeVw1kqumkXmqK6U1lzEfk_sz9qSkPLi2U-5Y_qopT2qGxMM5cXD2s0cfyp3t3fCrLyHJB0YmeMJ_AIb1ad8
ContentType Paper
Journal Article
Copyright 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
http://creativecommons.org/licenses/by/4.0
Copyright_xml – notice: 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: http://creativecommons.org/licenses/by/4.0
DBID 8FE
8FG
ABJCF
ABUWG
AFKRA
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
HCIFZ
L6V
M7S
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
AKY
GOX
DOI 10.48550/arxiv.2102.12592
DatabaseName ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
Technology collection
ProQuest One Community College
ProQuest Central Korea
SciTech Premium Collection
ProQuest Engineering Collection
Engineering Database
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
arXiv Computer Science
arXiv.org
DatabaseTitle Publicly Available Content Database
Engineering Database
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
ProQuest One Academic UKI Edition
ProQuest Central Korea
Materials Science & Engineering Collection
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
Engineering Collection
DatabaseTitleList Publicly Available Content Database

Database_xml – sequence: 1
  dbid: GOX
  name: arXiv.org
  url: http://arxiv.org/find
  sourceTypes: Open Access Repository
– sequence: 2
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 2331-8422
ExternalDocumentID 2102_12592
Genre Working Paper/Pre-Print
GroupedDBID 8FE
8FG
ABJCF
ABUWG
AFKRA
ALMA_UNASSIGNED_HOLDINGS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
FRJ
HCIFZ
L6V
M7S
M~E
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
AKY
GOX
ID FETCH-LOGICAL-a524-70408b70eb890ed3e1ac26db7d3e72de2b30a29d756991cf73aff796bcabb3713
IEDL.DBID GOX
IngestDate Tue Jul 22 23:14:44 EDT 2025
Mon Jun 30 09:23:17 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a524-70408b70eb890ed3e1ac26db7d3e72de2b30a29d756991cf73aff796bcabb3713
Notes SourceType-Working Papers-1
ObjectType-Working Paper/Pre-Print-1
content type line 50
OpenAccessLink https://arxiv.org/abs/2102.12592
PQID 2493718534
PQPubID 2050157
ParticipantIDs arxiv_primary_2102_12592
proquest_journals_2493718534
PublicationCentury 2000
PublicationDate 20220817
PublicationDateYYYYMMDD 2022-08-17
PublicationDate_xml – month: 08
  year: 2022
  text: 20220817
  day: 17
PublicationDecade 2020
PublicationPlace Ithaca
PublicationPlace_xml – name: Ithaca
PublicationTitle arXiv.org
PublicationYear 2022
Publisher Cornell University Library, arXiv.org
Publisher_xml – name: Cornell University Library, arXiv.org
SSID ssj0002672553
Score 1.8065754
SecondaryResourceType preprint
Snippet Computational notebooks allow data scientists to express their ideas through a combination of code and documentation. However, data scientists often pay...
ACM Trans. Comput.-Hum. Interact. 29, 2, Article 17 (April 2022), 33 pages Computational notebooks allow data scientists to express their ideas through a...
SourceID arxiv
proquest
SourceType Open Access Repository
Aggregation Database
SubjectTerms Automation
Computer Science - Human-Computer Interaction
Documentation
Scientists
Source code
SummonAdditionalLinks – databaseName: ProQuest Technology Collection
  dbid: 8FG
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3PS8MwFA66IXjzJ5tOycFrtzRpm9aLyHROYcPDhN1Kkiawg-1cO_HP9yWNigjeSgM9fK_vvbzvJe9D6IooakfCZAE3DAoUQ6zMC1OBMVnECqZj6aiL2TyZvkRPy3jpCbfaH6v8iokuUBeVshz5CMoExm1yiW7Wb4FVjbLdVS-hsYu6IWQa-4enk4dvjoUmHHbMrG1mutFdI7H5WL0PbZ0zhNRuG6Bd9-pPKHb5ZXKAus9irTeHaEeXR2jPHctU9TFqIAdsX_31oBLP2mGY19hR74FlZq3UJr59xO3kcdxUGAAH0-E70QjsPRePq0Lj399albhVdPBsIJ5Xjeuc1idoMblfjKeB10kIREyjgIMfppITLdOMaMA3FIomheTwyGmhqWRE0KzgcQKbQWU4E8bwLJFKSAmYslPUKatS9xCGxVRmTEciIZFQJAULSirDkAttYiP6qOfQytftKIzcApk7IPto8AVg7t2gzn-Mdvb_8jnap_ZegZ01yweo02y2-gKyfSMvnUk_AcBWqzA
  priority: 102
  providerName: ProQuest
Title Documentation Matters: Human-Centered AI System to Assist Data Science Code Documentation in Computational Notebooks
URI https://www.proquest.com/docview/2493718534
https://arxiv.org/abs/2102.12592
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwdV3NS8MwFH_MefEiisqmc7yD12qXtE3rbc59KGyKTNitJG0CO9jJ1okn_3Zf0g4R8VJKmzbwe837St_vAVz5GbOUMIknDKcAxfi2zQvPPGOSgOdch8qlLqazaPIaPC7CRQNwVwsj15_Lj4ofWG1ubDxyTSY4ISW7x5j9ZWv8tKg2Jx0VVz3-Zxz5mO7SH9Xq7MXoCA5rRw_7lWSOoaGLEyhJp2_f6nKfAqcVueUtulS6ZzOttnUm9h-wYhLHcoUEIIkC72UpsV6JOFjlGn-_a1lg1aGhzu7hbFW6ndDNKcxHw_lg4tV9DzwZssATtK5iJXyt4sTXhFdPZizKlaBTwXLNFPclS3IRRuTcZUZwaYxIIpVJpTgFnWfQLFaFbgHSzVglXAcy8gOZ-TFJRDHV6wmpTWhkG1oOrfS9orZILZCpA7INnR2Aaf1Zb1KK1WgCsvDB-f9PXsABszUCljdWdKBZrrf6kix3qbqwF4_GXdi_G86eX7pOmHScfg2_Aatinis
linkProvider Cornell University
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NS8MwFH-oQ_TmJ35MzUGPdV3SNq0gIptzc254mLBbSdoEPNjOrX79Uf6PvqSdIoI3b6WBEF5e3vf7PYBjN6EGEiZyuGbooGjXjHlhiaN15LGUKV_a0MVgGHTvvZuxP16Aj3kvjCmrnMtEK6jTPDEx8ga6CYwb5eJdTJ4cMzXKZFfnIzRKtuir91d02WbnvTbe7wmlnatRq-tUUwUc4VPP4ci1oeSukmHkKjxNUyQ0SCXHT05TRSVzBY1S7gdoOiWaM6E1jwKZCCnxBAy3XYSax1hkKgjDzvVXSIcGHA10VuZOLVJYQ0zfHl5OjVt1ipaEybfW7K9fkt-qs84a1O7ERE3XYUFlG7Bsq0CT2SYUqHKeH6tupIwMSuzNM2Ij_Y4JBJvJnuSyR0qgc1LkBO8XOYW0RSFIJShIK08V-bnXQ0bKARJV8JEM88ImamdbMPoPAm7DUpZnagcILoYyYsoTgeuJxA2RYSSVzSYXSvta7MKOpVY8KZE3YkPI2BJyF-pzAsbVq5vF3zyy9_fyEax0R4Pb-LY37O_DKjUtDQbmltdhqZg-qwM0NAp5aK-XQPzP7PQJ03voCg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Documentation+Matters%3A+Human-Centered+AI+System+to+Assist+Data+Science+Code+Documentation+in+Computational+Notebooks&rft.jtitle=arXiv.org&rft.au=April+Yi+Wang&rft.au=Wang%2C+Dakuo&rft.au=Drozdal%2C+Jaimie&rft.au=Muller%2C+Michael&rft.date=2022-08-17&rft.pub=Cornell+University+Library%2C+arXiv.org&rft.eissn=2331-8422&rft_id=info:doi/10.48550%2Farxiv.2102.12592