Hydrogeochemical processes governing the origin, transport and fate of major and trace elements from mine wastes and mineralized rock to surface waters
► Hydrogeochemistry of mines and mineralized areas is complex. ► Mass balances and saturation indices add insight and organization to acid rock drainage data. ► Large database confirms geochemical generalizations for behavior of iron and aluminum. The formation of acid mine drainage from metals extr...
Saved in:
Published in | Applied geochemistry Vol. 26; no. 11; pp. 1777 - 1791 |
---|---|
Main Author | |
Format | Journal Article Conference Proceeding |
Language | English |
Published |
Kidlington
Elsevier Ltd
01.11.2011
Elsevier |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | ► Hydrogeochemistry of mines and mineralized areas is complex. ► Mass balances and saturation indices add insight and organization to acid rock drainage data. ► Large database confirms geochemical generalizations for behavior of iron and aluminum.
The formation of acid mine drainage from metals extraction or natural acid rock drainage and its mixing with surface waters is a complex process that depends on petrology and mineralogy, structural geology, geomorphology, surface-water hydrology, hydrogeology, climatology, microbiology, chemistry, and mining and mineral processing history. The concentrations of metals, metalloids, acidity, alkalinity, Cl
−, F
− and
SO
4
2
-
found in receiving streams, rivers, and lakes are affected by all of these factors and their interactions. Remediation of mine sites is an engineering concern but to design a remediation plan without understanding the hydrogeochemical processes of contaminant mobilization can lead to ineffective and excessively costly remediation. Furthermore, remediation needs a goal commensurate with natural background conditions rather than water-quality standards that might bear little relation to conditions of a highly mineralized terrain. This paper reviews hydrogeochemical generalizations, primarily from US Geological Survey research, that enhance our understanding of the origin, transport, and fate of contaminants released from mined and mineralized areas.
Mobility of potential or actual contaminants from mining and mineral processing activities depends on (1)
occurrence
: is the mineral source of the contaminant actually present? (2)
abundance
: is the mineral present in sufficient quantity to make a difference? (3)
reactivity
: what are the energetics, rates, and mechanisms of sorption and mineral dissolution and precipitation relative to the flow rate of the water? and (4)
hydrology
: what are the main flow paths for contaminated water? Estimates of relative proportions of minerals dissolved and precipitated can be made with mass-balance calculations if minerals and water compositions along a flow path are known. Combined with discharge, these mass-balance estimates quantify the actual weathering rate of pyrite mineralization in the environment and compare reasonably well with laboratory rates of pyrite oxidation except when large quantities of soluble salts and evaporated mine waters have accumulated underground. Quantitative mineralogy with trace-element compositions can substantially improve the identification of source minerals for specific trace elements through mass balances. Post-dissolution sorption and precipitation (attenuation) reactions depend on the chemical behavior of each element, solution composition and pH, aqueous speciation, temperature, and contact-time with mineral surfaces. For example, little metal attenuation occurs in waters of low pH (<3.5) and metals tend to maintain element ratios indicative of the main mineral or group of minerals from which they dissolved, except Fe, SiO
2, and redox-sensitive oxyanions (As, Sb, Se, Mo, Cr, V). Once dissolved, metal and metalloid concentrations are strongly affected by redox conditions and pH. Iron is the most reactive because it is rapidly oxidized by bacteria and archaea and Fe(III) hydrolyzes and precipitates at low pH (1–3) which is related directly to its first hydrolysis constant, pK
1
=
2.2. Several insoluble sulfate minerals precipitate at low pH including anglesite, barite, jarosite, alunite and basaluminite. Aluminum hydrolyzes near pH 5 (pK
1
=
5.0) and provides buffering and removal of Al by mineral precipitation from pH 4–5.5. Dissolved sulfate behaves conservatively because the amount removed from solution by precipitation is usually too small relative to the high concentrations in the water column and relative to the flow rate of the water. |
---|---|
AbstractList | The formation of acid mine drainage from metals extraction or natural acid rock drainage and its mixing with surface waters is a complex process that depends on petrology and mineralogy, structural geology, geomorphology, surface-water hydrology, hydrogeology, climatology, microbiology, chemistry, and mining and mineral processing history. The concentrations of metals, metalloids, acidity, alkalinity, Cl super(-), F super(-) and [inline image] found in receiving streams, rivers, and lakes are affected by all of these factors and their interactions. Remediation of mine sites is an engineering concern but to design a remediation plan without understanding the hydrogeochemical processes of contaminant mobilization can lead to ineffective and excessively costly remediation. Furthermore, remediation needs a goal commensurate with natural background conditions rather than water-quality standards that might bear little relation to conditions of a highly mineralized terrain. This paper reviews hydrogeochemical generalizations, primarily from US Geological Survey research, that enhance our understanding of the origin, transport, and fate of contaminants released from mined and mineralized areas. Mobility of potential or actual contaminants from mining and mineral processing activities depends on (1) occurrence: is the mineral source of the contaminant actually present? (2) abundance: is the mineral present in sufficient quantity to make a difference? (3) reactivity: what are the energetics, rates, and mechanisms of sorption and mineral dissolution and precipitation relative to the flow rate of the water? and (4) hydrology: what are the main flow paths for contaminated water? Estimates of relative proportions of minerals dissolved and precipitated can be made with mass-balance calculations if minerals and water compositions along a flow path are known. Combined with discharge, these mass-balance estimates quantify the actual weathering rate of pyrite mineralization in the environment and compare reasonably well with laboratory rates of pyrite oxidation except when large quantities of soluble salts and evaporated mine waters have accumulated underground. Quantitative mineralogy with trace-element compositions can substantially improve the identification of source minerals for specific trace elements through mass balances. Post-dissolution sorption and precipitation (attenuation) reactions depend on the chemical behavior of each element, solution composition and pH, aqueous speciation, temperature, and contact-time with mineral surfaces. For example, little metal attenuation occurs in waters of low pH (<3.5) and metals tend to maintain element ratios indicative of the main mineral or group of minerals from which they dissolved, except Fe, SiO sub(2), and redox-sensitive oxyanions (As, Sb, Se, Mo, Cr, V). Once dissolved, metal and metalloid concentrations are strongly affected by redox conditions and pH. Iron is the most reactive because it is rapidly oxidized by bacteria and archaea and Fe(III) hydrolyzes and precipitates at low pH (1-3) which is related directly to its first hydrolysis constant, pK sub(1) = 2.2. Several insoluble sulfate minerals precipitate at low pH including anglesite, barite, jarosite, alunite and basaluminite. Aluminum hydrolyzes near pH 5 (pK sub(1) = 5.0) and provides buffering and removal of Al by mineral precipitation from pH 4-5.5. Dissolved sulfate behaves conservatively because the amount removed from solution by precipitation is usually too small relative to the high concentrations in the water column and relative to the flow rate of the water. The formation of acid mine drainage from metals extraction or natural acid rock drainage and its mixing with surface waters is a complex process that depends on petrology and mineralogy, structural geology, geomorphology, surface-water hydrology, hydrogeology, climatology, microbiology, chemistry, and mining and mineral processing history. The concentrations of metals, metalloids, acidity, alkalinity, Cl⁻, F⁻ and SO₄ ²⁻ found in receiving streams, rivers, and lakes are affected by all of these factors and their interactions. Remediation of mine sites is an engineering concern but to design a remediation plan without understanding the hydrogeochemical processes of contaminant mobilization can lead to ineffective and excessively costly remediation. Furthermore, remediation needs a goal commensurate with natural background conditions rather than water-quality standards that might bear little relation to conditions of a highly mineralized terrain. This paper reviews hydrogeochemical generalizations, primarily from US Geological Survey research, that enhance our understanding of the origin, transport, and fate of contaminants released from mined and mineralized areas. Mobility of potential or actual contaminants from mining and mineral processing activities depends on (1) occurrence: is the mineral source of the contaminant actually present? (2) abundance: is the mineral present in sufficient quantity to make a difference? (3) reactivity: what are the energetics, rates, and mechanisms of sorption and mineral dissolution and precipitation relative to the flow rate of the water? and (4) hydrology: what are the main flow paths for contaminated water? Estimates of relative proportions of minerals dissolved and precipitated can be made with mass-balance calculations if minerals and water compositions along a flow path are known. Combined with discharge, these mass-balance estimates quantify the actual weathering rate of pyrite mineralization in the environment and compare reasonably well with laboratory rates of pyrite oxidation except when large quantities of soluble salts and evaporated mine waters have accumulated underground. Quantitative mineralogy with trace-element compositions can substantially improve the identification of source minerals for specific trace elements through mass balances. Post-dissolution sorption and precipitation (attenuation) reactions depend on the chemical behavior of each element, solution composition and pH, aqueous speciation, temperature, and contact-time with mineral surfaces. For example, little metal attenuation occurs in waters of low pH (<3.5) and metals tend to maintain element ratios indicative of the main mineral or group of minerals from which they dissolved, except Fe, SiO₂, and redox-sensitive oxyanions (As, Sb, Se, Mo, Cr, V). Once dissolved, metal and metalloid concentrations are strongly affected by redox conditions and pH. Iron is the most reactive because it is rapidly oxidized by bacteria and archaea and Fe(III) hydrolyzes and precipitates at low pH (1–3) which is related directly to its first hydrolysis constant, pK₁=2.2. Several insoluble sulfate minerals precipitate at low pH including anglesite, barite, jarosite, alunite and basaluminite. Aluminum hydrolyzes near pH 5 (pK₁=5.0) and provides buffering and removal of Al by mineral precipitation from pH 4–5.5. Dissolved sulfate behaves conservatively because the amount removed from solution by precipitation is usually too small relative to the high concentrations in the water column and relative to the flow rate of the water. ► Hydrogeochemistry of mines and mineralized areas is complex. ► Mass balances and saturation indices add insight and organization to acid rock drainage data. ► Large database confirms geochemical generalizations for behavior of iron and aluminum. The formation of acid mine drainage from metals extraction or natural acid rock drainage and its mixing with surface waters is a complex process that depends on petrology and mineralogy, structural geology, geomorphology, surface-water hydrology, hydrogeology, climatology, microbiology, chemistry, and mining and mineral processing history. The concentrations of metals, metalloids, acidity, alkalinity, Cl −, F − and SO 4 2 - found in receiving streams, rivers, and lakes are affected by all of these factors and their interactions. Remediation of mine sites is an engineering concern but to design a remediation plan without understanding the hydrogeochemical processes of contaminant mobilization can lead to ineffective and excessively costly remediation. Furthermore, remediation needs a goal commensurate with natural background conditions rather than water-quality standards that might bear little relation to conditions of a highly mineralized terrain. This paper reviews hydrogeochemical generalizations, primarily from US Geological Survey research, that enhance our understanding of the origin, transport, and fate of contaminants released from mined and mineralized areas. Mobility of potential or actual contaminants from mining and mineral processing activities depends on (1) occurrence : is the mineral source of the contaminant actually present? (2) abundance : is the mineral present in sufficient quantity to make a difference? (3) reactivity : what are the energetics, rates, and mechanisms of sorption and mineral dissolution and precipitation relative to the flow rate of the water? and (4) hydrology : what are the main flow paths for contaminated water? Estimates of relative proportions of minerals dissolved and precipitated can be made with mass-balance calculations if minerals and water compositions along a flow path are known. Combined with discharge, these mass-balance estimates quantify the actual weathering rate of pyrite mineralization in the environment and compare reasonably well with laboratory rates of pyrite oxidation except when large quantities of soluble salts and evaporated mine waters have accumulated underground. Quantitative mineralogy with trace-element compositions can substantially improve the identification of source minerals for specific trace elements through mass balances. Post-dissolution sorption and precipitation (attenuation) reactions depend on the chemical behavior of each element, solution composition and pH, aqueous speciation, temperature, and contact-time with mineral surfaces. For example, little metal attenuation occurs in waters of low pH (<3.5) and metals tend to maintain element ratios indicative of the main mineral or group of minerals from which they dissolved, except Fe, SiO 2, and redox-sensitive oxyanions (As, Sb, Se, Mo, Cr, V). Once dissolved, metal and metalloid concentrations are strongly affected by redox conditions and pH. Iron is the most reactive because it is rapidly oxidized by bacteria and archaea and Fe(III) hydrolyzes and precipitates at low pH (1–3) which is related directly to its first hydrolysis constant, pK 1 = 2.2. Several insoluble sulfate minerals precipitate at low pH including anglesite, barite, jarosite, alunite and basaluminite. Aluminum hydrolyzes near pH 5 (pK 1 = 5.0) and provides buffering and removal of Al by mineral precipitation from pH 4–5.5. Dissolved sulfate behaves conservatively because the amount removed from solution by precipitation is usually too small relative to the high concentrations in the water column and relative to the flow rate of the water. |
Author | Nordstrom, D. Kirk |
Author_xml | – sequence: 1 givenname: D. Kirk surname: Nordstrom fullname: Nordstrom, D. Kirk email: dkn@usgs.gov organization: U.S. Geological Survey, 3215 Marine St., Boulder, CO 80303, USA |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=24818982$$DView record in Pascal Francis |
BookMark | eNqFkcFu1DAQhiNUJLaFZ6gvCA4kjO0ktg8cqgooUqUeoGfLOJOtl8RebG-r8iK8Lk536YED9SWy5_v_mfxzXB354LGqTik0FGj_ftOY7RqDvcG5YUBpA30DwJ5VKyoFqxXl7VG1Ail5zRQTL6rjlDYA0Algq-r3xf0Qw0HvrJnINgaLKWEi63CL0Tu_JvkGSYhu7fw7kqPxaRtiJsYPZDS5lEYym02IDy-lbpHghDP6nMgYw0xm55HcmZSL68Is92gm9wsHUtr9IDmQtIvjorwrjjG9rJ6PZkr46vA9qa4_ffx2flFfXn3-cn52WZuO8VyrERElDLKnlDNhewH8O_Sd6ujATSsEguVdB8K0ivfArJUjyF4IOQhlVctPqjd73_LbP3eYsp5dsjhNxmPYJa16LssBVsi3_yVpr9pWMaW6gr4-oCaVSMeSmHVJb6ObTbzXrJVUKrlYfthzNoaUIo7aumyyC76E6CZNQS8r1hv9uGK9rFhDr-FhJPGP_m-Lp5Wne-VogjbrWKa7_lqArhShDEcLcbYnsKR_6zDqZB16i4OLaLMegnuyyx9svdMJ |
CODEN | APPGEY |
CitedBy_id | crossref_primary_10_1016_j_apgeochem_2019_104499 crossref_primary_10_1016_j_jconhyd_2025_104513 crossref_primary_10_1039_C9AY01199D crossref_primary_10_1080_19392699_2022_2044320 crossref_primary_10_3389_fenvs_2024_1388262 crossref_primary_10_3390_plants13081161 crossref_primary_10_1016_j_jafrearsci_2014_04_003 crossref_primary_10_3390_toxics9110307 crossref_primary_10_1016_j_apgeochem_2023_105769 crossref_primary_10_1007_s10230_017_0454_4 crossref_primary_10_1016_j_catena_2021_105191 crossref_primary_10_1016_j_scitotenv_2023_162458 crossref_primary_10_1007_s12665_017_6780_9 crossref_primary_10_1007_s10661_024_12362_2 crossref_primary_10_1016_j_gsd_2021_100576 crossref_primary_10_3390_min10090728 crossref_primary_10_1016_j_jclepro_2022_130999 crossref_primary_10_1007_s12665_015_5000_8 crossref_primary_10_1016_j_chemgeo_2016_04_013 crossref_primary_10_1016_j_gexplo_2019_106338 crossref_primary_10_1016_j_catena_2017_10_008 crossref_primary_10_1016_j_proeps_2017_01_054 crossref_primary_10_3390_min13111454 crossref_primary_10_1016_j_gexplo_2018_11_009 crossref_primary_10_1016_j_jclepro_2023_138872 crossref_primary_10_1007_s11157_020_09564_8 crossref_primary_10_1021_acs_est_0c07136 crossref_primary_10_1080_03632415_2016_1182509 crossref_primary_10_1016_j_watres_2024_122336 crossref_primary_10_1016_j_jconhyd_2014_12_002 crossref_primary_10_1007_s40899_021_00565_1 crossref_primary_10_1016_j_chemgeo_2016_01_021 crossref_primary_10_1016_j_chemosphere_2015_12_101 crossref_primary_10_1016_j_apgeochem_2011_10_008 crossref_primary_10_1016_j_gexplo_2020_106465 crossref_primary_10_1016_j_jhydrol_2015_12_020 crossref_primary_10_1144_geochem2015_378 crossref_primary_10_1007_s10661_014_3746_1 crossref_primary_10_1039_c2em30643c crossref_primary_10_1016_j_gexplo_2025_107734 crossref_primary_10_1016_j_scitotenv_2019_01_124 crossref_primary_10_1093_femsec_fiy145 crossref_primary_10_1071_EN19118 crossref_primary_10_1016_j_apgeochem_2012_07_019 crossref_primary_10_1016_j_apgeochem_2014_12_010 crossref_primary_10_2116_analsci_20SAR16 crossref_primary_10_1016_j_apgeochem_2012_07_017 crossref_primary_10_1016_j_apgeochem_2016_12_019 crossref_primary_10_1016_j_gca_2022_11_005 crossref_primary_10_1002_hyp_10995 crossref_primary_10_1016_j_scitotenv_2023_165037 crossref_primary_10_1016_j_chemosphere_2018_04_060 crossref_primary_10_3390_min4010170 crossref_primary_10_3390_toxics11080678 crossref_primary_10_1016_j_apgeochem_2020_104845 crossref_primary_10_1016_j_compchemeng_2018_02_020 crossref_primary_10_1007_s13201_018_0706_x crossref_primary_10_1051_e3sconf_20199801044 crossref_primary_10_1007_s44339_024_00003_9 crossref_primary_10_1016_j_gexplo_2019_106341 crossref_primary_10_1016_j_jece_2017_07_062 crossref_primary_10_1016_j_jconhyd_2015_10_002 crossref_primary_10_1016_j_apgeochem_2018_04_010 crossref_primary_10_1016_j_catena_2020_104959 crossref_primary_10_1007_s12665_017_6389_z crossref_primary_10_1016_j_gexplo_2019_106434 crossref_primary_10_1016_j_envpol_2022_119327 crossref_primary_10_1016_j_scitotenv_2020_143796 crossref_primary_10_1016_j_apgeochem_2021_104899 crossref_primary_10_1016_j_soilbio_2022_108598 crossref_primary_10_1016_j_jsames_2021_103197 crossref_primary_10_1016_j_chemosphere_2018_04_095 crossref_primary_10_1007_s13157_018_1040_7 crossref_primary_10_1007_s10040_019_01991_4 crossref_primary_10_1007_s11356_021_15335_x crossref_primary_10_1007_s12665_014_3264_z crossref_primary_10_1071_EN17158 crossref_primary_10_3390_toxics12110813 crossref_primary_10_1016_j_envpol_2018_10_106 crossref_primary_10_1016_j_apgeochem_2021_105172 crossref_primary_10_1016_j_scitotenv_2021_152672 crossref_primary_10_1080_02757540_2014_950569 crossref_primary_10_1089_ees_2013_0063 crossref_primary_10_1130_focus022019_1 crossref_primary_10_2139_ssrn_4158403 crossref_primary_10_1016_j_gexplo_2011_12_004 crossref_primary_10_3390_w8030074 crossref_primary_10_3390_bacteria2030009 crossref_primary_10_3390_min13060790 crossref_primary_10_1007_s12665_019_8366_1 crossref_primary_10_1016_j_ecolind_2024_112080 crossref_primary_10_1021_acs_est_4c09489 crossref_primary_10_1007_s11356_024_32712_4 crossref_primary_10_1007_s10230_022_00904_4 crossref_primary_10_1016_j_apgeochem_2013_09_009 crossref_primary_10_1016_j_apgeochem_2015_01_009 crossref_primary_10_1016_j_envpol_2019_04_011 crossref_primary_10_1016_j_jclepro_2019_118951 crossref_primary_10_3390_min10040364 crossref_primary_10_1016_j_chemgeo_2020_119661 crossref_primary_10_1071_EN13225 crossref_primary_10_1029_2023WR034986 crossref_primary_10_1007_s00128_021_03322_4 crossref_primary_10_1007_s11368_016_1646_4 crossref_primary_10_1007_s12665_020_09054_8 crossref_primary_10_1016_j_envpol_2019_113829 crossref_primary_10_1016_j_gexplo_2022_107123 crossref_primary_10_1016_j_apgeochem_2015_08_002 crossref_primary_10_1002_hyp_14184 crossref_primary_10_1007_s10661_021_09262_0 crossref_primary_10_1016_j_apgeochem_2018_01_012 crossref_primary_10_3390_w13233445 crossref_primary_10_1016_j_ecoenv_2019_02_051 crossref_primary_10_1016_j_envpol_2021_118697 crossref_primary_10_1016_j_marpolbul_2022_114491 crossref_primary_10_1007_s12665_015_4067_6 crossref_primary_10_5194_hess_23_2041_2019 crossref_primary_10_1016_j_apgeochem_2012_08_013 crossref_primary_10_1016_j_gloplacha_2017_11_017 crossref_primary_10_1071_EN17133 crossref_primary_10_5382_Geo_and_Mining_21 crossref_primary_10_5937_napredak5_55502 crossref_primary_10_1016_j_scitotenv_2019_04_084 crossref_primary_10_1007_s10800_015_0884_2 crossref_primary_10_3390_soilsystems5010003 crossref_primary_10_1007_s10230_022_00905_3 crossref_primary_10_1016_j_scitotenv_2023_165513 crossref_primary_10_1016_j_jhazmat_2023_131521 crossref_primary_10_1016_j_apgeochem_2013_06_001 crossref_primary_10_1016_j_apgeochem_2017_03_016 crossref_primary_10_1021_acs_est_5b01006 crossref_primary_10_1038_s41598_024_75118_5 crossref_primary_10_3390_w14142231 crossref_primary_10_1007_s11368_015_1141_3 crossref_primary_10_1016_j_chemosphere_2023_139497 crossref_primary_10_1016_j_gexplo_2020_106577 crossref_primary_10_1016_j_gca_2023_09_001 crossref_primary_10_1016_j_scitotenv_2014_06_112 crossref_primary_10_1016_j_chemgeo_2017_03_021 crossref_primary_10_1016_j_jhydrol_2020_125672 crossref_primary_10_1021_es500180c crossref_primary_10_1016_j_sciaf_2022_e01438 crossref_primary_10_1016_j_apgeochem_2019_02_001 crossref_primary_10_1016_j_gca_2019_10_044 crossref_primary_10_1016_j_gca_2023_05_024 crossref_primary_10_1016_j_jhazmat_2025_137519 crossref_primary_10_1021_acsearthspacechem_9b00269 crossref_primary_10_1016_j_chemosphere_2019_06_066 crossref_primary_10_1016_j_apgeochem_2015_04_004 crossref_primary_10_3390_hydrology12010008 crossref_primary_10_1007_s40899_023_01012_z crossref_primary_10_1007_s10230_021_00804_z crossref_primary_10_1016_j_apgeochem_2013_12_007 crossref_primary_10_1016_j_apgeochem_2018_05_015 crossref_primary_10_1016_j_gexplo_2014_03_024 crossref_primary_10_1016_j_proeps_2017_01_038 crossref_primary_10_1007_s10230_013_0229_5 crossref_primary_10_1016_j_apgeochem_2015_05_017 crossref_primary_10_3103_S0147687421050021 crossref_primary_10_1007_s10653_020_00544_z crossref_primary_10_1007_s10230_025_01044_1 crossref_primary_10_1016_j_jenvman_2023_119943 crossref_primary_10_1007_s10230_019_00650_0 crossref_primary_10_1016_j_catena_2018_02_020 crossref_primary_10_1016_j_jhydrol_2021_126718 crossref_primary_10_1016_j_soilbio_2023_109258 crossref_primary_10_1039_D2EM00029F crossref_primary_10_1016_j_envpol_2021_118540 crossref_primary_10_3390_min11121349 crossref_primary_10_1016_j_apgeochem_2015_09_002 crossref_primary_10_1016_j_chemosphere_2013_11_059 crossref_primary_10_1007_s10230_022_00872_9 crossref_primary_10_1016_j_jvolgeores_2020_107121 crossref_primary_10_1021_acs_est_6b03195 crossref_primary_10_1016_j_scitotenv_2021_146070 crossref_primary_10_1016_j_gexplo_2018_01_005 crossref_primary_10_3390_min13040456 crossref_primary_10_3390_jmse10010035 crossref_primary_10_1007_s11356_017_9670_5 crossref_primary_10_1007_s11356_024_32295_0 crossref_primary_10_1007_s12665_023_10838_x crossref_primary_10_3390_w17010043 crossref_primary_10_1002_aic_14917 crossref_primary_10_1007_s12210_015_0454_x crossref_primary_10_1016_j_scitotenv_2013_01_076 crossref_primary_10_1007_s11356_018_2541_x crossref_primary_10_3390_w13202861 crossref_primary_10_1016_j_mineng_2024_108791 crossref_primary_10_1016_j_chemosphere_2023_140297 crossref_primary_10_5382_econgeo_4936 crossref_primary_10_1021_acsearthspacechem_0c00180 crossref_primary_10_3390_w12051496 crossref_primary_10_1016_j_jclepro_2022_134954 crossref_primary_10_5382_econgeo_4942 crossref_primary_10_1021_acsestwater_4c00263 crossref_primary_10_1007_s11356_016_7713_y crossref_primary_10_1016_j_apgeochem_2013_07_002 crossref_primary_10_1016_j_jhydrol_2023_130043 crossref_primary_10_1016_j_gexplo_2015_03_001 crossref_primary_10_1111_1462_2920_14922 crossref_primary_10_1051_e3sconf_20199805013 crossref_primary_10_1002_rra_3823 crossref_primary_10_1016_j_jhazmat_2021_125382 crossref_primary_10_1139_er_2017_0092 crossref_primary_10_1016_j_gexplo_2019_03_003 crossref_primary_10_1007_s11356_017_9038_x crossref_primary_10_1016_j_scitotenv_2022_155224 crossref_primary_10_1007_s42452_019_1602_1 crossref_primary_10_1016_j_gexplo_2023_107336 crossref_primary_10_1016_j_scitotenv_2024_174681 crossref_primary_10_1016_j_jhazmat_2020_122720 crossref_primary_10_1016_j_scitotenv_2021_148798 crossref_primary_10_1016_j_jconhyd_2017_04_004 crossref_primary_10_1016_j_gexplo_2014_05_024 crossref_primary_10_1007_s10661_019_7300_z crossref_primary_10_1016_j_scitotenv_2017_07_269 crossref_primary_10_1007_s10230_017_0485_x crossref_primary_10_1007_s10230_023_00948_0 crossref_primary_10_1016_j_scitotenv_2015_11_101 crossref_primary_10_1016_j_chemgeo_2021_120623 crossref_primary_10_1016_j_scitotenv_2012_07_083 crossref_primary_10_1016_j_jhazmat_2021_125130 crossref_primary_10_3390_land12020499 crossref_primary_10_1016_j_heliyon_2024_e38860 crossref_primary_10_1007_s12517_018_3662_8 crossref_primary_10_1080_10643389_2013_866622 crossref_primary_10_14746_quageo_2023_0028 crossref_primary_10_1016_j_scitotenv_2024_176953 crossref_primary_10_1007_s10653_023_01716_3 crossref_primary_10_1007_s10661_018_6551_4 crossref_primary_10_5194_bg_9_4607_2012 crossref_primary_10_1016_j_apgeochem_2014_06_016 crossref_primary_10_1016_j_chemer_2019_125552 crossref_primary_10_1016_j_apgeochem_2014_02_007 crossref_primary_10_3390_su12041394 crossref_primary_10_1016_j_scitotenv_2023_166517 crossref_primary_10_1007_s11356_023_29106_3 crossref_primary_10_1007_s10498_021_09393_3 crossref_primary_10_1016_j_ibiod_2017_01_032 crossref_primary_10_1016_j_apgeochem_2015_03_001 crossref_primary_10_1016_j_proeps_2016_12_167 crossref_primary_10_1016_j_gca_2015_10_001 crossref_primary_10_3390_min13050592 crossref_primary_10_1016_j_apgeochem_2015_03_002 crossref_primary_10_1016_j_apgeochem_2019_104435 crossref_primary_10_1016_j_apgeochem_2024_106078 crossref_primary_10_1007_s10230_019_00634_0 crossref_primary_10_1016_j_gexplo_2013_07_001 crossref_primary_10_3390_min11010039 crossref_primary_10_1016_j_apgeochem_2019_104420 crossref_primary_10_21443_1560_9278_2017_20_1_2_165_176 crossref_primary_10_1016_j_gexplo_2021_106823 crossref_primary_10_1007_s10661_022_10013_y crossref_primary_10_1021_acsearthspacechem_0c00177 crossref_primary_10_1016_j_coesh_2021_100240 crossref_primary_10_1029_2021JG006769 crossref_primary_10_1007_s10653_024_02294_8 crossref_primary_10_1016_j_jes_2020_03_041 crossref_primary_10_1007_s10230_025_01023_6 crossref_primary_10_1007_s10230_013_0254_4 crossref_primary_10_1144_geochem2022_021 crossref_primary_10_1016_j_chemgeo_2012_11_010 crossref_primary_10_1016_j_gexplo_2022_107131 crossref_primary_10_1016_j_pedsph_2022_07_005 crossref_primary_10_1016_j_earscirev_2015_09_009 crossref_primary_10_3390_ma13112515 crossref_primary_10_1007_s12403_024_00625_9 crossref_primary_10_3390_soilsystems3010013 crossref_primary_10_1007_s10661_017_6023_2 crossref_primary_10_1007_s12665_020_8856_1 crossref_primary_10_1016_j_ecoenv_2020_111094 crossref_primary_10_1007_s10498_017_9321_y crossref_primary_10_1007_s11356_015_5870_z crossref_primary_10_1016_j_compchemeng_2018_05_026 crossref_primary_10_1007_s12665_017_7078_7 crossref_primary_10_1016_j_chemgeo_2013_09_023 crossref_primary_10_1016_j_gsd_2019_100245 crossref_primary_10_3390_mining2020014 crossref_primary_10_1088_1755_1315_272_2_022209 crossref_primary_10_2113_gseegeosci_23_4_243 crossref_primary_10_1007_s10230_017_0452_6 crossref_primary_10_1016_j_ecoenv_2018_08_063 crossref_primary_10_3390_min10060547 crossref_primary_10_1016_j_jhydrol_2017_05_037 crossref_primary_10_1007_s12665_016_6243_8 crossref_primary_10_1016_j_jhydrol_2020_125850 crossref_primary_10_1007_s11356_018_1969_3 crossref_primary_10_1016_j_apgeochem_2022_105444 crossref_primary_10_1016_j_seppur_2022_121952 crossref_primary_10_1016_j_apgeochem_2021_104872 crossref_primary_10_1016_j_chemgeo_2019_05_009 crossref_primary_10_1016_j_scitotenv_2022_155945 crossref_primary_10_3390_min10080727 crossref_primary_10_1007_s10230_015_0346_4 crossref_primary_10_1021_acsestwater_0c00002 crossref_primary_10_1016_j_earscirev_2021_103811 crossref_primary_10_1016_j_scitotenv_2020_143689 crossref_primary_10_1016_j_jhydrol_2013_01_006 crossref_primary_10_1021_acs_est_3c10105 crossref_primary_10_3390_w15173138 crossref_primary_10_1002_hyp_13822 crossref_primary_10_1016_j_apgeochem_2015_06_003 crossref_primary_10_1021_acs_est_3c10583 crossref_primary_10_1016_j_envpol_2023_121449 crossref_primary_10_1016_j_coal_2019_103327 crossref_primary_10_1039_D0EN00252F crossref_primary_10_1016_j_apgeochem_2021_105154 crossref_primary_10_1002_hyp_11086 crossref_primary_10_1016_j_apgeochem_2015_03_017 crossref_primary_10_1016_j_apgeochem_2014_05_012 crossref_primary_10_3390_w16091210 crossref_primary_10_3390_w9020075 crossref_primary_10_3389_fmicb_2021_648412 crossref_primary_10_1007_s10498_013_9194_7 crossref_primary_10_1016_j_earscirev_2019_01_017 crossref_primary_10_1016_j_gsd_2018_05_005 crossref_primary_10_1016_j_jconhyd_2016_02_005 crossref_primary_10_1016_j_catena_2015_08_018 crossref_primary_10_1002_hyp_9885 crossref_primary_10_1016_j_apgeochem_2015_02_008 crossref_primary_10_1016_j_eti_2025_104126 crossref_primary_10_1016_j_scitotenv_2020_140635 crossref_primary_10_1016_j_chemgeo_2015_02_024 crossref_primary_10_1144_geochem2024_062 crossref_primary_10_1016_j_apgeochem_2023_105623 crossref_primary_10_1016_j_jcis_2015_04_048 crossref_primary_10_1039_C7EM00171A crossref_primary_10_1134_S0016702919030091 crossref_primary_10_1016_j_scitotenv_2017_05_146 crossref_primary_10_1007_s11356_016_8161_4 crossref_primary_10_2139_ssrn_3989504 crossref_primary_10_1029_2023GC011154 crossref_primary_10_1016_j_apgeochem_2022_105541 crossref_primary_10_1016_j_ecoleng_2014_11_045 crossref_primary_10_3390_su16135636 crossref_primary_10_1007_s11270_016_2767_5 crossref_primary_10_1016_j_chemosphere_2017_03_107 crossref_primary_10_1016_j_mineng_2019_106089 crossref_primary_10_1021_acs_estlett_3c00545 crossref_primary_10_1016_j_gexplo_2013_08_003 crossref_primary_10_3390_w11071339 crossref_primary_10_1016_j_jenvman_2015_04_045 crossref_primary_10_1016_j_mineng_2023_108312 crossref_primary_10_1016_j_scitotenv_2021_146904 crossref_primary_10_1016_j_scitotenv_2023_167999 crossref_primary_10_3390_w15081553 crossref_primary_10_1016_j_jhydrol_2014_08_019 crossref_primary_10_1016_j_apgeochem_2021_104968 crossref_primary_10_1080_08120099_2016_1249955 crossref_primary_10_1016_j_apgeochem_2020_104789 crossref_primary_10_1016_j_scitotenv_2021_151936 crossref_primary_10_1007_s11440_018_0690_1 crossref_primary_10_1016_j_geoderma_2016_12_021 crossref_primary_10_2113_RGG20234690 crossref_primary_10_1021_es3020056 |
Cites_doi | 10.1021/es00036a001 10.1126/science.240.4852.637 10.1007/s10040-004-0429-y 10.1021/es010816f 10.1111/j.1745-6584.2003.tb02434.x 10.1016/0016-7037(86)90325-X 10.1016/0022-1694(75)90005-0 10.1021/es0109794 10.3133/ofr20051442 10.1016/0016-7037(83)90102-3 10.1029/WR019i003p00732 10.1029/2002WR001571 10.1016/j.apgeochem.2009.11.014 10.1016/0022-1694(73)90049-8 10.1016/j.jconhyd.2006.12.001 10.1007/s00254-007-0676-z 10.2475/ajs.278.9.1235 10.1180/minmag.1980.043.331.18 10.1021/es0109085 10.3133/sir20045245 10.1016/0043-1354(82)90081-1 10.1016/j.apgeochem.2007.03.054 10.1515/9781501508660-009 10.3133/ofr94144 10.1029/WR026i005p00989 10.1016/j.apgeochem.2008.07.015 10.1016/j.gexplo.2008.08.002 10.3133/sir20055149 10.1021/es970637r 10.3133/sir20065004 10.3133/tm6B6 10.1016/S0883-2927(03)00115-X 10.1021/es00061a014 10.1016/j.scitotenv.2007.06.029 10.3133/ofr78205 10.1016/S0169-7722(00)00090-5 10.1007/s002540000162 10.1016/j.envpol.2006.12.030 10.1128/AEM.57.3.642-644.1991 10.3133/pp1728 10.1029/95WR03106 10.1016/j.chemgeo.2010.08.017 10.1016/B0-08-043751-6/09137-4 10.1021/es9900454 10.1016/0375-6742(92)90122-O 10.3133/sir20075149 10.1007/s002440010147 10.1016/j.chemgeo.2004.10.001 10.2307/1551347 10.3133/ofr90129 10.1016/j.chemgeo.2009.05.024 10.1016/0022-1694(84)90047-7 10.1080/01490458809377818 10.1038/340052a0 10.1021/es960055u 10.3133/pp1651 10.1016/j.apgeochem.2007.10.011 10.3133/pp285 10.3133/pp1729 10.1029/WR019i003p00718 10.1016/j.apgeochem.2008.11.007 10.1029/TR034i003p00435 10.1021/es9704390 10.1021/es025688p 10.1029/1999WR900259 10.1016/j.epsl.2010.03.010 10.1016/0022-1694(84)90046-5 10.1146/annurev.earth.36.031207.124210 10.1016/j.gca.2004.11.020 10.1016/0375-6742(92)90121-N 10.1073/pnas.96.7.3455 10.1016/j.chemgeo.2008.03.004 10.1126/science.232.4746.54 10.1029/95WR03107 10.3133/sir20065156 10.2138/am.2007.2361 10.1016/0375-6742(92)90126-S 10.3133/sir20055088 10.1029/WR020i012p01797 10.1002/hyp.7114 10.2307/1468428 10.1021/es048947e 10.1007/s00254-004-1178-x 10.1016/j.apgeochem.2008.11.014 10.1007/s12665-009-0240-0 10.1016/0375-6742(92)90127-T 10.1016/j.apgeochem.2007.10.003 |
ContentType | Journal Article Conference Proceeding |
Copyright | 2011 2015 INIST-CNRS |
Copyright_xml | – notice: 2011 – notice: 2015 INIST-CNRS |
DBID | FBQ AAYXX CITATION IQODW 7S9 L.6 7TV C1K |
DOI | 10.1016/j.apgeochem.2011.06.002 |
DatabaseName | AGRIS CrossRef Pascal-Francis AGRICOLA AGRICOLA - Academic Pollution Abstracts Environmental Sciences and Pollution Management |
DatabaseTitle | CrossRef AGRICOLA AGRICOLA - Academic Pollution Abstracts Environmental Sciences and Pollution Management |
DatabaseTitleList | Pollution Abstracts AGRICOLA |
Database_xml | – sequence: 1 dbid: FBQ name: AGRIS url: http://www.fao.org/agris/Centre.asp?Menu_1ID=DB&Menu_2ID=DB1&Language=EN&Content=http://www.fao.org/agris/search?Language=EN sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Geology Engineering |
EISSN | 1872-9134 |
EndPage | 1791 |
ExternalDocumentID | 24818982 10_1016_j_apgeochem_2011_06_002 US201500201891 S0883292711003131 |
GroupedDBID | --K --M .~1 0R~ 1B1 1RT 1~. 1~5 23M 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO AAYOK ABEFU ABFNM ABJNI ABLST ABMAC ABQEM ABQYD ABXDB ABYKQ ACDAQ ACGFS ACLVX ACRLP ACSBN ADBBV ADEZE ADMUD AEBSH AEKER AENEX AFKWA AFTJW AFXIZ AGHFR AGUBO AGYEJ AHEUO AHHHB AI. AIEXJ AIKHN AITUG AJBFU AJOXV AKIFW ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG ATOGT AVWKF AXJTR AZFZN BKOJK BLECG BLXMC CS3 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HMA HMC HVGLF HZ~ H~9 IHE IMUCA J1W KCYFY KOM LY3 LY9 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SDF SDG SDP SEN SEP SES SEW SPC SPCBC SSE SSJ SSZ T5K TN5 VH1 WUQ XPP ZCA ZMT ~02 ~G- ABPIF ABPTK FBQ AAHBH AATTM AAXKI AAYWO AAYXX ABWVN ACRPL ACVFH ADCNI ADNMO AEGFY AEIPS AEUPX AFJKZ AFPUW AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH EFKBS IQODW 7S9 L.6 7TV C1K |
ID | FETCH-LOGICAL-a523t-9feee80d8611327c6703b065951d3a477e0c35507a493602cc8f086778d79c943 |
IEDL.DBID | .~1 |
ISSN | 0883-2927 |
IngestDate | Fri Jul 11 03:41:42 EDT 2025 Fri Jul 11 05:01:58 EDT 2025 Mon Jul 21 09:15:23 EDT 2025 Thu Apr 24 23:13:05 EDT 2025 Tue Jul 01 01:59:27 EDT 2025 Wed Dec 27 19:21:01 EST 2023 Fri Feb 23 02:19:54 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 11 |
Keywords | rivers geomorphology mine drainage mobilization mixing streams mineralogy metals concentration mining transport extraction hydrogeology alkalinity lead structural geology surface water mines remediation acids acidity trace elements water quality lakes |
Language | English |
License | https://www.elsevier.com/tdm/userlicense/1.0 CC BY 4.0 |
LinkModel | DirectLink |
MeetingName | Sources, Transport and Fate of Trace and Toxic Elements in the Environment - IAGS 2009 |
MergedId | FETCHMERGED-LOGICAL-a523t-9feee80d8611327c6703b065951d3a477e0c35507a493602cc8f086778d79c943 |
Notes | http://dx.doi.org/10.1016/j.apgeochem.2011.06.002 ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 ObjectType-Article-2 ObjectType-Feature-1 |
PQID | 1694492995 |
PQPubID | 24069 |
PageCount | 15 |
ParticipantIDs | proquest_miscellaneous_963888802 proquest_miscellaneous_1694492995 pascalfrancis_primary_24818982 crossref_citationtrail_10_1016_j_apgeochem_2011_06_002 crossref_primary_10_1016_j_apgeochem_2011_06_002 fao_agris_US201500201891 elsevier_sciencedirect_doi_10_1016_j_apgeochem_2011_06_002 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2011-11-01 |
PublicationDateYYYYMMDD | 2011-11-01 |
PublicationDate_xml | – month: 11 year: 2011 text: 2011-11-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Kidlington |
PublicationPlace_xml | – name: Kidlington |
PublicationTitle | Applied geochemistry |
PublicationYear | 2011 |
Publisher | Elsevier Ltd Elsevier |
Publisher_xml | – name: Elsevier Ltd – name: Elsevier |
References | Jambor, J.L., Blowes, D.W., Ritchie, A.I.M. (Eds.), 2003. Environmental Aspects of Mine Wastes. Mineral. Assoc. Canada, Short Course Series 31, Ottawa. Nordstrom, Mc Nutt, Puigdomènech, Smellie, Wolf (b0505) 1992; 45 Tonkin, Balistrieri, Murray (b0645) 2002; 36 Broshears, Runkel, Kimball, McKnight, Bencala (b0120) 1996; 30 Nordstrom, D.K., 2004. Modeling low-temperature geochemical processes. In: Drever, J.I. (Ed.) Surface and Ground Water, Weathering, and Soils. Holland, H.D., Turekian, K.K. (Exec. Eds.), Treatise on Geochemistry, vol. 5. Elsevier, pp. 37–72. Gammons, Grant, Nimick, Parker, DeGrandpre (b0210) 2007; 384 Bencala, K.E., McKnight, D.M., Zellweger, G.W., Goad, J., 1986. The Stability of Rhodamine WT Dye in Trial Studies of Solute Transport in an Acidic and Metal-rich Stream. Selected Papers in the Hydrologic Sciences. US Geol. Surv. Water-Supply Paper 2270. Gammons, Nimick, Parker, Snyder, McCleskey, Amils, Poulson (b0225) 2008; 252 Garrels, Thompson (b0230) 1960; 258A Younger, P.L., Blanchere, A., 2004. First-flush, reverse first-flush and partial first-flush: dynamics of short- and long-term changes in the quality of water flowing from deep mine systems. In: Price, W.A., Bellefontaine, K. (Eds.), Proc. 10th Ann. British Columbia ML/ARD Workshop, Performance of ARD Generating Wastes, Material Characterization and MEND Projects. Ortiz, R.F., Ferguson, S.A., 2001. Characterization of Water quality in Selected Tributaries of the Alamosa River, Southwestern Colorado, Including Comparisons to Instream Water-quality Standards and Toxicological Reference Values, 1995–97. US Geol. Surv. Water-Resour. Invest. Rep. 00-4170. Alpers, C.N., Taylor, H.E., Domagalski, J.L. (Eds.) 2000b. Metals Transport in the Sacramento River, California, 1996-1997. V. 2: Interpretation of Metal Loads. U.S. Geol. Surv. Water-Resour. Invest. Rep. 00-4002. Cánovas, Olías, Nieto, Galván (b0135) 2010; 25 Tonkin, Balistrieri, Murray (b0650) 2004; 19 Kimball, Runkel, Walton-Day (b0320) 2003 Morin, Rousse, Elkaim (b0410) 2007; 92 Plumlee, G.S., Lowers, H., Ludington, S., Koenig, A., Briggs, P., 2005. Questa Baseline and Pre-mining Ground-water Quality Investigation. 13. Mineral Microscopy and Chemistry of Mined and Unmined Porphyry Molybdenum Mineralization along the Red River, New Mexico: Implications for Ground- and Surface-water Quality. U.S. Geol. Surv. Open-File Rep. 2005-1442. McKibben, M.A., 1984. Kinetics of Aqueous Pyrite Oxidation by Ferric Iron, Oxygen, and Hydrogen Peroxide from pH 1-4 and 20-40 °C. Ph.D. Thesis, Pennsylvania State Univ. National Research Council, 2001. Assessing the TMDL Approach to Water Quality Management. National Academy Press, Washington, DC. Nimick, Gammons, Parker (b0450) 2011; 283 Walton-Day, K., Paschke, S.S., Runkel, R.L., Kimball, B.A., 2007. Using the OTIS Solute-transport Model to Evaluate Remediation Scenarios in Cement Creek and the Upper Animas River, vol. 2. US Geol. Surv. Prof. Paper 1651, pp. 973–1028. Minikawa, Inaba, Tamura (b0400) 1996; 44 Runkel, Kimball, Walton-Day, Verplanck (b0620) 2007; 22 Nimick, Cleasby, McCleskey (b0440) 2005; 47 Durum (b0185) 1953; 34 Rupert, M.G., 2001. Relations among Rainstorm Runoff, Streamflow, pH, and Metal Concentrations, Summitville Mine Area, Upper Alamosa River Basin, Southwest Colorado, 1995–97. US Geol. Surv. Water-Resour. Invest. Rep. 01-4027. Cravotta (b0175) 2008; 23 Guilbert, Park (b0245) 1986 Verplanck, Nordstrom, Bove, Plumlee, Runkel (b0655) 2009; 24 Webster, Swedlund, Webster (b0705) 1998; 32 Bencala, Kennedy, Zellweger, Jackman, Avanzino (b0075) 1984; 20 Ball, J.W., Runkel, R.L., Nordstrom, D.K., 2004. Evaluating remedial alternatives for the Alamosa River and Wightman Fork, near the Summitville, Colorado: application of a reactive-transport model to low- and high-flow simulations. In: Zanetti, P. (Ed.), Environmental Sciences and Environmental Computing. The EnviroComp Institute II, pp. 1–54. Clayton (b0155) 1980; 43 Ball, J.W., Nordstrom, D.K., 1989. Final Revised Analyses of Trace Elements from Acid Mine Waters in the Leviathan Mine Drainage Basin, California and Nevada – October 1981 to October 1982. US Geol. Surv. Water-Resour. Invest. Rep. 89-4138. Caine, J.S., 2006. Questa Baseline and Pre-mining Ground-water Quality Investigation. 18. Characterization of Brittle Structures in the Questa Caldera and Speculation on their Potential Impacts on the Bedrock Ground-water Flow System. US Geol. Surv. Prof. Paper 1729. Bethke, Johnson (b0105) 2008; 36 Gammons, Milodragovich, Belanger-Woods (b0215) 2007; 53 Bencala, McKnight, Zellweger (b0080) 1990; 26 Hendrickson, G.E., Krieger, R.A., 1964. Geochemistry of Natural Waters of the Blue Grass Region, Kentucky. US Geol. Surv. Water-Supply Paper 1700. Pirajno (b0555) 2009 Dagenhart Jr., T.V., 1980. The Acid Mine Drainage of Contrary Creek, Louisa County, Virginia: Factors Causing Variations in Stream Water Chemistry. M.S. Thesis, Univ. Virginia. Bigham, J.M., Nordstrom, D.K., 2000. Iron and aluminum hydroxysulfates from acid sulfate waters. In: Alpers, C.N., Jambor, J. L., Nordstrom, D.K. (Eds.), Sulfate Minerals – Crystallography, Geochemistry, and Environmental Significance. Mineral. Soc. Amer. 40, Washington, DC, pp. 351–403. Wakao, Koyatsu, Kamai, Shimokawara, Sakurai, Shiota (b0670) 1988; 6 Kimball, Runkel, Wanty, Verplanck (b0325) 2010; 269 Luoma, Rainbow (b0350) 2008 Vincent, K.R., 2008. Questa Baseline and Pre-mining Ground-water Quality Investigation. 17. Geomorphology of the Red River Valley, Taos County, New Mexico and Influence on Ground-water Flow in the Shallow Alluvial Aquifer. US Geol. Surv. Sci. Invest. Rep. 2006-5156. Olson (b0515) 1991; 57 Morin, Juillot, Casiot, Bruneel, Personné, Elbaz-Poulichet, Leblanc, Ildefonse, Calas (b0405) 2003; 37 Caruso, Cox, Runkel, Velleux, Bencala, Nordstrom, Julien, Butler, Alpers, Marion, Smith (b0140) 2008; 22 Walton-Day (b0685) 2003 Church, S.E., Von Guerard, P.B., Finger, S.E., 2007. Integrated Investigations of Environmental Effects of Historical Mining in the Animas River Watershed, San Juan County, Colorado. US Geol. Surv. Prof. Paper 1651, pp. 1–1096. Nordstrom (b0465) 2003 Maher (b0360) 2010; 294 Holmes, Pitty, Noy (b0270) 1992; 45 Hendrickson, G.E., Krieger, R.A., 1960. Relationship of Chemical Quality of Water to Stream Discharge in Kentucky. Internat. Geol. Cong. XXI Session, Part 1, pp. 66–75. Berner (b0090) 1978; 278 Alpers, C.N., Nordstrom, D.K., Burchard, J.M., 1992. Compilation and Interpretation of Water Quality and Discharge Data for Acid Mine Waters at Iron Mountain, Shasta County, California, 1940-91. US Geol. Surv. Water-Resour. Invest. Rep. 91-4160. Bencala, Walters (b0070) 1983; 19 Runkel, R.L., 1998. One Dimensional Transport with Inflow and Storage (OTIS): A Solute Transport Model for Streams and Rivers. US Geol. Surv. Water-Resour. Invest. Rep. 98-4018, 73 p. Ball, J.W., Nordstrom, D.K., 1985. Major and Trace-element Analyses of Acid Mine Waters in the Leviathan Mine Drainage Basin, California/Nevada--October, 1981 to October, 1982. US Geol. Surv. Water-Resour. Invest. Rep. 85-4169. Plummer, Parkhurst, Thorstenson (b0575) 1983; 47 Nimick, Gurrieri, Furniss (b0455) 2009; 24 Kimball, Runkel (b0305) 2010; 60 Runkel (b0595) 2002; 21 Jackman, Walters, Kennedy (b0275) 1984; 75 Nimick, Gammons, Cleasby, Madison, Skaar, Brick (b0445) 2003; 39 Runkel, McKnight, Bencala (b0625) 1996; 32 Ball, J.W., Nordstrom, D.K., 1991. User’s Manual for WATEQ4F, with Revised Thermodynamic Data Base and Test Cases for Calculating Speciation of Major, Trace and Redox Elements in Natural Waters. US Geol. Surv. Open-File Rep. 91-183. Bencala (b0065) 1983; 19 Kimball, Broshears, Bencala, McKnight (b0310) 1994; 28 Ball, J.W., Runkel, R.L., Nordstrom, D.K., 2005. Questa Baseline and Pre-mining Ground-water Quality Investigation. 12. Geochemical and Reactive-transport Modeling based on Tracer Injection-synoptic Sampling Studies for the Red River, New Mexico, 2001–2002. US Geol. Surv. Sci.-Invest. Rep. 2005-5149. Gammons, Nimick, Parker, Cleasby, McCleskey (b0220) 2005; 69 (Chapter B6). Gyzl, Banks (b0250) 2007; 92 Kimball, B.A., Nordstrom, D.K., Runkel, R.L., Vincent, K.R., Verplanck, P.L., 2006. Questa Baseline and Pre-mining Ground-water Quality Investigation. 23. Quantification of Mass Loading from Mined and Unmined Areas along the Red River, New Mexico. US Geol. Surv. Sci. Invest. Report 2006-5004. Parkhurst, Plummer (b0540) 1993 Williams (b0715) 2001; 40 Nordstrom, D.K., 2005. A river on the edge – water quality in the Red River and the USGS background study. In: Price, L.G., Bland, D., McLemore, V.T., Barker, J.M. (Eds.), Mining in New Mexico, Decision-Makers Conference 2005, Taos Region. Socorro, NM, New Mexico Bur. Geol. Mineral Resour., pp. 64–67. Nordstrom, Ball (b0500) 1986; 232 Gihring, Druschel, McCleskey, Hamers, Banfield (b0235) 2001; 35 Besser, J.M., Finger, S.E., Church, S.E., 2007. Impacts of historical mining on aquatic ecosystems – an ecological approach. In: Church, S.E., von Guerard, P., Finger, S.E. (Eds.), Integrated Investigations of Environmental Effects of Historical Mining in the Animas River Watershed, San Juan County, Colorado, vol. 1. US Geol. Surv. Prof. Paper, pp. 87–106. Blowes, D.W., Ptacek, C.J., Jambor, J.L., Weisener, C.G., 2003. The geochemistry of acid mine drainage. In: Lollar, B.S. (Ed.), Environmental Geochemistry. Holland, H.D., Turekian, K.K. (Exec. Eds), Treatise on Geochemistry, vol. 5. Oxford, Elsevier–Pergamon, pp. 149–204. Dzombak, Morel (b0190) 1990 Alpers, C.N., Nordstrom, D.K., Verosub, K.L., Helm-Clark, C., 2007. Paleomagnetic Determination of Pre-mining Metal-flux Rates at the Iron Mountain Superfund Site, Northern California. Eos Trans. AGU 88 (23) Jt. Assem. Suppl. Abstract GP41B-04. Morris, Stumm (b0415) 1967 Kennedy, V.C., Malcolm, R.L., 1978. Geochemistry of the Mattole River of Northern California. US Geol. Surv. Open-File Rep. 78-205. McKibben, Barnes (b0375) 1986; 50 McAda, D.P., Naus, C.A., 2008. Questa Baseline and Pre-mining Ground-water quality Investigation. 22. Groun Garrels (10.1016/j.apgeochem.2011.06.002_b0230) 1960; 258A Wilkie (10.1016/j.apgeochem.2011.06.002_b0710) 1998; 32 10.1016/j.apgeochem.2011.06.002_b0470 10.1016/j.apgeochem.2011.06.002_b0590 Runnells (10.1016/j.apgeochem.2011.06.002_b0630) 1992; 26 10.1016/j.apgeochem.2011.06.002_b0110 Fuller (10.1016/j.apgeochem.2011.06.002_b0205) 1989; 340 Dzombak (10.1016/j.apgeochem.2011.06.002_b0190) 1990 Pirajno (10.1016/j.apgeochem.2011.06.002_b0555) 2009 Durum (10.1016/j.apgeochem.2011.06.002_b0185) 1953; 34 Luoma (10.1016/j.apgeochem.2011.06.002_b0350) 2008 Nimick (10.1016/j.apgeochem.2011.06.002_b0445) 2003; 39 Nordstrom (10.1016/j.apgeochem.2011.06.002_b0465) 2003 Runkel (10.1016/j.apgeochem.2011.06.002_b0595) 2002; 21 Walling (10.1016/j.apgeochem.2011.06.002_b0675) 1974 Nordstrom (10.1016/j.apgeochem.2011.06.002_b0490) 1999; vol. 6A Besser (10.1016/j.apgeochem.2011.06.002_b0095) 2001; 40 Schorscher (10.1016/j.apgeochem.2011.06.002_b0640) 1992; 45 Runkel (10.1016/j.apgeochem.2011.06.002_b0620) 2007; 22 10.1016/j.apgeochem.2011.06.002_b0085 10.1016/j.apgeochem.2011.06.002_b0480 Kimball (10.1016/j.apgeochem.2011.06.002_b0305) 2010; 60 Plummer (10.1016/j.apgeochem.2011.06.002_b0575) 1983; 47 Luoma (10.1016/j.apgeochem.2011.06.002_b0345) 2005; 39 10.1016/j.apgeochem.2011.06.002_b0115 10.1016/j.apgeochem.2011.06.002_b0475 Plumlee (10.1016/j.apgeochem.2011.06.002_b0565) 1999 10.1016/j.apgeochem.2011.06.002_b0635 Runkel (10.1016/j.apgeochem.2011.06.002_b0615) 1999; 35 Runkel (10.1016/j.apgeochem.2011.06.002_b0605) 2002; 36 Cánovas (10.1016/j.apgeochem.2011.06.002_b0135) 2010; 25 Gammons (10.1016/j.apgeochem.2011.06.002_b0220) 2005; 69 Tonkin (10.1016/j.apgeochem.2011.06.002_b0650) 2004; 19 Olson (10.1016/j.apgeochem.2011.06.002_b0515) 1991; 57 10.1016/j.apgeochem.2011.06.002_b0690 10.1016/j.apgeochem.2011.06.002_b0050 Morin (10.1016/j.apgeochem.2011.06.002_b0405) 2003; 37 10.1016/j.apgeochem.2011.06.002_b0055 10.1016/j.apgeochem.2011.06.002_b0330 10.1016/j.apgeochem.2011.06.002_b0295 Williams (10.1016/j.apgeochem.2011.06.002_b0715) 2001; 40 Jackman (10.1016/j.apgeochem.2011.06.002_b0275) 1984; 75 Wakao (10.1016/j.apgeochem.2011.06.002_b0670) 1988; 6 Glynn (10.1016/j.apgeochem.2011.06.002_b0240) 2005; 13 Waber (10.1016/j.apgeochem.2011.06.002_b0665) 1992; 45 10.1016/j.apgeochem.2011.06.002_b0600 Edwards (10.1016/j.apgeochem.2011.06.002_b0195) 1973; 18 Kimball (10.1016/j.apgeochem.2011.06.002_b0325) 2010; 269 10.1016/j.apgeochem.2011.06.002_b0725 Kimball (10.1016/j.apgeochem.2011.06.002_b0320) 2003 10.1016/j.apgeochem.2011.06.002_b0180 Cravotta (10.1016/j.apgeochem.2011.06.002_b0170) 2008; 23 10.1016/j.apgeochem.2011.06.002_b0580 Gihring (10.1016/j.apgeochem.2011.06.002_b0235) 2001; 35 10.1016/j.apgeochem.2011.06.002_b0060 Broshears (10.1016/j.apgeochem.2011.06.002_b0120) 1996; 30 10.1016/j.apgeochem.2011.06.002_b0100 Luoma (10.1016/j.apgeochem.2011.06.002_b0340) 1990 10.1016/j.apgeochem.2011.06.002_b0335 Nordstrom (10.1016/j.apgeochem.2011.06.002_b0460) 1982 10.1016/j.apgeochem.2011.06.002_b0695 Nimick (10.1016/j.apgeochem.2011.06.002_b0450) 2011; 283 Pabst (10.1016/j.apgeochem.2011.06.002_b0530) 1940; 25 Tonkin (10.1016/j.apgeochem.2011.06.002_b0645) 2002; 36 Webster (10.1016/j.apgeochem.2011.06.002_b0705) 1998; 32 Nimick (10.1016/j.apgeochem.2011.06.002_b0430) 2011; 283 Gammons (10.1016/j.apgeochem.2011.06.002_b0210) 2007; 384 Coplen (10.1016/j.apgeochem.2011.06.002_b0160) 1993 Miller (10.1016/j.apgeochem.2011.06.002_b0395) 1994 Paulson (10.1016/j.apgeochem.2011.06.002_b0545) 1999; 33 Walling (10.1016/j.apgeochem.2011.06.002_b0680) 1975; 26 Hart (10.1016/j.apgeochem.2011.06.002_b0255) 1982; 16 10.1016/j.apgeochem.2011.06.002_b0030 10.1016/j.apgeochem.2011.06.002_b0150 10.1016/j.apgeochem.2011.06.002_b0390 10.1016/j.apgeochem.2011.06.002_b0550 Caruso (10.1016/j.apgeochem.2011.06.002_b0140) 2008; 22 Maher (10.1016/j.apgeochem.2011.06.002_b0360) 2010; 294 Cravotta (10.1016/j.apgeochem.2011.06.002_b0175) 2008; 23 Runkel (10.1016/j.apgeochem.2011.06.002_b0610) 1996; 32 10.1016/j.apgeochem.2011.06.002_b0025 10.1016/j.apgeochem.2011.06.002_b0145 Kennedy (10.1016/j.apgeochem.2011.06.002_b0300) 1984; 75 10.1016/j.apgeochem.2011.06.002_b0420 Kennedy (10.1016/j.apgeochem.2011.06.002_b0290) 1971 Nordstrom (10.1016/j.apgeochem.2011.06.002_b0510) 1990 10.1016/j.apgeochem.2011.06.002_b0425 Runkel (10.1016/j.apgeochem.2011.06.002_b0625) 1996; 32 McKibben (10.1016/j.apgeochem.2011.06.002_b0375) 1986; 50 Morris (10.1016/j.apgeochem.2011.06.002_b0415) 1967 Balistrieri (10.1016/j.apgeochem.2011.06.002_b0035) 2003; 36 Verplanck (10.1016/j.apgeochem.2011.06.002_b0655) 2009; 24 Zand (10.1016/j.apgeochem.2011.06.002_b0730) 1976; 4 Berner (10.1016/j.apgeochem.2011.06.002_b0090) 1978; 278 Holmes (10.1016/j.apgeochem.2011.06.002_b0270) 1992; 45 Burns (10.1016/j.apgeochem.2011.06.002_b0125) 2003; 41 Guilbert (10.1016/j.apgeochem.2011.06.002_b0245) 1986 10.1016/j.apgeochem.2011.06.002_b0040 10.1016/j.apgeochem.2011.06.002_b0280 Younger (10.1016/j.apgeochem.2011.06.002_b0720) 2000; 44 10.1016/j.apgeochem.2011.06.002_b0045 Nimick (10.1016/j.apgeochem.2011.06.002_b0455) 2009; 24 10.1016/j.apgeochem.2011.06.002_b0560 Bencala (10.1016/j.apgeochem.2011.06.002_b0065) 1983; 19 Webster (10.1016/j.apgeochem.2011.06.002_b0700) 1994 10.1016/j.apgeochem.2011.06.002_b0315 10.1016/j.apgeochem.2011.06.002_b0435 Cravotta (10.1016/j.apgeochem.2011.06.002_b0165) 2008; 23 Nordstrom (10.1016/j.apgeochem.2011.06.002_b0500) 1986; 232 10.1016/j.apgeochem.2011.06.002_b0370 Evans (10.1016/j.apgeochem.2011.06.002_b0200) 1966 Jamieson (10.1016/j.apgeochem.2011.06.002_b0285) 2005; 215 10.1016/j.apgeochem.2011.06.002_b0010 10.1016/j.apgeochem.2011.06.002_b0130 10.1016/j.apgeochem.2011.06.002_b0005 Bencala (10.1016/j.apgeochem.2011.06.002_b0070) 1983; 19 Gyzl (10.1016/j.apgeochem.2011.06.002_b0250) 2007; 92 10.1016/j.apgeochem.2011.06.002_b0520 10.1016/j.apgeochem.2011.06.002_b0365 Nimick (10.1016/j.apgeochem.2011.06.002_b0440) 2005; 47 10.1016/j.apgeochem.2011.06.002_b0525 Parkhurst (10.1016/j.apgeochem.2011.06.002_b0540) 1993 Minikawa (10.1016/j.apgeochem.2011.06.002_b0400) 1996; 44 Gammons (10.1016/j.apgeochem.2011.06.002_b0215) 2007; 53 Nordstrom (10.1016/j.apgeochem.2011.06.002_b0505) 1992; 45 10.1016/j.apgeochem.2011.06.002_b0260 McKnight (10.1016/j.apgeochem.2011.06.002_b0385) 1988; 240 Bencala (10.1016/j.apgeochem.2011.06.002_b0080) 1990; 26 10.1016/j.apgeochem.2011.06.002_b0265 Morin (10.1016/j.apgeochem.2011.06.002_b0410) 2007; 92 10.1016/j.apgeochem.2011.06.002_b0660 Bethke (10.1016/j.apgeochem.2011.06.002_b0105) 2008; 36 10.1016/j.apgeochem.2011.06.002_b0020 McKnight (10.1016/j.apgeochem.2011.06.002_b0380) 1988; 20 10.1016/j.apgeochem.2011.06.002_b0015 MacCausland (10.1016/j.apgeochem.2011.06.002_b0355) 2007; 149 Clayton (10.1016/j.apgeochem.2011.06.002_b0155) 1980; 43 Nordstrom (10.1016/j.apgeochem.2011.06.002_b0495) 1999; 96 Plummer (10.1016/j.apgeochem.2011.06.002_b0570) 1993 Gammons (10.1016/j.apgeochem.2011.06.002_b0225) 2008; 252 Walton-Day (10.1016/j.apgeochem.2011.06.002_b0685) 2003 Kimball (10.1016/j.apgeochem.2011.06.002_b0310) 1994; 28 10.1016/j.apgeochem.2011.06.002_b0535 Bencala (10.1016/j.apgeochem.2011.06.002_b0075) 1984; 20 Nordstrom (10.1016/j.apgeochem.2011.06.002_b0485) 2009; 100 Rankama (10.1016/j.apgeochem.2011.06.002_b0585) 1950 |
References_xml | – start-page: 94 year: 1971 end-page: 130 ident: b0290 article-title: Silica variation in stream water with time and discharge publication-title: Nonequilibrium Systems in Natural Water Chemistry – reference: Allison, J.D., Brown, D.S., Novo-Gradac, K.J., 1991. MINTEQA2/PRODEFA2, A Geochemical Assessment Model for Environmental Systems: Version 3.0 User’s Manual. USEPA Report EPA/600/3-91/021. – year: 2008 ident: b0350 article-title: Metal Contaminants in Aquatic Environments – volume: 36 start-page: 484 year: 2003 end-page: 492 ident: b0035 article-title: Modeling precipitation and sorption of elements during mixing of river water and porewater in the Coeur d’Alene River basin publication-title: Environ. Sci. Technol. – volume: 32 start-page: 419 year: 1996 end-page: 430 ident: b0625 article-title: Reactive solute transport in streams 2. Simulation of a pH modification experiment publication-title: Water Resour. Res. – volume: 258A start-page: 57 year: 1960 end-page: 67 ident: b0230 article-title: Oxidation of pyrite by iron sulfate solutions publication-title: Am. J. Sci. – volume: 50 start-page: 1509 year: 1986 end-page: 1520 ident: b0375 article-title: Oxidation of pyrite in low temperature acidic solutions: rate laws and surface textures publication-title: Geochim. Cosmochim. Acta – volume: 19 start-page: 718 year: 1983 end-page: 724 ident: b0070 article-title: Simulation of solute transport in a mountain pool-and-riffle stream – a transient storage model publication-title: Water Resour. Res. – volume: 149 start-page: 216 year: 2007 end-page: 226 ident: b0355 article-title: The impact of episodic coal mine drainage pollution on benthic invertebrates in streams in the anthracite region of Pennsylvania publication-title: Environ. Pollut. – reference: Naus, C.A., McCleskey, R.B., Nordstrom, D.K., Donohoe, L.C., Hunt, A.G., Paillet, F.L., Morin, R.H., Verplanck, P.L., 2005. Questa Baseline and Pre-mining Ground-water-quality Investigation. 5. Well Installation, Water-level Data, and Surface- and Ground-water Geochemistry in the Straight Creek Drainage Basin, Red River Valley, New Mexico, 2001–2003. US Geol. Surv. Sci. Invest. Rep. 2005-5088. – reference: Kennedy, V.C., Malcolm, R.L., 1978. Geochemistry of the Mattole River of Northern California. US Geol. Surv. Open-File Rep. 78-205. – volume: 45 start-page: 215 year: 1992 end-page: 247 ident: b0270 article-title: Geomorphological and hydrogeological features of the Poços de Caldas caldera analogue study sites publication-title: J. Geochem. Explor. – volume: 24 start-page: 255 year: 2009 end-page: 267 ident: b0655 article-title: Naturally acidic surface- and ground-waters draining porphyry-related mineralized areas of the southern Rocky Mountains, Colorado and New Mexico publication-title: Appl. Geochem. – start-page: 270 year: 1967 end-page: 285 ident: b0415 article-title: Redox equilibria and measurements of potentials in the aquatic environment publication-title: Equilibrium Concepts in Natural Water Systems, Adv. Chem. Series 67 – reference: Parkhurst, D.L., Appelo, C.A., 1999. User’s Guide to PHREEQC (Version 2) – A Computer Program for Speciation, Batch-reaction, One-dimensional Transport, and Inverse Geochemical Calculations. US Geol. Surv. Water-Resour. Invest. Rep. 99-4259. – volume: 278 start-page: 1235 year: 1978 end-page: 1252 ident: b0090 article-title: Rate control of mineral dissolution under earth surface conditions publication-title: Am. J. Sci. – volume: 69 start-page: 2505 year: 2005 end-page: 2516 ident: b0220 article-title: Diel behavior of iron and other heavy metals in a mountain stream with acidic to neutral pH: Fisher Creek, Montana, USA publication-title: Geochim. Cosmochim. Acta – volume: 23 start-page: 166 year: 2008 end-page: 202 ident: b0165 article-title: Dissolved metals and associated constituents in abandoned coal-mine discharges, Pennsylvania, USA: 1. Constituent concentrations and correlations publication-title: Appl. Geochem. – volume: 215 start-page: 387 year: 2005 end-page: 405 ident: b0285 article-title: Major and trace element composition of copiapite-group minerals and coexisting water from the Richmond mine, Iron Mountain, California publication-title: Chem. Geol. – volume: 30 start-page: 3016 year: 1996 end-page: 3024 ident: b0120 article-title: Reactive solute transport in an acidic stream: experimental pH increase and simulation of controls on pH, aluminum, and iron publication-title: Environ. Sci. Technol. – volume: 75 start-page: 67 year: 1984 end-page: 110 ident: b0300 article-title: Transport and concentration controls for chloride, strontium, potassium and lead in Uvas Creek, a small cobble-bed stream in Santa Clara County, California, USA, 1. Conceptual model publication-title: J. Hydrol. – volume: 45 start-page: 53 year: 1992 end-page: 112 ident: b0665 article-title: Hydrothermal and supergene uranium mineralization at the Osamu Utsumi mine, Poços de Caldas, Minas Gerais, Brazil publication-title: J. Geochem. Explor. – volume: 35 start-page: 3857 year: 2001 end-page: 3862 ident: b0235 article-title: Rapid arsenite oxidation by publication-title: Environ. Sci. Technol. – start-page: 227 year: 1993 end-page: 254 ident: b0160 article-title: Uses of environmental isotopes publication-title: Regional Ground-Water Quality – reference: Pendleton, J.A., Posey, H.H., Long, M.B., 1995. Characterizing Summitville and its impacts. In: Proceedings: Summitville Forum ’95. Colorado Geol. Surv. Spec. Publ. 38, Denver, CO, pp. 1–12. – reference: Ludington, S.D., Plumlee, G.S., Caine, J.S., Bove, D.J., Holloway, J.M., Livo, K.E., 2005. Questa Baseline and Pre-mining Ground-water Quality Investigation. 10. Geologic Influences on Ground and Surface Waters in the Red River Watershed, New Mexico. US Geol. Surv. Sci. Invest. Rep. 2004-5245. – volume: 21 start-page: 529 year: 2002 end-page: 543 ident: b0595 article-title: A new metric for determining the importance of transient storage publication-title: J. North Am. Benthol. Soc. – volume: 45 start-page: 249 year: 1992 end-page: 287 ident: b0505 article-title: Ground water chemistry and geochemical modeling of water-rock interactions at the Osamu Utsumi mine and the Morro do Ferro analogue study sites, Poços de Caldas, Minas Gerais, Brazil publication-title: J. Geochem. Explor. – year: 1986 ident: b0245 article-title: The Geology of Ore Deposits – volume: 44 start-page: 193 year: 1996 end-page: 197 ident: b0400 article-title: A few occurrences of basaluminite in Japan publication-title: Chigaku Kenkyu – reference: Ball, J.W., Runkel, R.L., Nordstrom, D.K., 2004. Evaluating remedial alternatives for the Alamosa River and Wightman Fork, near the Summitville, Colorado: application of a reactive-transport model to low- and high-flow simulations. In: Zanetti, P. (Ed.), Environmental Sciences and Environmental Computing. The EnviroComp Institute II, pp. 1–54. – reference: National Research Council, 2001. Assessing the TMDL Approach to Water Quality Management. National Academy Press, Washington, DC. – start-page: 63 year: 1966 end-page: 68 ident: b0200 article-title: Leviathan Mine publication-title: Guidebook along the East-central Front of the Sierra Nevada – volume: 47 start-page: 603 year: 2005 end-page: 614 ident: b0440 article-title: Seasonality of diel cycles of dissolved trace-metal concentrations in a Rocky Mountain stream publication-title: Environ. Geol. – reference: Caine, J.S., 2006. Questa Baseline and Pre-mining Ground-water Quality Investigation. 18. Characterization of Brittle Structures in the Questa Caldera and Speculation on their Potential Impacts on the Bedrock Ground-water Flow System. US Geol. Surv. Prof. Paper 1729. – volume: 28 start-page: 2065 year: 1994 end-page: 2073 ident: b0310 article-title: Coupling of hydrologic transport and chemical reaction in a stream affected by acid mine drainage publication-title: Environ. Sci. Technol. – reference: Jambor, J.L., Blowes, D.W., Ritchie, A.I.M. (Eds.), 2003. Environmental Aspects of Mine Wastes. Mineral. Assoc. Canada, Short Course Series 31, Ottawa. – volume: 43 start-page: 931 year: 1980 end-page: 937 ident: b0155 article-title: Hydrobasaluminite and basaluminite from Chickerell, Dorset publication-title: Mineral. Mag. – start-page: 398 year: 1990 end-page: 413 ident: b0510 article-title: Revised chemical equilibrium data for water-mineral reactions and their limitations publication-title: Chemical Modeling in Aqueous Systems II – start-page: 199 year: 1993 end-page: 225 ident: b0540 article-title: Geochemical models publication-title: Regional Ground-Water Quality – start-page: 335 year: 2003 end-page: 360 ident: b0685 article-title: Passive and active treatment of acid mine drainage publication-title: Environmental Aspects of Mine Wastes – reference: Blowes, D.W., Ptacek, C.J., Jambor, J.L., Weisener, C.G., 2003. The geochemistry of acid mine drainage. In: Lollar, B.S. (Ed.), Environmental Geochemistry. Holland, H.D., Turekian, K.K. (Exec. Eds), Treatise on Geochemistry, vol. 5. Oxford, Elsevier–Pergamon, pp. 149–204. – volume: 26 start-page: 989 year: 1990 end-page: 1000 ident: b0080 article-title: Characterization of transport in an acidic and metal-rich mountain stream based on a lithium tracer injection and simulations of transient storage publication-title: Water Resour. Res. – volume: 47 start-page: 665 year: 1983 end-page: 686 ident: b0575 article-title: Development of reaction models for ground-water systems publication-title: Geochim. Cosmochim. Acta – volume: 18 start-page: 219 year: 1973 end-page: 242 ident: b0195 article-title: The variation of dissolved constituents with discharge in some Norfolk rivers publication-title: J. Hydrol. – reference: Plumlee, G.S., Lowers, H., Ludington, S., Koenig, A., Briggs, P., 2005. Questa Baseline and Pre-mining Ground-water Quality Investigation. 13. Mineral Microscopy and Chemistry of Mined and Unmined Porphyry Molybdenum Mineralization along the Red River, New Mexico: Implications for Ground- and Surface-water Quality. U.S. Geol. Surv. Open-File Rep. 2005-1442. – year: 2009 ident: b0555 article-title: Hydrothermal Processes and Mineral Systems – volume: 384 start-page: 433 year: 2007 end-page: 451 ident: b0210 article-title: Diel changes in water chemistry in an arsenic-rich and treatment pond system publication-title: Sci. Total Environ. – reference: Walton-Day, K., Paschke, S.S., Runkel, R.L., Kimball, B.A., 2007. Using the OTIS Solute-transport Model to Evaluate Remediation Scenarios in Cement Creek and the Upper Animas River, vol. 2. US Geol. Surv. Prof. Paper 1651, pp. 973–1028. – reference: Dagenhart Jr., T.V., 1980. The Acid Mine Drainage of Contrary Creek, Louisa County, Virginia: Factors Causing Variations in Stream Water Chemistry. M.S. Thesis, Univ. Virginia. – volume: 252 start-page: 202 year: 2008 end-page: 213 ident: b0225 article-title: Photoreduction fuels biogeochemical cycling of iron for Spain’s acid rivers publication-title: Chem. Geol. – reference: Runkel, R.L., 2010. One-dimensional Transport with Equilibrium Chemistry (OTEQ) – A Reactive Transport Model for Streams and Rivers. US Geol. Surv. Tech. Methods Book 6. p. 101. < – reference: Bencala, K.E., McKnight, D.M., Zellweger, G.W., Goad, J., 1986. The Stability of Rhodamine WT Dye in Trial Studies of Solute Transport in an Acidic and Metal-rich Stream. Selected Papers in the Hydrologic Sciences. US Geol. Surv. Water-Supply Paper 2270. – volume: 20 start-page: 492 year: 1988 end-page: 500 ident: b0380 article-title: Diel variations in iron chemistry in an acidic stream in the Colorado Rocky Mountains, USA publication-title: Arctic Alp. Res. – reference: Alpers, C.N., Taylor, H.E., Domagalski, J.L. (Eds.) 2000b. Metals Transport in the Sacramento River, California, 1996-1997. V. 2: Interpretation of Metal Loads. U.S. Geol. Surv. Water-Resour. Invest. Rep. 00-4002. – volume: 4 start-page: 233 year: 1976 end-page: 240 ident: b0730 article-title: Solute transport and modeling of water quality in a small stream publication-title: J. Res. US Geol. Surv. – reference: Alpers, C.N., Taylor, H.E., Domagalski, J.L. (Eds.), 2000a. Metals Transport in the Sacramento River, California, 1996-1997. V. 1: Methods and Data. U.S. Geol. Surv. Water-Resour. Invest. Rep. 99-4286. – volume: 24 start-page: 106 year: 2009 end-page: 119 ident: b0455 article-title: An empirical method for estimating instream pre-mining pH and dissolved Cu concentration in catchments with acidic drainage and ferricrete publication-title: Appl. Geochem. – volume: 22 start-page: 1899 year: 2007 end-page: 1918 ident: b0620 article-title: A simulation-based approach for estimating premining water quality: Red Mountain Creek, Colorado publication-title: Appl. Geochem. – volume: 39 start-page: 1247 year: 2003 end-page: 1264 ident: b0445 article-title: Diel cycles in dissolved metal concentrations in streams: occurrence and possible causes publication-title: Water Resour. Res. – reference: Alpers, C.N., Nordstrom, D.K., 2000. Estimation of pre-mining conditions for trace metal mobility in mineralized areas: an overview. In: ICARD 2000 Proc. 5th Internat. Conf. Acid Rock Drainage, vol. 1. Soc. Min. Metal. Explor., Littleton, CO, pp. 463–472. – volume: 53 start-page: 611 year: 2007 end-page: 622 ident: b0215 article-title: Influence of diurnal cycles on monitoring of metal concentrations and loads in streams draining abandoned mine lands: an example from High Ore Creek, Montana publication-title: Environ. Geol. – volume: 6 start-page: 11 year: 1988 end-page: 24 ident: b0670 article-title: Microbial oxidation of arsenite and occurrence of arsenite-oxidizing bacteria in acid mine water from a sulfur-pyrite mine publication-title: Geomicrobiol. J. – reference: Besser, J.M., Finger, S.E., Church, S.E., 2007. Impacts of historical mining on aquatic ecosystems – an ecological approach. In: Church, S.E., von Guerard, P., Finger, S.E. (Eds.), Integrated Investigations of Environmental Effects of Historical Mining in the Animas River Watershed, San Juan County, Colorado, vol. 1. US Geol. Surv. Prof. Paper, pp. 87–106. – volume: 26 start-page: 2316 year: 1992 end-page: 2322 ident: b0630 article-title: Metals in water: determining natural background concentrations in mineralized areas publication-title: Environ. Sci. Technol. – reference: Church, S.E., Von Guerard, P.B., Finger, S.E., 2007. Integrated Investigations of Environmental Effects of Historical Mining in the Animas River Watershed, San Juan County, Colorado. US Geol. Surv. Prof. Paper 1651, pp. 1–1096. – volume: 26 start-page: 237 year: 1975 end-page: 244 ident: b0680 article-title: Variations in the natural chemical concentrations of river water during flood flows, and the lag effect: some further comments publication-title: J. Hydrol. – volume: 41 start-page: 913 year: 2003 end-page: 925 ident: b0125 article-title: The geochemical evolution of a riparian ground water in a forested Piedmont catchment publication-title: Ground Water – volume: 92 start-page: 66 year: 2007 end-page: 86 ident: b0250 article-title: Verification of the “first flush” phenomenon in mine water from coal mines in the Upper Silesian Coal Basin, Poland publication-title: J. Contam. Hydrol. – volume: 25 start-page: 425 year: 1940 end-page: 431 ident: b0530 article-title: Cryptocrystalline pyrite from Alpine county, California publication-title: Am. Mineral. – year: 1994 ident: b0395 article-title: Natural Analogue Studies in the Geological Disposal of Radioactive Wastes – volume: 32 start-page: 409 year: 1996 end-page: 418 ident: b0610 article-title: Reactive solute transport in streams 1. Development of an equilibrium-based model publication-title: Water Resour. Res. – reference: Bigham, J.M., Nordstrom, D.K., 2000. Iron and aluminum hydroxysulfates from acid sulfate waters. In: Alpers, C.N., Jambor, J. L., Nordstrom, D.K. (Eds.), Sulfate Minerals – Crystallography, Geochemistry, and Environmental Significance. Mineral. Soc. Amer. 40, Washington, DC, pp. 351–403. – reference: Nordstrom, D.K., 2005. A river on the edge – water quality in the Red River and the USGS background study. In: Price, L.G., Bland, D., McLemore, V.T., Barker, J.M. (Eds.), Mining in New Mexico, Decision-Makers Conference 2005, Taos Region. Socorro, NM, New Mexico Bur. Geol. Mineral Resour., pp. 64–67. – volume: 23 start-page: 3404 year: 2008 end-page: 3422 ident: b0175 article-title: Laboratory and field evaluation of a flushable oxic limestone drain for treatment of net-acidic, metal-laden drainage from a flooded anthracite mine, Pennsylvania publication-title: Appl. Geochem. – volume: 57 start-page: 642 year: 1991 end-page: 644 ident: b0515 article-title: Rate of bioleaching by publication-title: Appl. Environ. Microbiol. – reference: Walton-Day, K., Ortiz, R.F., von Guerard, P.B., 1995. Sources of water having low pH and elevated metal concentrations in the upper Alamosa River from the headwaters to the outlet of Terrace Reservior, south-central Colorado, April–September 1993. In: Proc.: Summitville Forum ’95. Colorado Geol. Surv. Spec. Publ. 38, Denver, CO, pp. 160–170. – year: 1950 ident: b0585 article-title: Geochemistry – reference: Rupert, M.G., 2001. Relations among Rainstorm Runoff, Streamflow, pH, and Metal Concentrations, Summitville Mine Area, Upper Alamosa River Basin, Southwest Colorado, 1995–97. US Geol. Surv. Water-Resour. Invest. Rep. 01-4027. – volume: 13 start-page: 263 year: 2005 end-page: 287 ident: b0240 article-title: Geochemistry and the understanding of ground-water systems publication-title: Hydrogeol. J. – reference: Clarke, F.W., 1924. The Data of Geochemistry, 5th ed. US Geol. Surv. Bull. 770. – volume: 32 start-page: 1361 year: 1998 end-page: 1368 ident: b0705 article-title: Trace metal adsorption onto an acid mine drainage iron(III) oxy hydroxy sulfate publication-title: Environ. Sci. Technol. – reference: Hendrickson, G.E., Krieger, R.A., 1960. Relationship of Chemical Quality of Water to Stream Discharge in Kentucky. Internat. Geol. Cong. XXI Session, Part 1, pp. 66–75. – volume: 23 start-page: 203 year: 2008 end-page: 226 ident: b0170 article-title: Dissolved metals and associated constituents in abandoned coal-mine discharges, Pennsylvania, USA: 2. Geochemical controls on constituent concentrations publication-title: Appl. Geochem. – reference: Nimick, D.A., Church, S.E., Finger, S.E., 2004. Summary and Conclusions from Investigation of the Effects of Historical Mining in the Boulder River Watershed, Jefferson County, Montana. US Geol. Surv. Prof. Paper 1652-A. – volume: 22 start-page: 4011 year: 2008 end-page: 4022 ident: b0140 article-title: Metals fate and transport modelling in streams and watersheds: state of the science and USEPA workshop review publication-title: Hydrol. Process. – start-page: 227 year: 2003 end-page: 238 ident: b0465 article-title: Effects of microbiological and geochemical interactions in mine drainage publication-title: Environmental Aspects of Mine Wastes – volume: 16 start-page: 605 year: 1982 end-page: 612 ident: b0255 article-title: Transport of iron, manganese, cadmium, copper, and zinc by Magela Creek, Northern Territory, Australia publication-title: Water Res. – start-page: 261 year: 2003 end-page: 282 ident: b0320 article-title: Use of field-scale experiments and reactive-solute-transport modeling to evaluate remediation alternatives in streams affected by acid mine drainage publication-title: Environmental Aspects of Mine Wastes – volume: 25 start-page: 288 year: 2010 end-page: 301 ident: b0135 article-title: Wash-out processes of evaporitic sulfate salts in the Tinto River: hydrogeochemical evolution and environmental impact publication-title: Appl. Geochem. – reference: Ortiz, R.F., Ferguson, S.A., 2001. Characterization of Water quality in Selected Tributaries of the Alamosa River, Southwestern Colorado, Including Comparisons to Instream Water-quality Standards and Toxicological Reference Values, 1995–97. US Geol. Surv. Water-Resour. Invest. Rep. 00-4170. – volume: 44 start-page: 47 year: 2000 end-page: 69 ident: b0720 article-title: Predicting temporal changes in total iron concentrations in groundwaters flowing from abandoned deep mines: a first approximation publication-title: J. Contam. Hydrol. – reference: McKibben, M.A., 1984. Kinetics of Aqueous Pyrite Oxidation by Ferric Iron, Oxygen, and Hydrogen Peroxide from pH 1-4 and 20-40 °C. Ph.D. Thesis, Pennsylvania State Univ. – reference: Miller, W.M., McHugh, J.B., 1994. Natural Acid Drainage from Altered Areas within and Adjacent to the Upper Alamosa River, Colorado. US Geol. Surv. Open-File Rep. 94-144. – volume: 19 start-page: 732 year: 1983 end-page: 738 ident: b0065 article-title: Simulation of solute transport in a mountain pool-and-riffle stream with a kinetic mass transfer model for sorption publication-title: Water Resour. Res. – start-page: 169 year: 1974 end-page: 192 ident: b0675 article-title: Suspended sediment and solute yields from a small catchment prior to urbanization publication-title: Fluvial Processes in Instrumented Watersheds – start-page: 255 year: 1993 end-page: 294 ident: b0570 article-title: Environmental tracers for age dating young ground water publication-title: Regional Ground-Water Quality – volume: 36 start-page: 484 year: 2002 end-page: 492 ident: b0645 article-title: Modeling metal removal onto natural particles formed during mixing of acid rock drainage with ambient surface water publication-title: Environ. Sci. Technol. – start-page: 261 year: 1990 end-page: 287 ident: b0340 article-title: Effects of trace metals on aquatic benthos publication-title: Metal Ecotoxicology: Concepts and Applications – reference: Alpers, C.N., Nordstrom, D.K., Burchard, J.M., 1992. Compilation and Interpretation of Water Quality and Discharge Data for Acid Mine Waters at Iron Mountain, Shasta County, California, 1940-91. US Geol. Surv. Water-Resour. Invest. Rep. 91-4160. – reference: Ball, J.W., Nordstrom, D.K., 1985. Major and Trace-element Analyses of Acid Mine Waters in the Leviathan Mine Drainage Basin, California/Nevada--October, 1981 to October, 1982. US Geol. Surv. Water-Resour. Invest. Rep. 85-4169. – reference: Ball, J.W., Runkel, R.L., Nordstrom, D.K., 2005. Questa Baseline and Pre-mining Ground-water Quality Investigation. 12. Geochemical and Reactive-transport Modeling based on Tracer Injection-synoptic Sampling Studies for the Red River, New Mexico, 2001–2002. US Geol. Surv. Sci.-Invest. Rep. 2005-5149. – volume: 92 start-page: 193 year: 2007 end-page: 197 ident: b0410 article-title: Crystal structure of tooeleite, Fe publication-title: Am. Mineral. – reference: Vincent, K.R., 2008. Questa Baseline and Pre-mining Ground-water Quality Investigation. 17. Geomorphology of the Red River Valley, Taos County, New Mexico and Influence on Ground-water Flow in the Shallow Alluvial Aquifer. US Geol. Surv. Sci. Invest. Rep. 2006-5156. – start-page: 244 year: 1994 end-page: 260 ident: b0700 article-title: Transport and natural attenuation of Cu, Zn, As, and Fe in the acid mine drainage of Leviathan and Bryant creeks publication-title: The Environmental Geochemistry of Sulfide Oxidation – start-page: 373 year: 1999 end-page: 432 ident: b0565 article-title: Geologic controls on the composition of natural waters and mine waters draining diverse mineral-deposit types publication-title: The Environmental Geochemistry of Mineral Deposits. Part B: Case Studies and Research Topics – volume: 35 start-page: 3829 year: 1999 end-page: 3840 ident: b0615 article-title: Reactive solute transport in streams: a surface complexation approach for trace metal sorption publication-title: Water Resour. Res. – reference: Ortiz, R.F., Stogner Sr., R.W., 2001. Diurnal Variations in Metal Concentrations in the Alamosa River and Wightman Fork, Southwestern Colorado, 1995–97. US Geol. Surv. Water-Resour. Invest. Rep. 00-4160. – reference: Nordstrom, D.K., 2004. Modeling low-temperature geochemical processes. In: Drever, J.I. (Ed.) Surface and Ground Water, Weathering, and Soils. Holland, H.D., Turekian, K.K. (Exec. Eds.), Treatise on Geochemistry, vol. 5. Elsevier, pp. 37–72. – volume: 40 start-page: 267 year: 2001 end-page: 278 ident: b0715 article-title: Arsenic in groundwaters: an international study publication-title: Environ. Geol. – reference: Kinkel, A.R., Hall, W.E., Albers, J.P., 1956. Geology and Base-metal Deposits of the West Shasta Copper–Zinc District, Shasta County, California. US Geol. Surv. Prof. Paper 285. – reference: Posey, H.H., Pendleton, J.A., Van Zyl, D., 1995. In: Proc.: Summitville Forum ’95. Colorado Geol. Surv. Spec. Publ. 38, Denver, CO. – volume: 19 start-page: 29 year: 2004 end-page: 53 ident: b0650 article-title: Development of a database for modeling cation adsorption on hydrous manganese oxide using the diffuse double layer model publication-title: Appl. Geochem. – volume: 96 start-page: 3455 year: 1999 end-page: 3462 ident: b0495 article-title: Negative pH, efflorescent mineralogy, and consequences for environmental restoration at the Iron Mountain Superfund site, California publication-title: Proc. Natl. Acad. Sci. USA – volume: 32 start-page: 657 year: 1998 end-page: 662 ident: b0710 article-title: Rapid oxidation of geothermal arsenic (III) in stream waters of eastern Sierra Nevada publication-title: Environ. Sci. Technol. – volume: 100 start-page: 97 year: 2009 end-page: 104 ident: b0485 article-title: Acid rock drainage and climate change publication-title: J. Geochem. Explor. – volume: 232 start-page: 54 year: 1986 end-page: 56 ident: b0500 article-title: The geochemical behavior of aluminum in acidified surface waters publication-title: Science – volume: 40 start-page: 48 year: 2001 end-page: 59 ident: b0095 article-title: Bioavailability of metals in stream food webs and hazards to brook trout ( publication-title: Arch. Environ. Contam. Toxicol. – reference: Alpers, C.N., Nordstrom, D.K., Verosub, K.L., Helm-Clark, C., 2007. Paleomagnetic Determination of Pre-mining Metal-flux Rates at the Iron Mountain Superfund Site, Northern California. Eos Trans. AGU 88 (23) Jt. Assem. Suppl. Abstract GP41B-04. – start-page: 37 year: 1982 end-page: 56 ident: b0460 article-title: Aqueous pyrite oxidation and the consequent formation of secondary iron minerals publication-title: Acid Sulfate Weathering – volume: 33 start-page: 3850 year: 1999 end-page: 3856 ident: b0545 article-title: Modeling removal of Cd, Cu, Pb, and Zn in acidic groundwater during neutralization by ambient surface waters and groundwaters publication-title: Environ. Sci. Technol. – reference: Younger, P.L., Blanchere, A., 2004. First-flush, reverse first-flush and partial first-flush: dynamics of short- and long-term changes in the quality of water flowing from deep mine systems. In: Price, W.A., Bellefontaine, K. (Eds.), Proc. 10th Ann. British Columbia ML/ARD Workshop, Performance of ARD Generating Wastes, Material Characterization and MEND Projects. – volume: vol. 6A start-page: 133 year: 1999 end-page: 160 ident: b0490 article-title: Geochemistry of acid mine waters publication-title: The Environmental Geochemistry of Mineral Deposits – year: 1990 ident: b0190 article-title: Surface Complexation Modeling – volume: 39 start-page: 1921 year: 2005 end-page: 1931 ident: b0345 article-title: Why is metal bioaccumulation so variable? Biodynamics as a unifying concept publication-title: Environ. Sci. Technol. – volume: 60 start-page: 1021 year: 2010 end-page: 1036 ident: b0305 article-title: Evaluating remediation alternatives for mine drainage, Little Cottonwood Creek, Utah, USA publication-title: Environ. Earth Sci. – reference: Ball, J.W., Nordstrom, D.K., 1989. Final Revised Analyses of Trace Elements from Acid Mine Waters in the Leviathan Mine Drainage Basin, California and Nevada – October 1981 to October 1982. US Geol. Surv. Water-Resour. Invest. Rep. 89-4138. – reference: Hendrickson, G.E., Krieger, R.A., 1964. Geochemistry of Natural Waters of the Blue Grass Region, Kentucky. US Geol. Surv. Water-Supply Paper 1700. – volume: 294 start-page: 101 year: 2010 end-page: 110 ident: b0360 article-title: The dependence of chemical weathering rates on fluid residence time publication-title: Earth Planet. Sci. Lett. – volume: 269 start-page: 124 year: 2010 end-page: 136 ident: b0325 article-title: Reactive solute-transport simulation of pre-mining metal concentrations in mine-impacted catchments: Redwell Basin, Colorado, USA publication-title: Chem. Geol. – volume: 36 start-page: 1093 year: 2002 end-page: 1101 ident: b0605 article-title: Evaluating remedial alternatives for an acid mine drainage system – application of a reactive transport model publication-title: Environ. Sci. Technol. – volume: 36 start-page: 121 year: 2008 end-page: 152 ident: b0105 article-title: Groundwater age and groundwater age dating publication-title: Ann. Rev. Earth Planet. Sci. – volume: 20 start-page: 1797 year: 1984 end-page: 1803 ident: b0075 article-title: Interactions of solutes and streambed sediment. Part I. An experimental analysis of cation and anion transport in a mountain stream publication-title: Water Resour. Res. – volume: 283 start-page: 3 year: 2011 end-page: 17 ident: b0450 article-title: Diel biogeochemical processes and their effect on the aqueous chemistry of streams: a review publication-title: Chem. Geol. – volume: 45 start-page: 25 year: 1992 end-page: 51 ident: b0640 article-title: The regional geology of the Poços de Caldas alkaline complex: mineralogy and geochemistry of selected nepheline syenites and phonolites publication-title: J. Geochem. Explor. – reference: Kimball, B.A., Nordstrom, D.K., Runkel, R.L., Vincent, K.R., Verplanck, P.L., 2006. Questa Baseline and Pre-mining Ground-water Quality Investigation. 23. Quantification of Mass Loading from Mined and Unmined Areas along the Red River, New Mexico. US Geol. Surv. Sci. Invest. Report 2006-5004. – volume: 340 start-page: 52 year: 1989 end-page: 54 ident: b0205 article-title: Influence of coupling of sorption and photosynthetic processes on trace elements cycles in natural waters publication-title: Nature – reference: Nordstrom, D.K., 2008. Questa Baseline and Pre-Mining Ground-Water Quality Investigation. 25. Summary of Results and Baseline and Pre-mining Ground-water Geochemistry, Red River Valley, Taos County, New Mexico, 2001–2005. US Geol. Surv. Prof. Paper 1728. – volume: 240 start-page: 637 year: 1988 end-page: 640 ident: b0385 article-title: Iron photoreduction and oxidation in an acidic mountain stream publication-title: Science – volume: 283 start-page: 1 year: 2011 end-page: 2 ident: b0430 article-title: Diel biogeochemical processes in terrestrial waters publication-title: Chem. Geol. – reference: McAda, D.P., Naus, C.A., 2008. Questa Baseline and Pre-mining Ground-water quality Investigation. 22. Ground-water Budget for the Straight Creek Drainage Basin, Red River Valley, New Mexico – with a Section on Sulphur Gulch Water Budget by Vincent, K.R. US Geol. Surv. Sci. Invest. Rep. 2007-5149. – reference: > (Chapter B6). – reference: Runkel, R.L., 1998. One Dimensional Transport with Inflow and Storage (OTIS): A Solute Transport Model for Streams and Rivers. US Geol. Surv. Water-Resour. Invest. Rep. 98-4018, 73 p. – reference: Ball, J.W., Nordstrom, D.K., 1991. User’s Manual for WATEQ4F, with Revised Thermodynamic Data Base and Test Cases for Calculating Speciation of Major, Trace and Redox Elements in Natural Waters. US Geol. Surv. Open-File Rep. 91-183. – volume: 75 start-page: 111 year: 1984 end-page: 141 ident: b0275 article-title: Transport and concentration controls for chloride, strontium, potassium and lead in Uvas Creek, a small cobble-bed stream in Santa Clara County, California, USA, 2. Mathematical modeling publication-title: J. Hydrol. – volume: 37 start-page: 1705 year: 2003 end-page: 1712 ident: b0405 article-title: Bacterial formation of tooeleite and mixed arsenic(III) or arsenic(V)-iron(III) gels in the Carnoulès acid mine drainage, France. A XANES, XRD, and SEM study publication-title: Environ. Sci. Technol. – volume: 34 start-page: 435 year: 1953 end-page: 442 ident: b0185 article-title: Relation of the mineral constituents in solution to stream flow, Saline River, near Russel, Kansas publication-title: Am. Geophys. Union Trans. – volume: 26 start-page: 2316 year: 1992 ident: 10.1016/j.apgeochem.2011.06.002_b0630 article-title: Metals in water: determining natural background concentrations in mineralized areas publication-title: Environ. Sci. Technol. doi: 10.1021/es00036a001 – volume: 240 start-page: 637 year: 1988 ident: 10.1016/j.apgeochem.2011.06.002_b0385 article-title: Iron photoreduction and oxidation in an acidic mountain stream publication-title: Science doi: 10.1126/science.240.4852.637 – volume: 13 start-page: 263 year: 2005 ident: 10.1016/j.apgeochem.2011.06.002_b0240 article-title: Geochemistry and the understanding of ground-water systems publication-title: Hydrogeol. J. doi: 10.1007/s10040-004-0429-y – start-page: 373 year: 1999 ident: 10.1016/j.apgeochem.2011.06.002_b0565 article-title: Geologic controls on the composition of natural waters and mine waters draining diverse mineral-deposit types – volume: 35 start-page: 3857 year: 2001 ident: 10.1016/j.apgeochem.2011.06.002_b0235 article-title: Rapid arsenite oxidation by Thermus aquaticus and Thermus thermophilus: field and laboratory investigations publication-title: Environ. Sci. Technol. doi: 10.1021/es010816f – volume: 41 start-page: 913 year: 2003 ident: 10.1016/j.apgeochem.2011.06.002_b0125 article-title: The geochemical evolution of a riparian ground water in a forested Piedmont catchment publication-title: Ground Water doi: 10.1111/j.1745-6584.2003.tb02434.x – volume: 50 start-page: 1509 year: 1986 ident: 10.1016/j.apgeochem.2011.06.002_b0375 article-title: Oxidation of pyrite in low temperature acidic solutions: rate laws and surface textures publication-title: Geochim. Cosmochim. Acta doi: 10.1016/0016-7037(86)90325-X – volume: 26 start-page: 237 year: 1975 ident: 10.1016/j.apgeochem.2011.06.002_b0680 article-title: Variations in the natural chemical concentrations of river water during flood flows, and the lag effect: some further comments publication-title: J. Hydrol. doi: 10.1016/0022-1694(75)90005-0 – year: 2008 ident: 10.1016/j.apgeochem.2011.06.002_b0350 – volume: 36 start-page: 1093 year: 2002 ident: 10.1016/j.apgeochem.2011.06.002_b0605 article-title: Evaluating remedial alternatives for an acid mine drainage system – application of a reactive transport model publication-title: Environ. Sci. Technol. doi: 10.1021/es0109794 – ident: 10.1016/j.apgeochem.2011.06.002_b0560 doi: 10.3133/ofr20051442 – start-page: 261 year: 1990 ident: 10.1016/j.apgeochem.2011.06.002_b0340 article-title: Effects of trace metals on aquatic benthos – start-page: 270 year: 1967 ident: 10.1016/j.apgeochem.2011.06.002_b0415 article-title: Redox equilibria and measurements of potentials in the aquatic environment – volume: 47 start-page: 665 year: 1983 ident: 10.1016/j.apgeochem.2011.06.002_b0575 article-title: Development of reaction models for ground-water systems publication-title: Geochim. Cosmochim. Acta doi: 10.1016/0016-7037(83)90102-3 – ident: 10.1016/j.apgeochem.2011.06.002_b0055 – volume: 19 start-page: 732 year: 1983 ident: 10.1016/j.apgeochem.2011.06.002_b0065 article-title: Simulation of solute transport in a mountain pool-and-riffle stream with a kinetic mass transfer model for sorption publication-title: Water Resour. Res. doi: 10.1029/WR019i003p00732 – ident: 10.1016/j.apgeochem.2011.06.002_b0100 – volume: 39 start-page: 1247 year: 2003 ident: 10.1016/j.apgeochem.2011.06.002_b0445 article-title: Diel cycles in dissolved metal concentrations in streams: occurrence and possible causes publication-title: Water Resour. Res. doi: 10.1029/2002WR001571 – volume: 25 start-page: 288 year: 2010 ident: 10.1016/j.apgeochem.2011.06.002_b0135 article-title: Wash-out processes of evaporitic sulfate salts in the Tinto River: hydrogeochemical evolution and environmental impact publication-title: Appl. Geochem. doi: 10.1016/j.apgeochem.2009.11.014 – volume: 18 start-page: 219 year: 1973 ident: 10.1016/j.apgeochem.2011.06.002_b0195 article-title: The variation of dissolved constituents with discharge in some Norfolk rivers publication-title: J. Hydrol. doi: 10.1016/0022-1694(73)90049-8 – year: 1994 ident: 10.1016/j.apgeochem.2011.06.002_b0395 – volume: 92 start-page: 66 year: 2007 ident: 10.1016/j.apgeochem.2011.06.002_b0250 article-title: Verification of the “first flush” phenomenon in mine water from coal mines in the Upper Silesian Coal Basin, Poland publication-title: J. Contam. Hydrol. doi: 10.1016/j.jconhyd.2006.12.001 – volume: 53 start-page: 611 year: 2007 ident: 10.1016/j.apgeochem.2011.06.002_b0215 article-title: Influence of diurnal cycles on monitoring of metal concentrations and loads in streams draining abandoned mine lands: an example from High Ore Creek, Montana publication-title: Environ. Geol. doi: 10.1007/s00254-007-0676-z – volume: 278 start-page: 1235 year: 1978 ident: 10.1016/j.apgeochem.2011.06.002_b0090 article-title: Rate control of mineral dissolution under earth surface conditions publication-title: Am. J. Sci. doi: 10.2475/ajs.278.9.1235 – volume: 43 start-page: 931 year: 1980 ident: 10.1016/j.apgeochem.2011.06.002_b0155 article-title: Hydrobasaluminite and basaluminite from Chickerell, Dorset publication-title: Mineral. Mag. doi: 10.1180/minmag.1980.043.331.18 – ident: 10.1016/j.apgeochem.2011.06.002_b0435 – volume: 36 start-page: 484 year: 2002 ident: 10.1016/j.apgeochem.2011.06.002_b0645 article-title: Modeling metal removal onto natural particles formed during mixing of acid rock drainage with ambient surface water publication-title: Environ. Sci. Technol. doi: 10.1021/es0109085 – ident: 10.1016/j.apgeochem.2011.06.002_b0335 doi: 10.3133/sir20045245 – volume: 16 start-page: 605 year: 1982 ident: 10.1016/j.apgeochem.2011.06.002_b0255 article-title: Transport of iron, manganese, cadmium, copper, and zinc by Magela Creek, Northern Territory, Australia publication-title: Water Res. doi: 10.1016/0043-1354(82)90081-1 – volume: 22 start-page: 1899 year: 2007 ident: 10.1016/j.apgeochem.2011.06.002_b0620 article-title: A simulation-based approach for estimating premining water quality: Red Mountain Creek, Colorado publication-title: Appl. Geochem. doi: 10.1016/j.apgeochem.2007.03.054 – ident: 10.1016/j.apgeochem.2011.06.002_b0110 doi: 10.1515/9781501508660-009 – volume: 44 start-page: 193 year: 1996 ident: 10.1016/j.apgeochem.2011.06.002_b0400 article-title: A few occurrences of basaluminite in Japan publication-title: Chigaku Kenkyu – ident: 10.1016/j.apgeochem.2011.06.002_b0390 doi: 10.3133/ofr94144 – volume: 26 start-page: 989 year: 1990 ident: 10.1016/j.apgeochem.2011.06.002_b0080 article-title: Characterization of transport in an acidic and metal-rich mountain stream based on a lithium tracer injection and simulations of transient storage publication-title: Water Resour. Res. doi: 10.1029/WR026i005p00989 – volume: 283 start-page: 1 year: 2011 ident: 10.1016/j.apgeochem.2011.06.002_b0430 article-title: Diel biogeochemical processes in terrestrial waters publication-title: Chem. Geol. – volume: 23 start-page: 3404 year: 2008 ident: 10.1016/j.apgeochem.2011.06.002_b0175 article-title: Laboratory and field evaluation of a flushable oxic limestone drain for treatment of net-acidic, metal-laden drainage from a flooded anthracite mine, Pennsylvania publication-title: Appl. Geochem. doi: 10.1016/j.apgeochem.2008.07.015 – ident: 10.1016/j.apgeochem.2011.06.002_b0725 – volume: 100 start-page: 97 year: 2009 ident: 10.1016/j.apgeochem.2011.06.002_b0485 article-title: Acid rock drainage and climate change publication-title: J. Geochem. Explor. doi: 10.1016/j.gexplo.2008.08.002 – ident: 10.1016/j.apgeochem.2011.06.002_b0060 doi: 10.3133/sir20055149 – volume: 32 start-page: 657 year: 1998 ident: 10.1016/j.apgeochem.2011.06.002_b0710 article-title: Rapid oxidation of geothermal arsenic (III) in stream waters of eastern Sierra Nevada publication-title: Environ. Sci. Technol. doi: 10.1021/es970637r – ident: 10.1016/j.apgeochem.2011.06.002_b0040 – ident: 10.1016/j.apgeochem.2011.06.002_b0315 doi: 10.3133/sir20065004 – ident: 10.1016/j.apgeochem.2011.06.002_b0535 – year: 2009 ident: 10.1016/j.apgeochem.2011.06.002_b0555 – ident: 10.1016/j.apgeochem.2011.06.002_b0600 doi: 10.3133/tm6B6 – volume: 19 start-page: 29 year: 2004 ident: 10.1016/j.apgeochem.2011.06.002_b0650 article-title: Development of a database for modeling cation adsorption on hydrous manganese oxide using the diffuse double layer model publication-title: Appl. Geochem. doi: 10.1016/S0883-2927(03)00115-X – start-page: 63 year: 1966 ident: 10.1016/j.apgeochem.2011.06.002_b0200 article-title: Leviathan Mine – ident: 10.1016/j.apgeochem.2011.06.002_b0025 – year: 1986 ident: 10.1016/j.apgeochem.2011.06.002_b0245 – ident: 10.1016/j.apgeochem.2011.06.002_b0470 – volume: vol. 6A start-page: 133 year: 1999 ident: 10.1016/j.apgeochem.2011.06.002_b0490 article-title: Geochemistry of acid mine waters – ident: 10.1016/j.apgeochem.2011.06.002_b0005 – volume: 28 start-page: 2065 year: 1994 ident: 10.1016/j.apgeochem.2011.06.002_b0310 article-title: Coupling of hydrologic transport and chemical reaction in a stream affected by acid mine drainage publication-title: Environ. Sci. Technol. doi: 10.1021/es00061a014 – volume: 384 start-page: 433 year: 2007 ident: 10.1016/j.apgeochem.2011.06.002_b0210 article-title: Diel changes in water chemistry in an arsenic-rich and treatment pond system publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2007.06.029 – ident: 10.1016/j.apgeochem.2011.06.002_b0295 doi: 10.3133/ofr78205 – ident: 10.1016/j.apgeochem.2011.06.002_b0265 – year: 1950 ident: 10.1016/j.apgeochem.2011.06.002_b0585 – volume: 44 start-page: 47 year: 2000 ident: 10.1016/j.apgeochem.2011.06.002_b0720 article-title: Predicting temporal changes in total iron concentrations in groundwaters flowing from abandoned deep mines: a first approximation publication-title: J. Contam. Hydrol. doi: 10.1016/S0169-7722(00)00090-5 – ident: 10.1016/j.apgeochem.2011.06.002_b0370 – volume: 40 start-page: 267 year: 2001 ident: 10.1016/j.apgeochem.2011.06.002_b0715 article-title: Arsenic in groundwaters: an international study publication-title: Environ. Geol. doi: 10.1007/s002540000162 – ident: 10.1016/j.apgeochem.2011.06.002_b0150 – volume: 258A start-page: 57 year: 1960 ident: 10.1016/j.apgeochem.2011.06.002_b0230 article-title: Oxidation of pyrite by iron sulfate solutions publication-title: Am. J. Sci. – ident: 10.1016/j.apgeochem.2011.06.002_b0020 – ident: 10.1016/j.apgeochem.2011.06.002_b0475 – ident: 10.1016/j.apgeochem.2011.06.002_b0580 – ident: 10.1016/j.apgeochem.2011.06.002_b0280 – volume: 149 start-page: 216 year: 2007 ident: 10.1016/j.apgeochem.2011.06.002_b0355 article-title: The impact of episodic coal mine drainage pollution on benthic invertebrates in streams in the anthracite region of Pennsylvania publication-title: Environ. Pollut. doi: 10.1016/j.envpol.2006.12.030 – ident: 10.1016/j.apgeochem.2011.06.002_b0045 – volume: 57 start-page: 642 year: 1991 ident: 10.1016/j.apgeochem.2011.06.002_b0515 article-title: Rate of bioleaching by Thiobacillus ferrooxidans: results of an interlaboratory comparison publication-title: Appl. Environ. Microbiol. doi: 10.1128/AEM.57.3.642-644.1991 – ident: 10.1016/j.apgeochem.2011.06.002_b0480 doi: 10.3133/pp1728 – volume: 32 start-page: 409 year: 1996 ident: 10.1016/j.apgeochem.2011.06.002_b0610 article-title: Reactive solute transport in streams 1. Development of an equilibrium-based model publication-title: Water Resour. Res. doi: 10.1029/95WR03106 – start-page: 227 year: 2003 ident: 10.1016/j.apgeochem.2011.06.002_b0465 article-title: Effects of microbiological and geochemical interactions in mine drainage – volume: 283 start-page: 3 year: 2011 ident: 10.1016/j.apgeochem.2011.06.002_b0450 article-title: Diel biogeochemical processes and their effect on the aqueous chemistry of streams: a review publication-title: Chem. Geol. doi: 10.1016/j.chemgeo.2010.08.017 – start-page: 244 year: 1994 ident: 10.1016/j.apgeochem.2011.06.002_b0700 article-title: Transport and natural attenuation of Cu, Zn, As, and Fe in the acid mine drainage of Leviathan and Bryant creeks – ident: 10.1016/j.apgeochem.2011.06.002_b0115 doi: 10.1016/B0-08-043751-6/09137-4 – volume: 33 start-page: 3850 year: 1999 ident: 10.1016/j.apgeochem.2011.06.002_b0545 article-title: Modeling removal of Cd, Cu, Pb, and Zn in acidic groundwater during neutralization by ambient surface waters and groundwaters publication-title: Environ. Sci. Technol. doi: 10.1021/es9900454 – volume: 45 start-page: 53 year: 1992 ident: 10.1016/j.apgeochem.2011.06.002_b0665 article-title: Hydrothermal and supergene uranium mineralization at the Osamu Utsumi mine, Poços de Caldas, Minas Gerais, Brazil publication-title: J. Geochem. Explor. doi: 10.1016/0375-6742(92)90122-O – ident: 10.1016/j.apgeochem.2011.06.002_b0690 – ident: 10.1016/j.apgeochem.2011.06.002_b0365 doi: 10.3133/sir20075149 – volume: 40 start-page: 48 year: 2001 ident: 10.1016/j.apgeochem.2011.06.002_b0095 article-title: Bioavailability of metals in stream food webs and hazards to brook trout (Salvelinus fontinalis) in the upper Animas River watershed, Colorado publication-title: Arch. Environ. Contam. Toxicol. doi: 10.1007/s002440010147 – ident: 10.1016/j.apgeochem.2011.06.002_b0260 – volume: 215 start-page: 387 year: 2005 ident: 10.1016/j.apgeochem.2011.06.002_b0285 article-title: Major and trace element composition of copiapite-group minerals and coexisting water from the Richmond mine, Iron Mountain, California publication-title: Chem. Geol. doi: 10.1016/j.chemgeo.2004.10.001 – volume: 20 start-page: 492 year: 1988 ident: 10.1016/j.apgeochem.2011.06.002_b0380 article-title: Diel variations in iron chemistry in an acidic stream in the Colorado Rocky Mountains, USA publication-title: Arctic Alp. Res. doi: 10.2307/1551347 – ident: 10.1016/j.apgeochem.2011.06.002_b0050 doi: 10.3133/ofr90129 – volume: 269 start-page: 124 year: 2010 ident: 10.1016/j.apgeochem.2011.06.002_b0325 article-title: Reactive solute-transport simulation of pre-mining metal concentrations in mine-impacted catchments: Redwell Basin, Colorado, USA publication-title: Chem. Geol. doi: 10.1016/j.chemgeo.2009.05.024 – volume: 75 start-page: 111 year: 1984 ident: 10.1016/j.apgeochem.2011.06.002_b0275 article-title: Transport and concentration controls for chloride, strontium, potassium and lead in Uvas Creek, a small cobble-bed stream in Santa Clara County, California, USA, 2. Mathematical modeling publication-title: J. Hydrol. doi: 10.1016/0022-1694(84)90047-7 – volume: 6 start-page: 11 year: 1988 ident: 10.1016/j.apgeochem.2011.06.002_b0670 article-title: Microbial oxidation of arsenite and occurrence of arsenite-oxidizing bacteria in acid mine water from a sulfur-pyrite mine publication-title: Geomicrobiol. J. doi: 10.1080/01490458809377818 – volume: 340 start-page: 52 year: 1989 ident: 10.1016/j.apgeochem.2011.06.002_b0205 article-title: Influence of coupling of sorption and photosynthetic processes on trace elements cycles in natural waters publication-title: Nature doi: 10.1038/340052a0 – start-page: 255 year: 1993 ident: 10.1016/j.apgeochem.2011.06.002_b0570 article-title: Environmental tracers for age dating young ground water – volume: 30 start-page: 3016 year: 1996 ident: 10.1016/j.apgeochem.2011.06.002_b0120 article-title: Reactive solute transport in an acidic stream: experimental pH increase and simulation of controls on pH, aluminum, and iron publication-title: Environ. Sci. Technol. doi: 10.1021/es960055u – ident: 10.1016/j.apgeochem.2011.06.002_b0145 doi: 10.3133/pp1651 – volume: 23 start-page: 166 year: 2008 ident: 10.1016/j.apgeochem.2011.06.002_b0165 article-title: Dissolved metals and associated constituents in abandoned coal-mine discharges, Pennsylvania, USA: 1. Constituent concentrations and correlations publication-title: Appl. Geochem. doi: 10.1016/j.apgeochem.2007.10.011 – ident: 10.1016/j.apgeochem.2011.06.002_b0420 – ident: 10.1016/j.apgeochem.2011.06.002_b0330 doi: 10.3133/pp285 – ident: 10.1016/j.apgeochem.2011.06.002_b0590 – ident: 10.1016/j.apgeochem.2011.06.002_b0130 doi: 10.3133/pp1729 – start-page: 261 year: 2003 ident: 10.1016/j.apgeochem.2011.06.002_b0320 article-title: Use of field-scale experiments and reactive-solute-transport modeling to evaluate remediation alternatives in streams affected by acid mine drainage – volume: 19 start-page: 718 year: 1983 ident: 10.1016/j.apgeochem.2011.06.002_b0070 article-title: Simulation of solute transport in a mountain pool-and-riffle stream – a transient storage model publication-title: Water Resour. Res. doi: 10.1029/WR019i003p00718 – ident: 10.1016/j.apgeochem.2011.06.002_b0085 – ident: 10.1016/j.apgeochem.2011.06.002_b0695 – start-page: 335 year: 2003 ident: 10.1016/j.apgeochem.2011.06.002_b0685 article-title: Passive and active treatment of acid mine drainage – volume: 24 start-page: 106 year: 2009 ident: 10.1016/j.apgeochem.2011.06.002_b0455 article-title: An empirical method for estimating instream pre-mining pH and dissolved Cu concentration in catchments with acidic drainage and ferricrete publication-title: Appl. Geochem. doi: 10.1016/j.apgeochem.2008.11.007 – volume: 34 start-page: 435 year: 1953 ident: 10.1016/j.apgeochem.2011.06.002_b0185 article-title: Relation of the mineral constituents in solution to stream flow, Saline River, near Russel, Kansas publication-title: Am. Geophys. Union Trans. doi: 10.1029/TR034i003p00435 – ident: 10.1016/j.apgeochem.2011.06.002_b0520 – volume: 32 start-page: 1361 year: 1998 ident: 10.1016/j.apgeochem.2011.06.002_b0705 article-title: Trace metal adsorption onto an acid mine drainage iron(III) oxy hydroxy sulfate publication-title: Environ. Sci. Technol. doi: 10.1021/es9704390 – volume: 37 start-page: 1705 year: 2003 ident: 10.1016/j.apgeochem.2011.06.002_b0405 article-title: Bacterial formation of tooeleite and mixed arsenic(III) or arsenic(V)-iron(III) gels in the Carnoulès acid mine drainage, France. A XANES, XRD, and SEM study publication-title: Environ. Sci. Technol. doi: 10.1021/es025688p – volume: 35 start-page: 3829 year: 1999 ident: 10.1016/j.apgeochem.2011.06.002_b0615 article-title: Reactive solute transport in streams: a surface complexation approach for trace metal sorption publication-title: Water Resour. Res. doi: 10.1029/1999WR900259 – volume: 36 start-page: 484 year: 2003 ident: 10.1016/j.apgeochem.2011.06.002_b0035 article-title: Modeling precipitation and sorption of elements during mixing of river water and porewater in the Coeur d’Alene River basin publication-title: Environ. Sci. Technol. – volume: 294 start-page: 101 year: 2010 ident: 10.1016/j.apgeochem.2011.06.002_b0360 article-title: The dependence of chemical weathering rates on fluid residence time publication-title: Earth Planet. Sci. Lett. doi: 10.1016/j.epsl.2010.03.010 – volume: 75 start-page: 67 year: 1984 ident: 10.1016/j.apgeochem.2011.06.002_b0300 article-title: Transport and concentration controls for chloride, strontium, potassium and lead in Uvas Creek, a small cobble-bed stream in Santa Clara County, California, USA, 1. Conceptual model publication-title: J. Hydrol. doi: 10.1016/0022-1694(84)90046-5 – volume: 36 start-page: 121 year: 2008 ident: 10.1016/j.apgeochem.2011.06.002_b0105 article-title: Groundwater age and groundwater age dating publication-title: Ann. Rev. Earth Planet. Sci. doi: 10.1146/annurev.earth.36.031207.124210 – volume: 4 start-page: 233 year: 1976 ident: 10.1016/j.apgeochem.2011.06.002_b0730 article-title: Solute transport and modeling of water quality in a small stream publication-title: J. Res. US Geol. Surv. – ident: 10.1016/j.apgeochem.2011.06.002_b0180 – volume: 69 start-page: 2505 year: 2005 ident: 10.1016/j.apgeochem.2011.06.002_b0220 article-title: Diel behavior of iron and other heavy metals in a mountain stream with acidic to neutral pH: Fisher Creek, Montana, USA publication-title: Geochim. Cosmochim. Acta doi: 10.1016/j.gca.2004.11.020 – volume: 45 start-page: 25 year: 1992 ident: 10.1016/j.apgeochem.2011.06.002_b0640 article-title: The regional geology of the Poços de Caldas alkaline complex: mineralogy and geochemistry of selected nepheline syenites and phonolites publication-title: J. Geochem. Explor. doi: 10.1016/0375-6742(92)90121-N – start-page: 94 year: 1971 ident: 10.1016/j.apgeochem.2011.06.002_b0290 article-title: Silica variation in stream water with time and discharge – start-page: 199 year: 1993 ident: 10.1016/j.apgeochem.2011.06.002_b0540 article-title: Geochemical models – volume: 96 start-page: 3455 year: 1999 ident: 10.1016/j.apgeochem.2011.06.002_b0495 article-title: Negative pH, efflorescent mineralogy, and consequences for environmental restoration at the Iron Mountain Superfund site, California publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.96.7.3455 – ident: 10.1016/j.apgeochem.2011.06.002_b0015 – volume: 252 start-page: 202 year: 2008 ident: 10.1016/j.apgeochem.2011.06.002_b0225 article-title: Photoreduction fuels biogeochemical cycling of iron for Spain’s acid rivers publication-title: Chem. Geol. doi: 10.1016/j.chemgeo.2008.03.004 – start-page: 37 year: 1982 ident: 10.1016/j.apgeochem.2011.06.002_b0460 article-title: Aqueous pyrite oxidation and the consequent formation of secondary iron minerals – start-page: 227 year: 1993 ident: 10.1016/j.apgeochem.2011.06.002_b0160 article-title: Uses of environmental isotopes – ident: 10.1016/j.apgeochem.2011.06.002_b0525 – volume: 232 start-page: 54 year: 1986 ident: 10.1016/j.apgeochem.2011.06.002_b0500 article-title: The geochemical behavior of aluminum in acidified surface waters publication-title: Science doi: 10.1126/science.232.4746.54 – volume: 32 start-page: 419 year: 1996 ident: 10.1016/j.apgeochem.2011.06.002_b0625 article-title: Reactive solute transport in streams 2. Simulation of a pH modification experiment publication-title: Water Resour. Res. doi: 10.1029/95WR03107 – volume: 25 start-page: 425 year: 1940 ident: 10.1016/j.apgeochem.2011.06.002_b0530 article-title: Cryptocrystalline pyrite from Alpine county, California publication-title: Am. Mineral. – ident: 10.1016/j.apgeochem.2011.06.002_b0030 – ident: 10.1016/j.apgeochem.2011.06.002_b0660 doi: 10.3133/sir20065156 – volume: 92 start-page: 193 year: 2007 ident: 10.1016/j.apgeochem.2011.06.002_b0410 article-title: Crystal structure of tooeleite, Fe6(AsO3)4SO4(OH)4 4H2O, a new iron arsenite oxyhydroxysulfate mineral relevant to acid mine drainage publication-title: Am. Mineral. doi: 10.2138/am.2007.2361 – start-page: 169 year: 1974 ident: 10.1016/j.apgeochem.2011.06.002_b0675 article-title: Suspended sediment and solute yields from a small catchment prior to urbanization – volume: 45 start-page: 215 year: 1992 ident: 10.1016/j.apgeochem.2011.06.002_b0270 article-title: Geomorphological and hydrogeological features of the Poços de Caldas caldera analogue study sites publication-title: J. Geochem. Explor. doi: 10.1016/0375-6742(92)90126-S – ident: 10.1016/j.apgeochem.2011.06.002_b0425 doi: 10.3133/sir20055088 – ident: 10.1016/j.apgeochem.2011.06.002_b0550 – volume: 20 start-page: 1797 year: 1984 ident: 10.1016/j.apgeochem.2011.06.002_b0075 article-title: Interactions of solutes and streambed sediment. Part I. An experimental analysis of cation and anion transport in a mountain stream publication-title: Water Resour. Res. doi: 10.1029/WR020i012p01797 – start-page: 398 year: 1990 ident: 10.1016/j.apgeochem.2011.06.002_b0510 article-title: Revised chemical equilibrium data for water-mineral reactions and their limitations – ident: 10.1016/j.apgeochem.2011.06.002_b0635 – volume: 22 start-page: 4011 year: 2008 ident: 10.1016/j.apgeochem.2011.06.002_b0140 article-title: Metals fate and transport modelling in streams and watersheds: state of the science and USEPA workshop review publication-title: Hydrol. Process. doi: 10.1002/hyp.7114 – volume: 21 start-page: 529 year: 2002 ident: 10.1016/j.apgeochem.2011.06.002_b0595 article-title: A new metric for determining the importance of transient storage publication-title: J. North Am. Benthol. Soc. doi: 10.2307/1468428 – year: 1990 ident: 10.1016/j.apgeochem.2011.06.002_b0190 – volume: 39 start-page: 1921 year: 2005 ident: 10.1016/j.apgeochem.2011.06.002_b0345 article-title: Why is metal bioaccumulation so variable? Biodynamics as a unifying concept publication-title: Environ. Sci. Technol. doi: 10.1021/es048947e – ident: 10.1016/j.apgeochem.2011.06.002_b0010 – volume: 47 start-page: 603 year: 2005 ident: 10.1016/j.apgeochem.2011.06.002_b0440 article-title: Seasonality of diel cycles of dissolved trace-metal concentrations in a Rocky Mountain stream publication-title: Environ. Geol. doi: 10.1007/s00254-004-1178-x – volume: 24 start-page: 255 year: 2009 ident: 10.1016/j.apgeochem.2011.06.002_b0655 article-title: Naturally acidic surface- and ground-waters draining porphyry-related mineralized areas of the southern Rocky Mountains, Colorado and New Mexico publication-title: Appl. Geochem. doi: 10.1016/j.apgeochem.2008.11.014 – volume: 60 start-page: 1021 year: 2010 ident: 10.1016/j.apgeochem.2011.06.002_b0305 article-title: Evaluating remediation alternatives for mine drainage, Little Cottonwood Creek, Utah, USA publication-title: Environ. Earth Sci. doi: 10.1007/s12665-009-0240-0 – volume: 45 start-page: 249 year: 1992 ident: 10.1016/j.apgeochem.2011.06.002_b0505 article-title: Ground water chemistry and geochemical modeling of water-rock interactions at the Osamu Utsumi mine and the Morro do Ferro analogue study sites, Poços de Caldas, Minas Gerais, Brazil publication-title: J. Geochem. Explor. doi: 10.1016/0375-6742(92)90127-T – volume: 23 start-page: 203 year: 2008 ident: 10.1016/j.apgeochem.2011.06.002_b0170 article-title: Dissolved metals and associated constituents in abandoned coal-mine discharges, Pennsylvania, USA: 2. Geochemical controls on constituent concentrations publication-title: Appl. Geochem. doi: 10.1016/j.apgeochem.2007.10.003 |
SSID | ssj0005702 |
Score | 2.5136325 |
SecondaryResourceType | review_article |
Snippet | ► Hydrogeochemistry of mines and mineralized areas is complex. ► Mass balances and saturation indices add insight and organization to acid rock drainage data.... The formation of acid mine drainage from metals extraction or natural acid rock drainage and its mixing with surface waters is a complex process that depends... |
SourceID | proquest pascalfrancis crossref fao elsevier |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 1777 |
SubjectTerms | acid mine drainage acidity alkalinity aluminum alunite anglesite Archaea bacteria barite Bioremediation chlorides climatology drainage Earth sciences Earth, ocean, space engineering Engineering and environment geology. Geothermics Exact sciences and technology Flow rates fluorides Geochemistry geomorphology hydrolysis iron jarosite lakes metalloids Metals mineralization mineralogy Minerals Mining mixing oxidation Pollution, environment geology pyrites remediation rivers Sorption streams surface water temperature Trace elements United States Geological Survey water pollution water quality standards weathering |
Title | Hydrogeochemical processes governing the origin, transport and fate of major and trace elements from mine wastes and mineralized rock to surface waters |
URI | https://dx.doi.org/10.1016/j.apgeochem.2011.06.002 https://www.proquest.com/docview/1694492995 https://www.proquest.com/docview/963888802 |
Volume | 26 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpR1db9Mw0BpDSLwgPrUyqA6JR0JTx0ls3qaJUUDsZVTam-U4drVBk6pJNW0P_A3-LndOUlEB2gN5i3MnO77z-Xy-D8Ze59x4afM4QgGcRsKpMipEmkSZ48alMitlOCh-Oc1mc_HpPD3fY8dDLAy5Vfayv5PpQVr3LZN-Nieri4vJGa6PhCueU9KzZBpiqYXIicvf_vjNzSMPfocEHBH0jo-XWS0cFaZa9rk8s6195S871B1vanKdNA3Onu_KXvwhwcO2dPKQPej1STjqhvyI7bnqMbv3IdTrvX7Cfs6uy3Xdd0_0gFUXGeAaWIQyu7h1ASqB0FXIegPtkO0cTFWCR1UUag9Lc1mvQwt-tw5c53XeAIWnwBJVVbgyyDBNgKF3MqDcuBKwu2_Q1tBs1p4wrwzl83zK5ifvvx7Por4WQ2TwqNpGyjvnZFzKjErT5zZDSVHQnWw6LRMj8tzFNqHcaEaoJIu5tdLHlCtPlrmySiTP2H5VV-6AAd31cGml8qUT3EtTFDaN8YTPfSJsMh2xbJh_bftE5VQv47sePNIu9ZZwmging28eH7F4i7jqcnXcjvJuILDeYTuNO8rtyAfIEtosUBzr-Rkn4xFq31Op8B_GO3yyHQ8XqCEpibivBsbRuKDplsZUrt40epopIVBpVemIwT9gSGriE_Pn_zP-Q3Y_WMhDZOULtt-uN-4lqlhtMQ5raMzuHn38PDv9BYpCJ0w |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELZKEYIL4qluC8VIHAmbOE5ic0MVZYG2l3al3izHj1VbNlltsqrKgb_B32XGSVasAPVAbnE8smOPx-PxzHyEvCmY9sIUcQQCOIu4kzYqeZZGuWPaZSK3IhwUj0_yyZR_Oc_Ot8jBEAuDbpW97O9kepDWfcm4H83x4uJifArrI2WSFZj0LE0wlvoutCIQxuDdj9_8PIrgeIi1I6y-4eSlFzOHyFTzPplnvjaw_GWLuuN1jb6TuoHh8x3uxR8iPOxLh4_Iw16hpB-6Pj8mW656Qu59CoC9N0_Jz8mNXdZ98zghdNGFBriGzgLOLuxdFLRA2kFkvaXtkO6c6spSD7oorT2d68t6GUrgu3HUdW7nDcX4FDoHXZVea-CYJtTBd7SgfHeWQnNXtK1ps1p6pLzWmNDzGZkefjw7mEQ9GEOk4azaRtI750RsRY7Y9IXJQVSUeCmbJTbVvChcbFJMjqa5TPOYGSN8jMnyhC2kkTx9TrarunI7hOJlDxNGSG8dZ17osjRZDEd85lNu0mRE8mH8lekzlSNgxjc1uKRdqvXEKZw4FZzz2IjEa8JFl6zjdpL3wwSrDb5TsKXcTrwDLKH0DOSxmp4ytB6B-p0ICf-wv8En6_4wDiqSFED7emAcBSsar2l05epVo5Jccg5aq8xGhP6jDopNeGK2-z_9f0XuT86Oj9TR55Ove-RBMJeHMMsXZLtdrtxL0Lfacj-sp18IiCja |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=proceeding&rft.title=Applied+geochemistry&rft.atitle=Hydrogeochemical+processes+governing+the+origin%2C+transport+and+fate+of+major+and+trace+elements+from+mine+wastes+and+mineralized+rock+to+surface+waters&rft.au=KIRK+NORDSTROM%2C+D&rft.date=2011-11-01&rft.pub=Elsevier&rft.issn=0883-2927&rft.volume=26&rft.issue=11&rft.spage=1777&rft.epage=1791&rft_id=info:doi/10.1016%2Fj.apgeochem.2011.06.002&rft.externalDBID=n%2Fa&rft.externalDocID=24818982 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0883-2927&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0883-2927&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0883-2927&client=summon |