Hydrogeochemical processes governing the origin, transport and fate of major and trace elements from mine wastes and mineralized rock to surface waters

► Hydrogeochemistry of mines and mineralized areas is complex. ► Mass balances and saturation indices add insight and organization to acid rock drainage data. ► Large database confirms geochemical generalizations for behavior of iron and aluminum. The formation of acid mine drainage from metals extr...

Full description

Saved in:
Bibliographic Details
Published inApplied geochemistry Vol. 26; no. 11; pp. 1777 - 1791
Main Author Nordstrom, D. Kirk
Format Journal Article Conference Proceeding
LanguageEnglish
Published Kidlington Elsevier Ltd 01.11.2011
Elsevier
Subjects
Online AccessGet full text

Cover

Loading…
Abstract ► Hydrogeochemistry of mines and mineralized areas is complex. ► Mass balances and saturation indices add insight and organization to acid rock drainage data. ► Large database confirms geochemical generalizations for behavior of iron and aluminum. The formation of acid mine drainage from metals extraction or natural acid rock drainage and its mixing with surface waters is a complex process that depends on petrology and mineralogy, structural geology, geomorphology, surface-water hydrology, hydrogeology, climatology, microbiology, chemistry, and mining and mineral processing history. The concentrations of metals, metalloids, acidity, alkalinity, Cl −, F − and SO 4 2 - found in receiving streams, rivers, and lakes are affected by all of these factors and their interactions. Remediation of mine sites is an engineering concern but to design a remediation plan without understanding the hydrogeochemical processes of contaminant mobilization can lead to ineffective and excessively costly remediation. Furthermore, remediation needs a goal commensurate with natural background conditions rather than water-quality standards that might bear little relation to conditions of a highly mineralized terrain. This paper reviews hydrogeochemical generalizations, primarily from US Geological Survey research, that enhance our understanding of the origin, transport, and fate of contaminants released from mined and mineralized areas. Mobility of potential or actual contaminants from mining and mineral processing activities depends on (1) occurrence : is the mineral source of the contaminant actually present? (2) abundance : is the mineral present in sufficient quantity to make a difference? (3) reactivity : what are the energetics, rates, and mechanisms of sorption and mineral dissolution and precipitation relative to the flow rate of the water? and (4) hydrology : what are the main flow paths for contaminated water? Estimates of relative proportions of minerals dissolved and precipitated can be made with mass-balance calculations if minerals and water compositions along a flow path are known. Combined with discharge, these mass-balance estimates quantify the actual weathering rate of pyrite mineralization in the environment and compare reasonably well with laboratory rates of pyrite oxidation except when large quantities of soluble salts and evaporated mine waters have accumulated underground. Quantitative mineralogy with trace-element compositions can substantially improve the identification of source minerals for specific trace elements through mass balances. Post-dissolution sorption and precipitation (attenuation) reactions depend on the chemical behavior of each element, solution composition and pH, aqueous speciation, temperature, and contact-time with mineral surfaces. For example, little metal attenuation occurs in waters of low pH (<3.5) and metals tend to maintain element ratios indicative of the main mineral or group of minerals from which they dissolved, except Fe, SiO 2, and redox-sensitive oxyanions (As, Sb, Se, Mo, Cr, V). Once dissolved, metal and metalloid concentrations are strongly affected by redox conditions and pH. Iron is the most reactive because it is rapidly oxidized by bacteria and archaea and Fe(III) hydrolyzes and precipitates at low pH (1–3) which is related directly to its first hydrolysis constant, pK 1 = 2.2. Several insoluble sulfate minerals precipitate at low pH including anglesite, barite, jarosite, alunite and basaluminite. Aluminum hydrolyzes near pH 5 (pK 1 = 5.0) and provides buffering and removal of Al by mineral precipitation from pH 4–5.5. Dissolved sulfate behaves conservatively because the amount removed from solution by precipitation is usually too small relative to the high concentrations in the water column and relative to the flow rate of the water.
AbstractList The formation of acid mine drainage from metals extraction or natural acid rock drainage and its mixing with surface waters is a complex process that depends on petrology and mineralogy, structural geology, geomorphology, surface-water hydrology, hydrogeology, climatology, microbiology, chemistry, and mining and mineral processing history. The concentrations of metals, metalloids, acidity, alkalinity, Cl super(-), F super(-) and [inline image] found in receiving streams, rivers, and lakes are affected by all of these factors and their interactions. Remediation of mine sites is an engineering concern but to design a remediation plan without understanding the hydrogeochemical processes of contaminant mobilization can lead to ineffective and excessively costly remediation. Furthermore, remediation needs a goal commensurate with natural background conditions rather than water-quality standards that might bear little relation to conditions of a highly mineralized terrain. This paper reviews hydrogeochemical generalizations, primarily from US Geological Survey research, that enhance our understanding of the origin, transport, and fate of contaminants released from mined and mineralized areas. Mobility of potential or actual contaminants from mining and mineral processing activities depends on (1) occurrence: is the mineral source of the contaminant actually present? (2) abundance: is the mineral present in sufficient quantity to make a difference? (3) reactivity: what are the energetics, rates, and mechanisms of sorption and mineral dissolution and precipitation relative to the flow rate of the water? and (4) hydrology: what are the main flow paths for contaminated water? Estimates of relative proportions of minerals dissolved and precipitated can be made with mass-balance calculations if minerals and water compositions along a flow path are known. Combined with discharge, these mass-balance estimates quantify the actual weathering rate of pyrite mineralization in the environment and compare reasonably well with laboratory rates of pyrite oxidation except when large quantities of soluble salts and evaporated mine waters have accumulated underground. Quantitative mineralogy with trace-element compositions can substantially improve the identification of source minerals for specific trace elements through mass balances. Post-dissolution sorption and precipitation (attenuation) reactions depend on the chemical behavior of each element, solution composition and pH, aqueous speciation, temperature, and contact-time with mineral surfaces. For example, little metal attenuation occurs in waters of low pH (<3.5) and metals tend to maintain element ratios indicative of the main mineral or group of minerals from which they dissolved, except Fe, SiO sub(2), and redox-sensitive oxyanions (As, Sb, Se, Mo, Cr, V). Once dissolved, metal and metalloid concentrations are strongly affected by redox conditions and pH. Iron is the most reactive because it is rapidly oxidized by bacteria and archaea and Fe(III) hydrolyzes and precipitates at low pH (1-3) which is related directly to its first hydrolysis constant, pK sub(1) = 2.2. Several insoluble sulfate minerals precipitate at low pH including anglesite, barite, jarosite, alunite and basaluminite. Aluminum hydrolyzes near pH 5 (pK sub(1) = 5.0) and provides buffering and removal of Al by mineral precipitation from pH 4-5.5. Dissolved sulfate behaves conservatively because the amount removed from solution by precipitation is usually too small relative to the high concentrations in the water column and relative to the flow rate of the water.
The formation of acid mine drainage from metals extraction or natural acid rock drainage and its mixing with surface waters is a complex process that depends on petrology and mineralogy, structural geology, geomorphology, surface-water hydrology, hydrogeology, climatology, microbiology, chemistry, and mining and mineral processing history. The concentrations of metals, metalloids, acidity, alkalinity, Cl⁻, F⁻ and SO₄ ²⁻ found in receiving streams, rivers, and lakes are affected by all of these factors and their interactions. Remediation of mine sites is an engineering concern but to design a remediation plan without understanding the hydrogeochemical processes of contaminant mobilization can lead to ineffective and excessively costly remediation. Furthermore, remediation needs a goal commensurate with natural background conditions rather than water-quality standards that might bear little relation to conditions of a highly mineralized terrain. This paper reviews hydrogeochemical generalizations, primarily from US Geological Survey research, that enhance our understanding of the origin, transport, and fate of contaminants released from mined and mineralized areas. Mobility of potential or actual contaminants from mining and mineral processing activities depends on (1) occurrence: is the mineral source of the contaminant actually present? (2) abundance: is the mineral present in sufficient quantity to make a difference? (3) reactivity: what are the energetics, rates, and mechanisms of sorption and mineral dissolution and precipitation relative to the flow rate of the water? and (4) hydrology: what are the main flow paths for contaminated water? Estimates of relative proportions of minerals dissolved and precipitated can be made with mass-balance calculations if minerals and water compositions along a flow path are known. Combined with discharge, these mass-balance estimates quantify the actual weathering rate of pyrite mineralization in the environment and compare reasonably well with laboratory rates of pyrite oxidation except when large quantities of soluble salts and evaporated mine waters have accumulated underground. Quantitative mineralogy with trace-element compositions can substantially improve the identification of source minerals for specific trace elements through mass balances. Post-dissolution sorption and precipitation (attenuation) reactions depend on the chemical behavior of each element, solution composition and pH, aqueous speciation, temperature, and contact-time with mineral surfaces. For example, little metal attenuation occurs in waters of low pH (<3.5) and metals tend to maintain element ratios indicative of the main mineral or group of minerals from which they dissolved, except Fe, SiO₂, and redox-sensitive oxyanions (As, Sb, Se, Mo, Cr, V). Once dissolved, metal and metalloid concentrations are strongly affected by redox conditions and pH. Iron is the most reactive because it is rapidly oxidized by bacteria and archaea and Fe(III) hydrolyzes and precipitates at low pH (1–3) which is related directly to its first hydrolysis constant, pK₁=2.2. Several insoluble sulfate minerals precipitate at low pH including anglesite, barite, jarosite, alunite and basaluminite. Aluminum hydrolyzes near pH 5 (pK₁=5.0) and provides buffering and removal of Al by mineral precipitation from pH 4–5.5. Dissolved sulfate behaves conservatively because the amount removed from solution by precipitation is usually too small relative to the high concentrations in the water column and relative to the flow rate of the water.
► Hydrogeochemistry of mines and mineralized areas is complex. ► Mass balances and saturation indices add insight and organization to acid rock drainage data. ► Large database confirms geochemical generalizations for behavior of iron and aluminum. The formation of acid mine drainage from metals extraction or natural acid rock drainage and its mixing with surface waters is a complex process that depends on petrology and mineralogy, structural geology, geomorphology, surface-water hydrology, hydrogeology, climatology, microbiology, chemistry, and mining and mineral processing history. The concentrations of metals, metalloids, acidity, alkalinity, Cl −, F − and SO 4 2 - found in receiving streams, rivers, and lakes are affected by all of these factors and their interactions. Remediation of mine sites is an engineering concern but to design a remediation plan without understanding the hydrogeochemical processes of contaminant mobilization can lead to ineffective and excessively costly remediation. Furthermore, remediation needs a goal commensurate with natural background conditions rather than water-quality standards that might bear little relation to conditions of a highly mineralized terrain. This paper reviews hydrogeochemical generalizations, primarily from US Geological Survey research, that enhance our understanding of the origin, transport, and fate of contaminants released from mined and mineralized areas. Mobility of potential or actual contaminants from mining and mineral processing activities depends on (1) occurrence : is the mineral source of the contaminant actually present? (2) abundance : is the mineral present in sufficient quantity to make a difference? (3) reactivity : what are the energetics, rates, and mechanisms of sorption and mineral dissolution and precipitation relative to the flow rate of the water? and (4) hydrology : what are the main flow paths for contaminated water? Estimates of relative proportions of minerals dissolved and precipitated can be made with mass-balance calculations if minerals and water compositions along a flow path are known. Combined with discharge, these mass-balance estimates quantify the actual weathering rate of pyrite mineralization in the environment and compare reasonably well with laboratory rates of pyrite oxidation except when large quantities of soluble salts and evaporated mine waters have accumulated underground. Quantitative mineralogy with trace-element compositions can substantially improve the identification of source minerals for specific trace elements through mass balances. Post-dissolution sorption and precipitation (attenuation) reactions depend on the chemical behavior of each element, solution composition and pH, aqueous speciation, temperature, and contact-time with mineral surfaces. For example, little metal attenuation occurs in waters of low pH (<3.5) and metals tend to maintain element ratios indicative of the main mineral or group of minerals from which they dissolved, except Fe, SiO 2, and redox-sensitive oxyanions (As, Sb, Se, Mo, Cr, V). Once dissolved, metal and metalloid concentrations are strongly affected by redox conditions and pH. Iron is the most reactive because it is rapidly oxidized by bacteria and archaea and Fe(III) hydrolyzes and precipitates at low pH (1–3) which is related directly to its first hydrolysis constant, pK 1 = 2.2. Several insoluble sulfate minerals precipitate at low pH including anglesite, barite, jarosite, alunite and basaluminite. Aluminum hydrolyzes near pH 5 (pK 1 = 5.0) and provides buffering and removal of Al by mineral precipitation from pH 4–5.5. Dissolved sulfate behaves conservatively because the amount removed from solution by precipitation is usually too small relative to the high concentrations in the water column and relative to the flow rate of the water.
Author Nordstrom, D. Kirk
Author_xml – sequence: 1
  givenname: D. Kirk
  surname: Nordstrom
  fullname: Nordstrom, D. Kirk
  email: dkn@usgs.gov
  organization: U.S. Geological Survey, 3215 Marine St., Boulder, CO 80303, USA
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=24818982$$DView record in Pascal Francis
BookMark eNqFkcFu1DAQhiNUJLaFZ6gvCA4kjO0ktg8cqgooUqUeoGfLOJOtl8RebG-r8iK8Lk536YED9SWy5_v_mfxzXB354LGqTik0FGj_ftOY7RqDvcG5YUBpA30DwJ5VKyoFqxXl7VG1Ail5zRQTL6rjlDYA0Algq-r3xf0Qw0HvrJnINgaLKWEi63CL0Tu_JvkGSYhu7fw7kqPxaRtiJsYPZDS5lEYym02IDy-lbpHghDP6nMgYw0xm55HcmZSL68Is92gm9wsHUtr9IDmQtIvjorwrjjG9rJ6PZkr46vA9qa4_ffx2flFfXn3-cn52WZuO8VyrERElDLKnlDNhewH8O_Sd6ujATSsEguVdB8K0ivfArJUjyF4IOQhlVctPqjd73_LbP3eYsp5dsjhNxmPYJa16LssBVsi3_yVpr9pWMaW6gr4-oCaVSMeSmHVJb6ObTbzXrJVUKrlYfthzNoaUIo7aumyyC76E6CZNQS8r1hv9uGK9rFhDr-FhJPGP_m-Lp5Wne-VogjbrWKa7_lqArhShDEcLcbYnsKR_6zDqZB16i4OLaLMegnuyyx9svdMJ
CODEN APPGEY
CitedBy_id crossref_primary_10_1016_j_apgeochem_2019_104499
crossref_primary_10_1016_j_jconhyd_2025_104513
crossref_primary_10_1039_C9AY01199D
crossref_primary_10_1080_19392699_2022_2044320
crossref_primary_10_3389_fenvs_2024_1388262
crossref_primary_10_3390_plants13081161
crossref_primary_10_1016_j_jafrearsci_2014_04_003
crossref_primary_10_3390_toxics9110307
crossref_primary_10_1016_j_apgeochem_2023_105769
crossref_primary_10_1007_s10230_017_0454_4
crossref_primary_10_1016_j_catena_2021_105191
crossref_primary_10_1016_j_scitotenv_2023_162458
crossref_primary_10_1007_s12665_017_6780_9
crossref_primary_10_1007_s10661_024_12362_2
crossref_primary_10_1016_j_gsd_2021_100576
crossref_primary_10_3390_min10090728
crossref_primary_10_1016_j_jclepro_2022_130999
crossref_primary_10_1007_s12665_015_5000_8
crossref_primary_10_1016_j_chemgeo_2016_04_013
crossref_primary_10_1016_j_gexplo_2019_106338
crossref_primary_10_1016_j_catena_2017_10_008
crossref_primary_10_1016_j_proeps_2017_01_054
crossref_primary_10_3390_min13111454
crossref_primary_10_1016_j_gexplo_2018_11_009
crossref_primary_10_1016_j_jclepro_2023_138872
crossref_primary_10_1007_s11157_020_09564_8
crossref_primary_10_1021_acs_est_0c07136
crossref_primary_10_1080_03632415_2016_1182509
crossref_primary_10_1016_j_watres_2024_122336
crossref_primary_10_1016_j_jconhyd_2014_12_002
crossref_primary_10_1007_s40899_021_00565_1
crossref_primary_10_1016_j_chemgeo_2016_01_021
crossref_primary_10_1016_j_chemosphere_2015_12_101
crossref_primary_10_1016_j_apgeochem_2011_10_008
crossref_primary_10_1016_j_gexplo_2020_106465
crossref_primary_10_1016_j_jhydrol_2015_12_020
crossref_primary_10_1144_geochem2015_378
crossref_primary_10_1007_s10661_014_3746_1
crossref_primary_10_1039_c2em30643c
crossref_primary_10_1016_j_gexplo_2025_107734
crossref_primary_10_1016_j_scitotenv_2019_01_124
crossref_primary_10_1093_femsec_fiy145
crossref_primary_10_1071_EN19118
crossref_primary_10_1016_j_apgeochem_2012_07_019
crossref_primary_10_1016_j_apgeochem_2014_12_010
crossref_primary_10_2116_analsci_20SAR16
crossref_primary_10_1016_j_apgeochem_2012_07_017
crossref_primary_10_1016_j_apgeochem_2016_12_019
crossref_primary_10_1016_j_gca_2022_11_005
crossref_primary_10_1002_hyp_10995
crossref_primary_10_1016_j_scitotenv_2023_165037
crossref_primary_10_1016_j_chemosphere_2018_04_060
crossref_primary_10_3390_min4010170
crossref_primary_10_3390_toxics11080678
crossref_primary_10_1016_j_apgeochem_2020_104845
crossref_primary_10_1016_j_compchemeng_2018_02_020
crossref_primary_10_1007_s13201_018_0706_x
crossref_primary_10_1051_e3sconf_20199801044
crossref_primary_10_1007_s44339_024_00003_9
crossref_primary_10_1016_j_gexplo_2019_106341
crossref_primary_10_1016_j_jece_2017_07_062
crossref_primary_10_1016_j_jconhyd_2015_10_002
crossref_primary_10_1016_j_apgeochem_2018_04_010
crossref_primary_10_1016_j_catena_2020_104959
crossref_primary_10_1007_s12665_017_6389_z
crossref_primary_10_1016_j_gexplo_2019_106434
crossref_primary_10_1016_j_envpol_2022_119327
crossref_primary_10_1016_j_scitotenv_2020_143796
crossref_primary_10_1016_j_apgeochem_2021_104899
crossref_primary_10_1016_j_soilbio_2022_108598
crossref_primary_10_1016_j_jsames_2021_103197
crossref_primary_10_1016_j_chemosphere_2018_04_095
crossref_primary_10_1007_s13157_018_1040_7
crossref_primary_10_1007_s10040_019_01991_4
crossref_primary_10_1007_s11356_021_15335_x
crossref_primary_10_1007_s12665_014_3264_z
crossref_primary_10_1071_EN17158
crossref_primary_10_3390_toxics12110813
crossref_primary_10_1016_j_envpol_2018_10_106
crossref_primary_10_1016_j_apgeochem_2021_105172
crossref_primary_10_1016_j_scitotenv_2021_152672
crossref_primary_10_1080_02757540_2014_950569
crossref_primary_10_1089_ees_2013_0063
crossref_primary_10_1130_focus022019_1
crossref_primary_10_2139_ssrn_4158403
crossref_primary_10_1016_j_gexplo_2011_12_004
crossref_primary_10_3390_w8030074
crossref_primary_10_3390_bacteria2030009
crossref_primary_10_3390_min13060790
crossref_primary_10_1007_s12665_019_8366_1
crossref_primary_10_1016_j_ecolind_2024_112080
crossref_primary_10_1021_acs_est_4c09489
crossref_primary_10_1007_s11356_024_32712_4
crossref_primary_10_1007_s10230_022_00904_4
crossref_primary_10_1016_j_apgeochem_2013_09_009
crossref_primary_10_1016_j_apgeochem_2015_01_009
crossref_primary_10_1016_j_envpol_2019_04_011
crossref_primary_10_1016_j_jclepro_2019_118951
crossref_primary_10_3390_min10040364
crossref_primary_10_1016_j_chemgeo_2020_119661
crossref_primary_10_1071_EN13225
crossref_primary_10_1029_2023WR034986
crossref_primary_10_1007_s00128_021_03322_4
crossref_primary_10_1007_s11368_016_1646_4
crossref_primary_10_1007_s12665_020_09054_8
crossref_primary_10_1016_j_envpol_2019_113829
crossref_primary_10_1016_j_gexplo_2022_107123
crossref_primary_10_1016_j_apgeochem_2015_08_002
crossref_primary_10_1002_hyp_14184
crossref_primary_10_1007_s10661_021_09262_0
crossref_primary_10_1016_j_apgeochem_2018_01_012
crossref_primary_10_3390_w13233445
crossref_primary_10_1016_j_ecoenv_2019_02_051
crossref_primary_10_1016_j_envpol_2021_118697
crossref_primary_10_1016_j_marpolbul_2022_114491
crossref_primary_10_1007_s12665_015_4067_6
crossref_primary_10_5194_hess_23_2041_2019
crossref_primary_10_1016_j_apgeochem_2012_08_013
crossref_primary_10_1016_j_gloplacha_2017_11_017
crossref_primary_10_1071_EN17133
crossref_primary_10_5382_Geo_and_Mining_21
crossref_primary_10_5937_napredak5_55502
crossref_primary_10_1016_j_scitotenv_2019_04_084
crossref_primary_10_1007_s10800_015_0884_2
crossref_primary_10_3390_soilsystems5010003
crossref_primary_10_1007_s10230_022_00905_3
crossref_primary_10_1016_j_scitotenv_2023_165513
crossref_primary_10_1016_j_jhazmat_2023_131521
crossref_primary_10_1016_j_apgeochem_2013_06_001
crossref_primary_10_1016_j_apgeochem_2017_03_016
crossref_primary_10_1021_acs_est_5b01006
crossref_primary_10_1038_s41598_024_75118_5
crossref_primary_10_3390_w14142231
crossref_primary_10_1007_s11368_015_1141_3
crossref_primary_10_1016_j_chemosphere_2023_139497
crossref_primary_10_1016_j_gexplo_2020_106577
crossref_primary_10_1016_j_gca_2023_09_001
crossref_primary_10_1016_j_scitotenv_2014_06_112
crossref_primary_10_1016_j_chemgeo_2017_03_021
crossref_primary_10_1016_j_jhydrol_2020_125672
crossref_primary_10_1021_es500180c
crossref_primary_10_1016_j_sciaf_2022_e01438
crossref_primary_10_1016_j_apgeochem_2019_02_001
crossref_primary_10_1016_j_gca_2019_10_044
crossref_primary_10_1016_j_gca_2023_05_024
crossref_primary_10_1016_j_jhazmat_2025_137519
crossref_primary_10_1021_acsearthspacechem_9b00269
crossref_primary_10_1016_j_chemosphere_2019_06_066
crossref_primary_10_1016_j_apgeochem_2015_04_004
crossref_primary_10_3390_hydrology12010008
crossref_primary_10_1007_s40899_023_01012_z
crossref_primary_10_1007_s10230_021_00804_z
crossref_primary_10_1016_j_apgeochem_2013_12_007
crossref_primary_10_1016_j_apgeochem_2018_05_015
crossref_primary_10_1016_j_gexplo_2014_03_024
crossref_primary_10_1016_j_proeps_2017_01_038
crossref_primary_10_1007_s10230_013_0229_5
crossref_primary_10_1016_j_apgeochem_2015_05_017
crossref_primary_10_3103_S0147687421050021
crossref_primary_10_1007_s10653_020_00544_z
crossref_primary_10_1007_s10230_025_01044_1
crossref_primary_10_1016_j_jenvman_2023_119943
crossref_primary_10_1007_s10230_019_00650_0
crossref_primary_10_1016_j_catena_2018_02_020
crossref_primary_10_1016_j_jhydrol_2021_126718
crossref_primary_10_1016_j_soilbio_2023_109258
crossref_primary_10_1039_D2EM00029F
crossref_primary_10_1016_j_envpol_2021_118540
crossref_primary_10_3390_min11121349
crossref_primary_10_1016_j_apgeochem_2015_09_002
crossref_primary_10_1016_j_chemosphere_2013_11_059
crossref_primary_10_1007_s10230_022_00872_9
crossref_primary_10_1016_j_jvolgeores_2020_107121
crossref_primary_10_1021_acs_est_6b03195
crossref_primary_10_1016_j_scitotenv_2021_146070
crossref_primary_10_1016_j_gexplo_2018_01_005
crossref_primary_10_3390_min13040456
crossref_primary_10_3390_jmse10010035
crossref_primary_10_1007_s11356_017_9670_5
crossref_primary_10_1007_s11356_024_32295_0
crossref_primary_10_1007_s12665_023_10838_x
crossref_primary_10_3390_w17010043
crossref_primary_10_1002_aic_14917
crossref_primary_10_1007_s12210_015_0454_x
crossref_primary_10_1016_j_scitotenv_2013_01_076
crossref_primary_10_1007_s11356_018_2541_x
crossref_primary_10_3390_w13202861
crossref_primary_10_1016_j_mineng_2024_108791
crossref_primary_10_1016_j_chemosphere_2023_140297
crossref_primary_10_5382_econgeo_4936
crossref_primary_10_1021_acsearthspacechem_0c00180
crossref_primary_10_3390_w12051496
crossref_primary_10_1016_j_jclepro_2022_134954
crossref_primary_10_5382_econgeo_4942
crossref_primary_10_1021_acsestwater_4c00263
crossref_primary_10_1007_s11356_016_7713_y
crossref_primary_10_1016_j_apgeochem_2013_07_002
crossref_primary_10_1016_j_jhydrol_2023_130043
crossref_primary_10_1016_j_gexplo_2015_03_001
crossref_primary_10_1111_1462_2920_14922
crossref_primary_10_1051_e3sconf_20199805013
crossref_primary_10_1002_rra_3823
crossref_primary_10_1016_j_jhazmat_2021_125382
crossref_primary_10_1139_er_2017_0092
crossref_primary_10_1016_j_gexplo_2019_03_003
crossref_primary_10_1007_s11356_017_9038_x
crossref_primary_10_1016_j_scitotenv_2022_155224
crossref_primary_10_1007_s42452_019_1602_1
crossref_primary_10_1016_j_gexplo_2023_107336
crossref_primary_10_1016_j_scitotenv_2024_174681
crossref_primary_10_1016_j_jhazmat_2020_122720
crossref_primary_10_1016_j_scitotenv_2021_148798
crossref_primary_10_1016_j_jconhyd_2017_04_004
crossref_primary_10_1016_j_gexplo_2014_05_024
crossref_primary_10_1007_s10661_019_7300_z
crossref_primary_10_1016_j_scitotenv_2017_07_269
crossref_primary_10_1007_s10230_017_0485_x
crossref_primary_10_1007_s10230_023_00948_0
crossref_primary_10_1016_j_scitotenv_2015_11_101
crossref_primary_10_1016_j_chemgeo_2021_120623
crossref_primary_10_1016_j_scitotenv_2012_07_083
crossref_primary_10_1016_j_jhazmat_2021_125130
crossref_primary_10_3390_land12020499
crossref_primary_10_1016_j_heliyon_2024_e38860
crossref_primary_10_1007_s12517_018_3662_8
crossref_primary_10_1080_10643389_2013_866622
crossref_primary_10_14746_quageo_2023_0028
crossref_primary_10_1016_j_scitotenv_2024_176953
crossref_primary_10_1007_s10653_023_01716_3
crossref_primary_10_1007_s10661_018_6551_4
crossref_primary_10_5194_bg_9_4607_2012
crossref_primary_10_1016_j_apgeochem_2014_06_016
crossref_primary_10_1016_j_chemer_2019_125552
crossref_primary_10_1016_j_apgeochem_2014_02_007
crossref_primary_10_3390_su12041394
crossref_primary_10_1016_j_scitotenv_2023_166517
crossref_primary_10_1007_s11356_023_29106_3
crossref_primary_10_1007_s10498_021_09393_3
crossref_primary_10_1016_j_ibiod_2017_01_032
crossref_primary_10_1016_j_apgeochem_2015_03_001
crossref_primary_10_1016_j_proeps_2016_12_167
crossref_primary_10_1016_j_gca_2015_10_001
crossref_primary_10_3390_min13050592
crossref_primary_10_1016_j_apgeochem_2015_03_002
crossref_primary_10_1016_j_apgeochem_2019_104435
crossref_primary_10_1016_j_apgeochem_2024_106078
crossref_primary_10_1007_s10230_019_00634_0
crossref_primary_10_1016_j_gexplo_2013_07_001
crossref_primary_10_3390_min11010039
crossref_primary_10_1016_j_apgeochem_2019_104420
crossref_primary_10_21443_1560_9278_2017_20_1_2_165_176
crossref_primary_10_1016_j_gexplo_2021_106823
crossref_primary_10_1007_s10661_022_10013_y
crossref_primary_10_1021_acsearthspacechem_0c00177
crossref_primary_10_1016_j_coesh_2021_100240
crossref_primary_10_1029_2021JG006769
crossref_primary_10_1007_s10653_024_02294_8
crossref_primary_10_1016_j_jes_2020_03_041
crossref_primary_10_1007_s10230_025_01023_6
crossref_primary_10_1007_s10230_013_0254_4
crossref_primary_10_1144_geochem2022_021
crossref_primary_10_1016_j_chemgeo_2012_11_010
crossref_primary_10_1016_j_gexplo_2022_107131
crossref_primary_10_1016_j_pedsph_2022_07_005
crossref_primary_10_1016_j_earscirev_2015_09_009
crossref_primary_10_3390_ma13112515
crossref_primary_10_1007_s12403_024_00625_9
crossref_primary_10_3390_soilsystems3010013
crossref_primary_10_1007_s10661_017_6023_2
crossref_primary_10_1007_s12665_020_8856_1
crossref_primary_10_1016_j_ecoenv_2020_111094
crossref_primary_10_1007_s10498_017_9321_y
crossref_primary_10_1007_s11356_015_5870_z
crossref_primary_10_1016_j_compchemeng_2018_05_026
crossref_primary_10_1007_s12665_017_7078_7
crossref_primary_10_1016_j_chemgeo_2013_09_023
crossref_primary_10_1016_j_gsd_2019_100245
crossref_primary_10_3390_mining2020014
crossref_primary_10_1088_1755_1315_272_2_022209
crossref_primary_10_2113_gseegeosci_23_4_243
crossref_primary_10_1007_s10230_017_0452_6
crossref_primary_10_1016_j_ecoenv_2018_08_063
crossref_primary_10_3390_min10060547
crossref_primary_10_1016_j_jhydrol_2017_05_037
crossref_primary_10_1007_s12665_016_6243_8
crossref_primary_10_1016_j_jhydrol_2020_125850
crossref_primary_10_1007_s11356_018_1969_3
crossref_primary_10_1016_j_apgeochem_2022_105444
crossref_primary_10_1016_j_seppur_2022_121952
crossref_primary_10_1016_j_apgeochem_2021_104872
crossref_primary_10_1016_j_chemgeo_2019_05_009
crossref_primary_10_1016_j_scitotenv_2022_155945
crossref_primary_10_3390_min10080727
crossref_primary_10_1007_s10230_015_0346_4
crossref_primary_10_1021_acsestwater_0c00002
crossref_primary_10_1016_j_earscirev_2021_103811
crossref_primary_10_1016_j_scitotenv_2020_143689
crossref_primary_10_1016_j_jhydrol_2013_01_006
crossref_primary_10_1021_acs_est_3c10105
crossref_primary_10_3390_w15173138
crossref_primary_10_1002_hyp_13822
crossref_primary_10_1016_j_apgeochem_2015_06_003
crossref_primary_10_1021_acs_est_3c10583
crossref_primary_10_1016_j_envpol_2023_121449
crossref_primary_10_1016_j_coal_2019_103327
crossref_primary_10_1039_D0EN00252F
crossref_primary_10_1016_j_apgeochem_2021_105154
crossref_primary_10_1002_hyp_11086
crossref_primary_10_1016_j_apgeochem_2015_03_017
crossref_primary_10_1016_j_apgeochem_2014_05_012
crossref_primary_10_3390_w16091210
crossref_primary_10_3390_w9020075
crossref_primary_10_3389_fmicb_2021_648412
crossref_primary_10_1007_s10498_013_9194_7
crossref_primary_10_1016_j_earscirev_2019_01_017
crossref_primary_10_1016_j_gsd_2018_05_005
crossref_primary_10_1016_j_jconhyd_2016_02_005
crossref_primary_10_1016_j_catena_2015_08_018
crossref_primary_10_1002_hyp_9885
crossref_primary_10_1016_j_apgeochem_2015_02_008
crossref_primary_10_1016_j_eti_2025_104126
crossref_primary_10_1016_j_scitotenv_2020_140635
crossref_primary_10_1016_j_chemgeo_2015_02_024
crossref_primary_10_1144_geochem2024_062
crossref_primary_10_1016_j_apgeochem_2023_105623
crossref_primary_10_1016_j_jcis_2015_04_048
crossref_primary_10_1039_C7EM00171A
crossref_primary_10_1134_S0016702919030091
crossref_primary_10_1016_j_scitotenv_2017_05_146
crossref_primary_10_1007_s11356_016_8161_4
crossref_primary_10_2139_ssrn_3989504
crossref_primary_10_1029_2023GC011154
crossref_primary_10_1016_j_apgeochem_2022_105541
crossref_primary_10_1016_j_ecoleng_2014_11_045
crossref_primary_10_3390_su16135636
crossref_primary_10_1007_s11270_016_2767_5
crossref_primary_10_1016_j_chemosphere_2017_03_107
crossref_primary_10_1016_j_mineng_2019_106089
crossref_primary_10_1021_acs_estlett_3c00545
crossref_primary_10_1016_j_gexplo_2013_08_003
crossref_primary_10_3390_w11071339
crossref_primary_10_1016_j_jenvman_2015_04_045
crossref_primary_10_1016_j_mineng_2023_108312
crossref_primary_10_1016_j_scitotenv_2021_146904
crossref_primary_10_1016_j_scitotenv_2023_167999
crossref_primary_10_3390_w15081553
crossref_primary_10_1016_j_jhydrol_2014_08_019
crossref_primary_10_1016_j_apgeochem_2021_104968
crossref_primary_10_1080_08120099_2016_1249955
crossref_primary_10_1016_j_apgeochem_2020_104789
crossref_primary_10_1016_j_scitotenv_2021_151936
crossref_primary_10_1007_s11440_018_0690_1
crossref_primary_10_1016_j_geoderma_2016_12_021
crossref_primary_10_2113_RGG20234690
crossref_primary_10_1021_es3020056
Cites_doi 10.1021/es00036a001
10.1126/science.240.4852.637
10.1007/s10040-004-0429-y
10.1021/es010816f
10.1111/j.1745-6584.2003.tb02434.x
10.1016/0016-7037(86)90325-X
10.1016/0022-1694(75)90005-0
10.1021/es0109794
10.3133/ofr20051442
10.1016/0016-7037(83)90102-3
10.1029/WR019i003p00732
10.1029/2002WR001571
10.1016/j.apgeochem.2009.11.014
10.1016/0022-1694(73)90049-8
10.1016/j.jconhyd.2006.12.001
10.1007/s00254-007-0676-z
10.2475/ajs.278.9.1235
10.1180/minmag.1980.043.331.18
10.1021/es0109085
10.3133/sir20045245
10.1016/0043-1354(82)90081-1
10.1016/j.apgeochem.2007.03.054
10.1515/9781501508660-009
10.3133/ofr94144
10.1029/WR026i005p00989
10.1016/j.apgeochem.2008.07.015
10.1016/j.gexplo.2008.08.002
10.3133/sir20055149
10.1021/es970637r
10.3133/sir20065004
10.3133/tm6B6
10.1016/S0883-2927(03)00115-X
10.1021/es00061a014
10.1016/j.scitotenv.2007.06.029
10.3133/ofr78205
10.1016/S0169-7722(00)00090-5
10.1007/s002540000162
10.1016/j.envpol.2006.12.030
10.1128/AEM.57.3.642-644.1991
10.3133/pp1728
10.1029/95WR03106
10.1016/j.chemgeo.2010.08.017
10.1016/B0-08-043751-6/09137-4
10.1021/es9900454
10.1016/0375-6742(92)90122-O
10.3133/sir20075149
10.1007/s002440010147
10.1016/j.chemgeo.2004.10.001
10.2307/1551347
10.3133/ofr90129
10.1016/j.chemgeo.2009.05.024
10.1016/0022-1694(84)90047-7
10.1080/01490458809377818
10.1038/340052a0
10.1021/es960055u
10.3133/pp1651
10.1016/j.apgeochem.2007.10.011
10.3133/pp285
10.3133/pp1729
10.1029/WR019i003p00718
10.1016/j.apgeochem.2008.11.007
10.1029/TR034i003p00435
10.1021/es9704390
10.1021/es025688p
10.1029/1999WR900259
10.1016/j.epsl.2010.03.010
10.1016/0022-1694(84)90046-5
10.1146/annurev.earth.36.031207.124210
10.1016/j.gca.2004.11.020
10.1016/0375-6742(92)90121-N
10.1073/pnas.96.7.3455
10.1016/j.chemgeo.2008.03.004
10.1126/science.232.4746.54
10.1029/95WR03107
10.3133/sir20065156
10.2138/am.2007.2361
10.1016/0375-6742(92)90126-S
10.3133/sir20055088
10.1029/WR020i012p01797
10.1002/hyp.7114
10.2307/1468428
10.1021/es048947e
10.1007/s00254-004-1178-x
10.1016/j.apgeochem.2008.11.014
10.1007/s12665-009-0240-0
10.1016/0375-6742(92)90127-T
10.1016/j.apgeochem.2007.10.003
ContentType Journal Article
Conference Proceeding
Copyright 2011
2015 INIST-CNRS
Copyright_xml – notice: 2011
– notice: 2015 INIST-CNRS
DBID FBQ
AAYXX
CITATION
IQODW
7S9
L.6
7TV
C1K
DOI 10.1016/j.apgeochem.2011.06.002
DatabaseName AGRIS
CrossRef
Pascal-Francis
AGRICOLA
AGRICOLA - Academic
Pollution Abstracts
Environmental Sciences and Pollution Management
DatabaseTitle CrossRef
AGRICOLA
AGRICOLA - Academic
Pollution Abstracts
Environmental Sciences and Pollution Management
DatabaseTitleList Pollution Abstracts
AGRICOLA


Database_xml – sequence: 1
  dbid: FBQ
  name: AGRIS
  url: http://www.fao.org/agris/Centre.asp?Menu_1ID=DB&Menu_2ID=DB1&Language=EN&Content=http://www.fao.org/agris/search?Language=EN
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Geology
Engineering
EISSN 1872-9134
EndPage 1791
ExternalDocumentID 24818982
10_1016_j_apgeochem_2011_06_002
US201500201891
S0883292711003131
GroupedDBID --K
--M
.~1
0R~
1B1
1RT
1~.
1~5
23M
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
AAYOK
ABEFU
ABFNM
ABJNI
ABLST
ABMAC
ABQEM
ABQYD
ABXDB
ABYKQ
ACDAQ
ACGFS
ACLVX
ACRLP
ACSBN
ADBBV
ADEZE
ADMUD
AEBSH
AEKER
AENEX
AFKWA
AFTJW
AFXIZ
AGHFR
AGUBO
AGYEJ
AHEUO
AHHHB
AI.
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
AKIFW
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
ATOGT
AVWKF
AXJTR
AZFZN
BKOJK
BLECG
BLXMC
CS3
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HMA
HMC
HVGLF
HZ~
H~9
IHE
IMUCA
J1W
KCYFY
KOM
LY3
LY9
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SDF
SDG
SDP
SEN
SEP
SES
SEW
SPC
SPCBC
SSE
SSJ
SSZ
T5K
TN5
VH1
WUQ
XPP
ZCA
ZMT
~02
~G-
ABPIF
ABPTK
FBQ
AAHBH
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEGFY
AEIPS
AEUPX
AFJKZ
AFPUW
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
EFKBS
IQODW
7S9
L.6
7TV
C1K
ID FETCH-LOGICAL-a523t-9feee80d8611327c6703b065951d3a477e0c35507a493602cc8f086778d79c943
IEDL.DBID .~1
ISSN 0883-2927
IngestDate Fri Jul 11 03:41:42 EDT 2025
Fri Jul 11 05:01:58 EDT 2025
Mon Jul 21 09:15:23 EDT 2025
Thu Apr 24 23:13:05 EDT 2025
Tue Jul 01 01:59:27 EDT 2025
Wed Dec 27 19:21:01 EST 2023
Fri Feb 23 02:19:54 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 11
Keywords rivers
geomorphology
mine drainage
mobilization
mixing
streams
mineralogy
metals
concentration
mining
transport
extraction
hydrogeology
alkalinity
lead
structural geology
surface water
mines
remediation
acids
acidity
trace elements
water quality
lakes
Language English
License https://www.elsevier.com/tdm/userlicense/1.0
CC BY 4.0
LinkModel DirectLink
MeetingName Sources, Transport and Fate of Trace and Toxic Elements in the Environment - IAGS 2009
MergedId FETCHMERGED-LOGICAL-a523t-9feee80d8611327c6703b065951d3a477e0c35507a493602cc8f086778d79c943
Notes http://dx.doi.org/10.1016/j.apgeochem.2011.06.002
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ObjectType-Article-2
ObjectType-Feature-1
PQID 1694492995
PQPubID 24069
PageCount 15
ParticipantIDs proquest_miscellaneous_963888802
proquest_miscellaneous_1694492995
pascalfrancis_primary_24818982
crossref_citationtrail_10_1016_j_apgeochem_2011_06_002
crossref_primary_10_1016_j_apgeochem_2011_06_002
fao_agris_US201500201891
elsevier_sciencedirect_doi_10_1016_j_apgeochem_2011_06_002
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2011-11-01
PublicationDateYYYYMMDD 2011-11-01
PublicationDate_xml – month: 11
  year: 2011
  text: 2011-11-01
  day: 01
PublicationDecade 2010
PublicationPlace Kidlington
PublicationPlace_xml – name: Kidlington
PublicationTitle Applied geochemistry
PublicationYear 2011
Publisher Elsevier Ltd
Elsevier
Publisher_xml – name: Elsevier Ltd
– name: Elsevier
References Jambor, J.L., Blowes, D.W., Ritchie, A.I.M. (Eds.), 2003. Environmental Aspects of Mine Wastes. Mineral. Assoc. Canada, Short Course Series 31, Ottawa.
Nordstrom, Mc Nutt, Puigdomènech, Smellie, Wolf (b0505) 1992; 45
Tonkin, Balistrieri, Murray (b0645) 2002; 36
Broshears, Runkel, Kimball, McKnight, Bencala (b0120) 1996; 30
Nordstrom, D.K., 2004. Modeling low-temperature geochemical processes. In: Drever, J.I. (Ed.) Surface and Ground Water, Weathering, and Soils. Holland, H.D., Turekian, K.K. (Exec. Eds.), Treatise on Geochemistry, vol. 5. Elsevier, pp. 37–72.
Gammons, Grant, Nimick, Parker, DeGrandpre (b0210) 2007; 384
Bencala, K.E., McKnight, D.M., Zellweger, G.W., Goad, J., 1986. The Stability of Rhodamine WT Dye in Trial Studies of Solute Transport in an Acidic and Metal-rich Stream. Selected Papers in the Hydrologic Sciences. US Geol. Surv. Water-Supply Paper 2270.
Gammons, Nimick, Parker, Snyder, McCleskey, Amils, Poulson (b0225) 2008; 252
Garrels, Thompson (b0230) 1960; 258A
Younger, P.L., Blanchere, A., 2004. First-flush, reverse first-flush and partial first-flush: dynamics of short- and long-term changes in the quality of water flowing from deep mine systems. In: Price, W.A., Bellefontaine, K. (Eds.), Proc. 10th Ann. British Columbia ML/ARD Workshop, Performance of ARD Generating Wastes, Material Characterization and MEND Projects.
Ortiz, R.F., Ferguson, S.A., 2001. Characterization of Water quality in Selected Tributaries of the Alamosa River, Southwestern Colorado, Including Comparisons to Instream Water-quality Standards and Toxicological Reference Values, 1995–97. US Geol. Surv. Water-Resour. Invest. Rep. 00-4170.
Alpers, C.N., Taylor, H.E., Domagalski, J.L. (Eds.) 2000b. Metals Transport in the Sacramento River, California, 1996-1997. V. 2: Interpretation of Metal Loads. U.S. Geol. Surv. Water-Resour. Invest. Rep. 00-4002.
Cánovas, Olías, Nieto, Galván (b0135) 2010; 25
Tonkin, Balistrieri, Murray (b0650) 2004; 19
Kimball, Runkel, Walton-Day (b0320) 2003
Morin, Rousse, Elkaim (b0410) 2007; 92
Plumlee, G.S., Lowers, H., Ludington, S., Koenig, A., Briggs, P., 2005. Questa Baseline and Pre-mining Ground-water Quality Investigation. 13. Mineral Microscopy and Chemistry of Mined and Unmined Porphyry Molybdenum Mineralization along the Red River, New Mexico: Implications for Ground- and Surface-water Quality. U.S. Geol. Surv. Open-File Rep. 2005-1442.
McKibben, M.A., 1984. Kinetics of Aqueous Pyrite Oxidation by Ferric Iron, Oxygen, and Hydrogen Peroxide from pH 1-4 and 20-40 °C. Ph.D. Thesis, Pennsylvania State Univ.
National Research Council, 2001. Assessing the TMDL Approach to Water Quality Management. National Academy Press, Washington, DC.
Nimick, Gammons, Parker (b0450) 2011; 283
Walton-Day, K., Paschke, S.S., Runkel, R.L., Kimball, B.A., 2007. Using the OTIS Solute-transport Model to Evaluate Remediation Scenarios in Cement Creek and the Upper Animas River, vol. 2. US Geol. Surv. Prof. Paper 1651, pp. 973–1028.
Minikawa, Inaba, Tamura (b0400) 1996; 44
Runkel, Kimball, Walton-Day, Verplanck (b0620) 2007; 22
Nimick, Cleasby, McCleskey (b0440) 2005; 47
Durum (b0185) 1953; 34
Rupert, M.G., 2001. Relations among Rainstorm Runoff, Streamflow, pH, and Metal Concentrations, Summitville Mine Area, Upper Alamosa River Basin, Southwest Colorado, 1995–97. US Geol. Surv. Water-Resour. Invest. Rep. 01-4027.
Cravotta (b0175) 2008; 23
Guilbert, Park (b0245) 1986
Verplanck, Nordstrom, Bove, Plumlee, Runkel (b0655) 2009; 24
Webster, Swedlund, Webster (b0705) 1998; 32
Bencala, Kennedy, Zellweger, Jackman, Avanzino (b0075) 1984; 20
Ball, J.W., Runkel, R.L., Nordstrom, D.K., 2004. Evaluating remedial alternatives for the Alamosa River and Wightman Fork, near the Summitville, Colorado: application of a reactive-transport model to low- and high-flow simulations. In: Zanetti, P. (Ed.), Environmental Sciences and Environmental Computing. The EnviroComp Institute II, pp. 1–54.
Clayton (b0155) 1980; 43
Ball, J.W., Nordstrom, D.K., 1989. Final Revised Analyses of Trace Elements from Acid Mine Waters in the Leviathan Mine Drainage Basin, California and Nevada – October 1981 to October 1982. US Geol. Surv. Water-Resour. Invest. Rep. 89-4138.
Caine, J.S., 2006. Questa Baseline and Pre-mining Ground-water Quality Investigation. 18. Characterization of Brittle Structures in the Questa Caldera and Speculation on their Potential Impacts on the Bedrock Ground-water Flow System. US Geol. Surv. Prof. Paper 1729.
Bethke, Johnson (b0105) 2008; 36
Gammons, Milodragovich, Belanger-Woods (b0215) 2007; 53
Bencala, McKnight, Zellweger (b0080) 1990; 26
Hendrickson, G.E., Krieger, R.A., 1964. Geochemistry of Natural Waters of the Blue Grass Region, Kentucky. US Geol. Surv. Water-Supply Paper 1700.
Pirajno (b0555) 2009
Dagenhart Jr., T.V., 1980. The Acid Mine Drainage of Contrary Creek, Louisa County, Virginia: Factors Causing Variations in Stream Water Chemistry. M.S. Thesis, Univ. Virginia.
Bigham, J.M., Nordstrom, D.K., 2000. Iron and aluminum hydroxysulfates from acid sulfate waters. In: Alpers, C.N., Jambor, J. L., Nordstrom, D.K. (Eds.), Sulfate Minerals – Crystallography, Geochemistry, and Environmental Significance. Mineral. Soc. Amer. 40, Washington, DC, pp. 351–403.
Wakao, Koyatsu, Kamai, Shimokawara, Sakurai, Shiota (b0670) 1988; 6
Kimball, Runkel, Wanty, Verplanck (b0325) 2010; 269
Luoma, Rainbow (b0350) 2008
Vincent, K.R., 2008. Questa Baseline and Pre-mining Ground-water Quality Investigation. 17. Geomorphology of the Red River Valley, Taos County, New Mexico and Influence on Ground-water Flow in the Shallow Alluvial Aquifer. US Geol. Surv. Sci. Invest. Rep. 2006-5156.
Olson (b0515) 1991; 57
Morin, Juillot, Casiot, Bruneel, Personné, Elbaz-Poulichet, Leblanc, Ildefonse, Calas (b0405) 2003; 37
Caruso, Cox, Runkel, Velleux, Bencala, Nordstrom, Julien, Butler, Alpers, Marion, Smith (b0140) 2008; 22
Walton-Day (b0685) 2003
Church, S.E., Von Guerard, P.B., Finger, S.E., 2007. Integrated Investigations of Environmental Effects of Historical Mining in the Animas River Watershed, San Juan County, Colorado. US Geol. Surv. Prof. Paper 1651, pp. 1–1096.
Nordstrom (b0465) 2003
Maher (b0360) 2010; 294
Holmes, Pitty, Noy (b0270) 1992; 45
Hendrickson, G.E., Krieger, R.A., 1960. Relationship of Chemical Quality of Water to Stream Discharge in Kentucky. Internat. Geol. Cong. XXI Session, Part 1, pp. 66–75.
Berner (b0090) 1978; 278
Alpers, C.N., Nordstrom, D.K., Burchard, J.M., 1992. Compilation and Interpretation of Water Quality and Discharge Data for Acid Mine Waters at Iron Mountain, Shasta County, California, 1940-91. US Geol. Surv. Water-Resour. Invest. Rep. 91-4160.
Bencala, Walters (b0070) 1983; 19
Runkel, R.L., 1998. One Dimensional Transport with Inflow and Storage (OTIS): A Solute Transport Model for Streams and Rivers. US Geol. Surv. Water-Resour. Invest. Rep. 98-4018, 73 p.
Ball, J.W., Nordstrom, D.K., 1985. Major and Trace-element Analyses of Acid Mine Waters in the Leviathan Mine Drainage Basin, California/Nevada--October, 1981 to October, 1982. US Geol. Surv. Water-Resour. Invest. Rep. 85-4169.
Plummer, Parkhurst, Thorstenson (b0575) 1983; 47
Nimick, Gurrieri, Furniss (b0455) 2009; 24
Kimball, Runkel (b0305) 2010; 60
Runkel (b0595) 2002; 21
Jackman, Walters, Kennedy (b0275) 1984; 75
Nimick, Gammons, Cleasby, Madison, Skaar, Brick (b0445) 2003; 39
Runkel, McKnight, Bencala (b0625) 1996; 32
Ball, J.W., Nordstrom, D.K., 1991. User’s Manual for WATEQ4F, with Revised Thermodynamic Data Base and Test Cases for Calculating Speciation of Major, Trace and Redox Elements in Natural Waters. US Geol. Surv. Open-File Rep. 91-183.
Bencala (b0065) 1983; 19
Kimball, Broshears, Bencala, McKnight (b0310) 1994; 28
Ball, J.W., Runkel, R.L., Nordstrom, D.K., 2005. Questa Baseline and Pre-mining Ground-water Quality Investigation. 12. Geochemical and Reactive-transport Modeling based on Tracer Injection-synoptic Sampling Studies for the Red River, New Mexico, 2001–2002. US Geol. Surv. Sci.-Invest. Rep. 2005-5149.
Gammons, Nimick, Parker, Cleasby, McCleskey (b0220) 2005; 69
(Chapter B6).
Gyzl, Banks (b0250) 2007; 92
Kimball, B.A., Nordstrom, D.K., Runkel, R.L., Vincent, K.R., Verplanck, P.L., 2006. Questa Baseline and Pre-mining Ground-water Quality Investigation. 23. Quantification of Mass Loading from Mined and Unmined Areas along the Red River, New Mexico. US Geol. Surv. Sci. Invest. Report 2006-5004.
Parkhurst, Plummer (b0540) 1993
Williams (b0715) 2001; 40
Nordstrom, D.K., 2005. A river on the edge – water quality in the Red River and the USGS background study. In: Price, L.G., Bland, D., McLemore, V.T., Barker, J.M. (Eds.), Mining in New Mexico, Decision-Makers Conference 2005, Taos Region. Socorro, NM, New Mexico Bur. Geol. Mineral Resour., pp. 64–67.
Nordstrom, Ball (b0500) 1986; 232
Gihring, Druschel, McCleskey, Hamers, Banfield (b0235) 2001; 35
Besser, J.M., Finger, S.E., Church, S.E., 2007. Impacts of historical mining on aquatic ecosystems – an ecological approach. In: Church, S.E., von Guerard, P., Finger, S.E. (Eds.), Integrated Investigations of Environmental Effects of Historical Mining in the Animas River Watershed, San Juan County, Colorado, vol. 1. US Geol. Surv. Prof. Paper, pp. 87–106.
Blowes, D.W., Ptacek, C.J., Jambor, J.L., Weisener, C.G., 2003. The geochemistry of acid mine drainage. In: Lollar, B.S. (Ed.), Environmental Geochemistry. Holland, H.D., Turekian, K.K. (Exec. Eds), Treatise on Geochemistry, vol. 5. Oxford, Elsevier–Pergamon, pp. 149–204.
Dzombak, Morel (b0190) 1990
Alpers, C.N., Nordstrom, D.K., Verosub, K.L., Helm-Clark, C., 2007. Paleomagnetic Determination of Pre-mining Metal-flux Rates at the Iron Mountain Superfund Site, Northern California. Eos Trans. AGU 88 (23) Jt. Assem. Suppl. Abstract GP41B-04.
Morris, Stumm (b0415) 1967
Kennedy, V.C., Malcolm, R.L., 1978. Geochemistry of the Mattole River of Northern California. US Geol. Surv. Open-File Rep. 78-205.
McKibben, Barnes (b0375) 1986; 50
McAda, D.P., Naus, C.A., 2008. Questa Baseline and Pre-mining Ground-water quality Investigation. 22. Groun
Garrels (10.1016/j.apgeochem.2011.06.002_b0230) 1960; 258A
Wilkie (10.1016/j.apgeochem.2011.06.002_b0710) 1998; 32
10.1016/j.apgeochem.2011.06.002_b0470
10.1016/j.apgeochem.2011.06.002_b0590
Runnells (10.1016/j.apgeochem.2011.06.002_b0630) 1992; 26
10.1016/j.apgeochem.2011.06.002_b0110
Fuller (10.1016/j.apgeochem.2011.06.002_b0205) 1989; 340
Dzombak (10.1016/j.apgeochem.2011.06.002_b0190) 1990
Pirajno (10.1016/j.apgeochem.2011.06.002_b0555) 2009
Durum (10.1016/j.apgeochem.2011.06.002_b0185) 1953; 34
Luoma (10.1016/j.apgeochem.2011.06.002_b0350) 2008
Nimick (10.1016/j.apgeochem.2011.06.002_b0445) 2003; 39
Nordstrom (10.1016/j.apgeochem.2011.06.002_b0465) 2003
Runkel (10.1016/j.apgeochem.2011.06.002_b0595) 2002; 21
Walling (10.1016/j.apgeochem.2011.06.002_b0675) 1974
Nordstrom (10.1016/j.apgeochem.2011.06.002_b0490) 1999; vol. 6A
Besser (10.1016/j.apgeochem.2011.06.002_b0095) 2001; 40
Schorscher (10.1016/j.apgeochem.2011.06.002_b0640) 1992; 45
Runkel (10.1016/j.apgeochem.2011.06.002_b0620) 2007; 22
10.1016/j.apgeochem.2011.06.002_b0085
10.1016/j.apgeochem.2011.06.002_b0480
Kimball (10.1016/j.apgeochem.2011.06.002_b0305) 2010; 60
Plummer (10.1016/j.apgeochem.2011.06.002_b0575) 1983; 47
Luoma (10.1016/j.apgeochem.2011.06.002_b0345) 2005; 39
10.1016/j.apgeochem.2011.06.002_b0115
10.1016/j.apgeochem.2011.06.002_b0475
Plumlee (10.1016/j.apgeochem.2011.06.002_b0565) 1999
10.1016/j.apgeochem.2011.06.002_b0635
Runkel (10.1016/j.apgeochem.2011.06.002_b0615) 1999; 35
Runkel (10.1016/j.apgeochem.2011.06.002_b0605) 2002; 36
Cánovas (10.1016/j.apgeochem.2011.06.002_b0135) 2010; 25
Gammons (10.1016/j.apgeochem.2011.06.002_b0220) 2005; 69
Tonkin (10.1016/j.apgeochem.2011.06.002_b0650) 2004; 19
Olson (10.1016/j.apgeochem.2011.06.002_b0515) 1991; 57
10.1016/j.apgeochem.2011.06.002_b0690
10.1016/j.apgeochem.2011.06.002_b0050
Morin (10.1016/j.apgeochem.2011.06.002_b0405) 2003; 37
10.1016/j.apgeochem.2011.06.002_b0055
10.1016/j.apgeochem.2011.06.002_b0330
10.1016/j.apgeochem.2011.06.002_b0295
Williams (10.1016/j.apgeochem.2011.06.002_b0715) 2001; 40
Jackman (10.1016/j.apgeochem.2011.06.002_b0275) 1984; 75
Wakao (10.1016/j.apgeochem.2011.06.002_b0670) 1988; 6
Glynn (10.1016/j.apgeochem.2011.06.002_b0240) 2005; 13
Waber (10.1016/j.apgeochem.2011.06.002_b0665) 1992; 45
10.1016/j.apgeochem.2011.06.002_b0600
Edwards (10.1016/j.apgeochem.2011.06.002_b0195) 1973; 18
Kimball (10.1016/j.apgeochem.2011.06.002_b0325) 2010; 269
10.1016/j.apgeochem.2011.06.002_b0725
Kimball (10.1016/j.apgeochem.2011.06.002_b0320) 2003
10.1016/j.apgeochem.2011.06.002_b0180
Cravotta (10.1016/j.apgeochem.2011.06.002_b0170) 2008; 23
10.1016/j.apgeochem.2011.06.002_b0580
Gihring (10.1016/j.apgeochem.2011.06.002_b0235) 2001; 35
10.1016/j.apgeochem.2011.06.002_b0060
Broshears (10.1016/j.apgeochem.2011.06.002_b0120) 1996; 30
10.1016/j.apgeochem.2011.06.002_b0100
Luoma (10.1016/j.apgeochem.2011.06.002_b0340) 1990
10.1016/j.apgeochem.2011.06.002_b0335
Nordstrom (10.1016/j.apgeochem.2011.06.002_b0460) 1982
10.1016/j.apgeochem.2011.06.002_b0695
Nimick (10.1016/j.apgeochem.2011.06.002_b0450) 2011; 283
Pabst (10.1016/j.apgeochem.2011.06.002_b0530) 1940; 25
Tonkin (10.1016/j.apgeochem.2011.06.002_b0645) 2002; 36
Webster (10.1016/j.apgeochem.2011.06.002_b0705) 1998; 32
Nimick (10.1016/j.apgeochem.2011.06.002_b0430) 2011; 283
Gammons (10.1016/j.apgeochem.2011.06.002_b0210) 2007; 384
Coplen (10.1016/j.apgeochem.2011.06.002_b0160) 1993
Miller (10.1016/j.apgeochem.2011.06.002_b0395) 1994
Paulson (10.1016/j.apgeochem.2011.06.002_b0545) 1999; 33
Walling (10.1016/j.apgeochem.2011.06.002_b0680) 1975; 26
Hart (10.1016/j.apgeochem.2011.06.002_b0255) 1982; 16
10.1016/j.apgeochem.2011.06.002_b0030
10.1016/j.apgeochem.2011.06.002_b0150
10.1016/j.apgeochem.2011.06.002_b0390
10.1016/j.apgeochem.2011.06.002_b0550
Caruso (10.1016/j.apgeochem.2011.06.002_b0140) 2008; 22
Maher (10.1016/j.apgeochem.2011.06.002_b0360) 2010; 294
Cravotta (10.1016/j.apgeochem.2011.06.002_b0175) 2008; 23
Runkel (10.1016/j.apgeochem.2011.06.002_b0610) 1996; 32
10.1016/j.apgeochem.2011.06.002_b0025
10.1016/j.apgeochem.2011.06.002_b0145
Kennedy (10.1016/j.apgeochem.2011.06.002_b0300) 1984; 75
10.1016/j.apgeochem.2011.06.002_b0420
Kennedy (10.1016/j.apgeochem.2011.06.002_b0290) 1971
Nordstrom (10.1016/j.apgeochem.2011.06.002_b0510) 1990
10.1016/j.apgeochem.2011.06.002_b0425
Runkel (10.1016/j.apgeochem.2011.06.002_b0625) 1996; 32
McKibben (10.1016/j.apgeochem.2011.06.002_b0375) 1986; 50
Morris (10.1016/j.apgeochem.2011.06.002_b0415) 1967
Balistrieri (10.1016/j.apgeochem.2011.06.002_b0035) 2003; 36
Verplanck (10.1016/j.apgeochem.2011.06.002_b0655) 2009; 24
Zand (10.1016/j.apgeochem.2011.06.002_b0730) 1976; 4
Berner (10.1016/j.apgeochem.2011.06.002_b0090) 1978; 278
Holmes (10.1016/j.apgeochem.2011.06.002_b0270) 1992; 45
Burns (10.1016/j.apgeochem.2011.06.002_b0125) 2003; 41
Guilbert (10.1016/j.apgeochem.2011.06.002_b0245) 1986
10.1016/j.apgeochem.2011.06.002_b0040
10.1016/j.apgeochem.2011.06.002_b0280
Younger (10.1016/j.apgeochem.2011.06.002_b0720) 2000; 44
10.1016/j.apgeochem.2011.06.002_b0045
Nimick (10.1016/j.apgeochem.2011.06.002_b0455) 2009; 24
10.1016/j.apgeochem.2011.06.002_b0560
Bencala (10.1016/j.apgeochem.2011.06.002_b0065) 1983; 19
Webster (10.1016/j.apgeochem.2011.06.002_b0700) 1994
10.1016/j.apgeochem.2011.06.002_b0315
10.1016/j.apgeochem.2011.06.002_b0435
Cravotta (10.1016/j.apgeochem.2011.06.002_b0165) 2008; 23
Nordstrom (10.1016/j.apgeochem.2011.06.002_b0500) 1986; 232
10.1016/j.apgeochem.2011.06.002_b0370
Evans (10.1016/j.apgeochem.2011.06.002_b0200) 1966
Jamieson (10.1016/j.apgeochem.2011.06.002_b0285) 2005; 215
10.1016/j.apgeochem.2011.06.002_b0010
10.1016/j.apgeochem.2011.06.002_b0130
10.1016/j.apgeochem.2011.06.002_b0005
Bencala (10.1016/j.apgeochem.2011.06.002_b0070) 1983; 19
Gyzl (10.1016/j.apgeochem.2011.06.002_b0250) 2007; 92
10.1016/j.apgeochem.2011.06.002_b0520
10.1016/j.apgeochem.2011.06.002_b0365
Nimick (10.1016/j.apgeochem.2011.06.002_b0440) 2005; 47
10.1016/j.apgeochem.2011.06.002_b0525
Parkhurst (10.1016/j.apgeochem.2011.06.002_b0540) 1993
Minikawa (10.1016/j.apgeochem.2011.06.002_b0400) 1996; 44
Gammons (10.1016/j.apgeochem.2011.06.002_b0215) 2007; 53
Nordstrom (10.1016/j.apgeochem.2011.06.002_b0505) 1992; 45
10.1016/j.apgeochem.2011.06.002_b0260
McKnight (10.1016/j.apgeochem.2011.06.002_b0385) 1988; 240
Bencala (10.1016/j.apgeochem.2011.06.002_b0080) 1990; 26
10.1016/j.apgeochem.2011.06.002_b0265
Morin (10.1016/j.apgeochem.2011.06.002_b0410) 2007; 92
10.1016/j.apgeochem.2011.06.002_b0660
Bethke (10.1016/j.apgeochem.2011.06.002_b0105) 2008; 36
10.1016/j.apgeochem.2011.06.002_b0020
McKnight (10.1016/j.apgeochem.2011.06.002_b0380) 1988; 20
10.1016/j.apgeochem.2011.06.002_b0015
MacCausland (10.1016/j.apgeochem.2011.06.002_b0355) 2007; 149
Clayton (10.1016/j.apgeochem.2011.06.002_b0155) 1980; 43
Nordstrom (10.1016/j.apgeochem.2011.06.002_b0495) 1999; 96
Plummer (10.1016/j.apgeochem.2011.06.002_b0570) 1993
Gammons (10.1016/j.apgeochem.2011.06.002_b0225) 2008; 252
Walton-Day (10.1016/j.apgeochem.2011.06.002_b0685) 2003
Kimball (10.1016/j.apgeochem.2011.06.002_b0310) 1994; 28
10.1016/j.apgeochem.2011.06.002_b0535
Bencala (10.1016/j.apgeochem.2011.06.002_b0075) 1984; 20
Nordstrom (10.1016/j.apgeochem.2011.06.002_b0485) 2009; 100
Rankama (10.1016/j.apgeochem.2011.06.002_b0585) 1950
References_xml – start-page: 94
  year: 1971
  end-page: 130
  ident: b0290
  article-title: Silica variation in stream water with time and discharge
  publication-title: Nonequilibrium Systems in Natural Water Chemistry
– reference: Allison, J.D., Brown, D.S., Novo-Gradac, K.J., 1991. MINTEQA2/PRODEFA2, A Geochemical Assessment Model for Environmental Systems: Version 3.0 User’s Manual. USEPA Report EPA/600/3-91/021.
– year: 2008
  ident: b0350
  article-title: Metal Contaminants in Aquatic Environments
– volume: 36
  start-page: 484
  year: 2003
  end-page: 492
  ident: b0035
  article-title: Modeling precipitation and sorption of elements during mixing of river water and porewater in the Coeur d’Alene River basin
  publication-title: Environ. Sci. Technol.
– volume: 32
  start-page: 419
  year: 1996
  end-page: 430
  ident: b0625
  article-title: Reactive solute transport in streams 2. Simulation of a pH modification experiment
  publication-title: Water Resour. Res.
– volume: 258A
  start-page: 57
  year: 1960
  end-page: 67
  ident: b0230
  article-title: Oxidation of pyrite by iron sulfate solutions
  publication-title: Am. J. Sci.
– volume: 50
  start-page: 1509
  year: 1986
  end-page: 1520
  ident: b0375
  article-title: Oxidation of pyrite in low temperature acidic solutions: rate laws and surface textures
  publication-title: Geochim. Cosmochim. Acta
– volume: 19
  start-page: 718
  year: 1983
  end-page: 724
  ident: b0070
  article-title: Simulation of solute transport in a mountain pool-and-riffle stream – a transient storage model
  publication-title: Water Resour. Res.
– volume: 149
  start-page: 216
  year: 2007
  end-page: 226
  ident: b0355
  article-title: The impact of episodic coal mine drainage pollution on benthic invertebrates in streams in the anthracite region of Pennsylvania
  publication-title: Environ. Pollut.
– reference: Naus, C.A., McCleskey, R.B., Nordstrom, D.K., Donohoe, L.C., Hunt, A.G., Paillet, F.L., Morin, R.H., Verplanck, P.L., 2005. Questa Baseline and Pre-mining Ground-water-quality Investigation. 5. Well Installation, Water-level Data, and Surface- and Ground-water Geochemistry in the Straight Creek Drainage Basin, Red River Valley, New Mexico, 2001–2003. US Geol. Surv. Sci. Invest. Rep. 2005-5088.
– reference: Kennedy, V.C., Malcolm, R.L., 1978. Geochemistry of the Mattole River of Northern California. US Geol. Surv. Open-File Rep. 78-205.
– volume: 45
  start-page: 215
  year: 1992
  end-page: 247
  ident: b0270
  article-title: Geomorphological and hydrogeological features of the Poços de Caldas caldera analogue study sites
  publication-title: J. Geochem. Explor.
– volume: 24
  start-page: 255
  year: 2009
  end-page: 267
  ident: b0655
  article-title: Naturally acidic surface- and ground-waters draining porphyry-related mineralized areas of the southern Rocky Mountains, Colorado and New Mexico
  publication-title: Appl. Geochem.
– start-page: 270
  year: 1967
  end-page: 285
  ident: b0415
  article-title: Redox equilibria and measurements of potentials in the aquatic environment
  publication-title: Equilibrium Concepts in Natural Water Systems, Adv. Chem. Series 67
– reference: Parkhurst, D.L., Appelo, C.A., 1999. User’s Guide to PHREEQC (Version 2) – A Computer Program for Speciation, Batch-reaction, One-dimensional Transport, and Inverse Geochemical Calculations. US Geol. Surv. Water-Resour. Invest. Rep. 99-4259.
– volume: 278
  start-page: 1235
  year: 1978
  end-page: 1252
  ident: b0090
  article-title: Rate control of mineral dissolution under earth surface conditions
  publication-title: Am. J. Sci.
– volume: 69
  start-page: 2505
  year: 2005
  end-page: 2516
  ident: b0220
  article-title: Diel behavior of iron and other heavy metals in a mountain stream with acidic to neutral pH: Fisher Creek, Montana, USA
  publication-title: Geochim. Cosmochim. Acta
– volume: 23
  start-page: 166
  year: 2008
  end-page: 202
  ident: b0165
  article-title: Dissolved metals and associated constituents in abandoned coal-mine discharges, Pennsylvania, USA: 1. Constituent concentrations and correlations
  publication-title: Appl. Geochem.
– volume: 215
  start-page: 387
  year: 2005
  end-page: 405
  ident: b0285
  article-title: Major and trace element composition of copiapite-group minerals and coexisting water from the Richmond mine, Iron Mountain, California
  publication-title: Chem. Geol.
– volume: 30
  start-page: 3016
  year: 1996
  end-page: 3024
  ident: b0120
  article-title: Reactive solute transport in an acidic stream: experimental pH increase and simulation of controls on pH, aluminum, and iron
  publication-title: Environ. Sci. Technol.
– volume: 75
  start-page: 67
  year: 1984
  end-page: 110
  ident: b0300
  article-title: Transport and concentration controls for chloride, strontium, potassium and lead in Uvas Creek, a small cobble-bed stream in Santa Clara County, California, USA, 1. Conceptual model
  publication-title: J. Hydrol.
– volume: 45
  start-page: 53
  year: 1992
  end-page: 112
  ident: b0665
  article-title: Hydrothermal and supergene uranium mineralization at the Osamu Utsumi mine, Poços de Caldas, Minas Gerais, Brazil
  publication-title: J. Geochem. Explor.
– volume: 35
  start-page: 3857
  year: 2001
  end-page: 3862
  ident: b0235
  article-title: Rapid arsenite oxidation by
  publication-title: Environ. Sci. Technol.
– start-page: 227
  year: 1993
  end-page: 254
  ident: b0160
  article-title: Uses of environmental isotopes
  publication-title: Regional Ground-Water Quality
– reference: Pendleton, J.A., Posey, H.H., Long, M.B., 1995. Characterizing Summitville and its impacts. In: Proceedings: Summitville Forum ’95. Colorado Geol. Surv. Spec. Publ. 38, Denver, CO, pp. 1–12.
– reference: Ludington, S.D., Plumlee, G.S., Caine, J.S., Bove, D.J., Holloway, J.M., Livo, K.E., 2005. Questa Baseline and Pre-mining Ground-water Quality Investigation. 10. Geologic Influences on Ground and Surface Waters in the Red River Watershed, New Mexico. US Geol. Surv. Sci. Invest. Rep. 2004-5245.
– volume: 21
  start-page: 529
  year: 2002
  end-page: 543
  ident: b0595
  article-title: A new metric for determining the importance of transient storage
  publication-title: J. North Am. Benthol. Soc.
– volume: 45
  start-page: 249
  year: 1992
  end-page: 287
  ident: b0505
  article-title: Ground water chemistry and geochemical modeling of water-rock interactions at the Osamu Utsumi mine and the Morro do Ferro analogue study sites, Poços de Caldas, Minas Gerais, Brazil
  publication-title: J. Geochem. Explor.
– year: 1986
  ident: b0245
  article-title: The Geology of Ore Deposits
– volume: 44
  start-page: 193
  year: 1996
  end-page: 197
  ident: b0400
  article-title: A few occurrences of basaluminite in Japan
  publication-title: Chigaku Kenkyu
– reference: Ball, J.W., Runkel, R.L., Nordstrom, D.K., 2004. Evaluating remedial alternatives for the Alamosa River and Wightman Fork, near the Summitville, Colorado: application of a reactive-transport model to low- and high-flow simulations. In: Zanetti, P. (Ed.), Environmental Sciences and Environmental Computing. The EnviroComp Institute II, pp. 1–54.
– reference: National Research Council, 2001. Assessing the TMDL Approach to Water Quality Management. National Academy Press, Washington, DC.
– start-page: 63
  year: 1966
  end-page: 68
  ident: b0200
  article-title: Leviathan Mine
  publication-title: Guidebook along the East-central Front of the Sierra Nevada
– volume: 47
  start-page: 603
  year: 2005
  end-page: 614
  ident: b0440
  article-title: Seasonality of diel cycles of dissolved trace-metal concentrations in a Rocky Mountain stream
  publication-title: Environ. Geol.
– reference: Caine, J.S., 2006. Questa Baseline and Pre-mining Ground-water Quality Investigation. 18. Characterization of Brittle Structures in the Questa Caldera and Speculation on their Potential Impacts on the Bedrock Ground-water Flow System. US Geol. Surv. Prof. Paper 1729.
– volume: 28
  start-page: 2065
  year: 1994
  end-page: 2073
  ident: b0310
  article-title: Coupling of hydrologic transport and chemical reaction in a stream affected by acid mine drainage
  publication-title: Environ. Sci. Technol.
– reference: Jambor, J.L., Blowes, D.W., Ritchie, A.I.M. (Eds.), 2003. Environmental Aspects of Mine Wastes. Mineral. Assoc. Canada, Short Course Series 31, Ottawa.
– volume: 43
  start-page: 931
  year: 1980
  end-page: 937
  ident: b0155
  article-title: Hydrobasaluminite and basaluminite from Chickerell, Dorset
  publication-title: Mineral. Mag.
– start-page: 398
  year: 1990
  end-page: 413
  ident: b0510
  article-title: Revised chemical equilibrium data for water-mineral reactions and their limitations
  publication-title: Chemical Modeling in Aqueous Systems II
– start-page: 199
  year: 1993
  end-page: 225
  ident: b0540
  article-title: Geochemical models
  publication-title: Regional Ground-Water Quality
– start-page: 335
  year: 2003
  end-page: 360
  ident: b0685
  article-title: Passive and active treatment of acid mine drainage
  publication-title: Environmental Aspects of Mine Wastes
– reference: Blowes, D.W., Ptacek, C.J., Jambor, J.L., Weisener, C.G., 2003. The geochemistry of acid mine drainage. In: Lollar, B.S. (Ed.), Environmental Geochemistry. Holland, H.D., Turekian, K.K. (Exec. Eds), Treatise on Geochemistry, vol. 5. Oxford, Elsevier–Pergamon, pp. 149–204.
– volume: 26
  start-page: 989
  year: 1990
  end-page: 1000
  ident: b0080
  article-title: Characterization of transport in an acidic and metal-rich mountain stream based on a lithium tracer injection and simulations of transient storage
  publication-title: Water Resour. Res.
– volume: 47
  start-page: 665
  year: 1983
  end-page: 686
  ident: b0575
  article-title: Development of reaction models for ground-water systems
  publication-title: Geochim. Cosmochim. Acta
– volume: 18
  start-page: 219
  year: 1973
  end-page: 242
  ident: b0195
  article-title: The variation of dissolved constituents with discharge in some Norfolk rivers
  publication-title: J. Hydrol.
– reference: Plumlee, G.S., Lowers, H., Ludington, S., Koenig, A., Briggs, P., 2005. Questa Baseline and Pre-mining Ground-water Quality Investigation. 13. Mineral Microscopy and Chemistry of Mined and Unmined Porphyry Molybdenum Mineralization along the Red River, New Mexico: Implications for Ground- and Surface-water Quality. U.S. Geol. Surv. Open-File Rep. 2005-1442.
– year: 2009
  ident: b0555
  article-title: Hydrothermal Processes and Mineral Systems
– volume: 384
  start-page: 433
  year: 2007
  end-page: 451
  ident: b0210
  article-title: Diel changes in water chemistry in an arsenic-rich and treatment pond system
  publication-title: Sci. Total Environ.
– reference: Walton-Day, K., Paschke, S.S., Runkel, R.L., Kimball, B.A., 2007. Using the OTIS Solute-transport Model to Evaluate Remediation Scenarios in Cement Creek and the Upper Animas River, vol. 2. US Geol. Surv. Prof. Paper 1651, pp. 973–1028.
– reference: Dagenhart Jr., T.V., 1980. The Acid Mine Drainage of Contrary Creek, Louisa County, Virginia: Factors Causing Variations in Stream Water Chemistry. M.S. Thesis, Univ. Virginia.
– volume: 252
  start-page: 202
  year: 2008
  end-page: 213
  ident: b0225
  article-title: Photoreduction fuels biogeochemical cycling of iron for Spain’s acid rivers
  publication-title: Chem. Geol.
– reference: Runkel, R.L., 2010. One-dimensional Transport with Equilibrium Chemistry (OTEQ) – A Reactive Transport Model for Streams and Rivers. US Geol. Surv. Tech. Methods Book 6. p. 101. <
– reference: Bencala, K.E., McKnight, D.M., Zellweger, G.W., Goad, J., 1986. The Stability of Rhodamine WT Dye in Trial Studies of Solute Transport in an Acidic and Metal-rich Stream. Selected Papers in the Hydrologic Sciences. US Geol. Surv. Water-Supply Paper 2270.
– volume: 20
  start-page: 492
  year: 1988
  end-page: 500
  ident: b0380
  article-title: Diel variations in iron chemistry in an acidic stream in the Colorado Rocky Mountains, USA
  publication-title: Arctic Alp. Res.
– reference: Alpers, C.N., Taylor, H.E., Domagalski, J.L. (Eds.) 2000b. Metals Transport in the Sacramento River, California, 1996-1997. V. 2: Interpretation of Metal Loads. U.S. Geol. Surv. Water-Resour. Invest. Rep. 00-4002.
– volume: 4
  start-page: 233
  year: 1976
  end-page: 240
  ident: b0730
  article-title: Solute transport and modeling of water quality in a small stream
  publication-title: J. Res. US Geol. Surv.
– reference: Alpers, C.N., Taylor, H.E., Domagalski, J.L. (Eds.), 2000a. Metals Transport in the Sacramento River, California, 1996-1997. V. 1: Methods and Data. U.S. Geol. Surv. Water-Resour. Invest. Rep. 99-4286.
– volume: 24
  start-page: 106
  year: 2009
  end-page: 119
  ident: b0455
  article-title: An empirical method for estimating instream pre-mining pH and dissolved Cu concentration in catchments with acidic drainage and ferricrete
  publication-title: Appl. Geochem.
– volume: 22
  start-page: 1899
  year: 2007
  end-page: 1918
  ident: b0620
  article-title: A simulation-based approach for estimating premining water quality: Red Mountain Creek, Colorado
  publication-title: Appl. Geochem.
– volume: 39
  start-page: 1247
  year: 2003
  end-page: 1264
  ident: b0445
  article-title: Diel cycles in dissolved metal concentrations in streams: occurrence and possible causes
  publication-title: Water Resour. Res.
– reference: Alpers, C.N., Nordstrom, D.K., 2000. Estimation of pre-mining conditions for trace metal mobility in mineralized areas: an overview. In: ICARD 2000 Proc. 5th Internat. Conf. Acid Rock Drainage, vol. 1. Soc. Min. Metal. Explor., Littleton, CO, pp. 463–472.
– volume: 53
  start-page: 611
  year: 2007
  end-page: 622
  ident: b0215
  article-title: Influence of diurnal cycles on monitoring of metal concentrations and loads in streams draining abandoned mine lands: an example from High Ore Creek, Montana
  publication-title: Environ. Geol.
– volume: 6
  start-page: 11
  year: 1988
  end-page: 24
  ident: b0670
  article-title: Microbial oxidation of arsenite and occurrence of arsenite-oxidizing bacteria in acid mine water from a sulfur-pyrite mine
  publication-title: Geomicrobiol. J.
– reference: Besser, J.M., Finger, S.E., Church, S.E., 2007. Impacts of historical mining on aquatic ecosystems – an ecological approach. In: Church, S.E., von Guerard, P., Finger, S.E. (Eds.), Integrated Investigations of Environmental Effects of Historical Mining in the Animas River Watershed, San Juan County, Colorado, vol. 1. US Geol. Surv. Prof. Paper, pp. 87–106.
– volume: 26
  start-page: 2316
  year: 1992
  end-page: 2322
  ident: b0630
  article-title: Metals in water: determining natural background concentrations in mineralized areas
  publication-title: Environ. Sci. Technol.
– reference: Church, S.E., Von Guerard, P.B., Finger, S.E., 2007. Integrated Investigations of Environmental Effects of Historical Mining in the Animas River Watershed, San Juan County, Colorado. US Geol. Surv. Prof. Paper 1651, pp. 1–1096.
– volume: 26
  start-page: 237
  year: 1975
  end-page: 244
  ident: b0680
  article-title: Variations in the natural chemical concentrations of river water during flood flows, and the lag effect: some further comments
  publication-title: J. Hydrol.
– volume: 41
  start-page: 913
  year: 2003
  end-page: 925
  ident: b0125
  article-title: The geochemical evolution of a riparian ground water in a forested Piedmont catchment
  publication-title: Ground Water
– volume: 92
  start-page: 66
  year: 2007
  end-page: 86
  ident: b0250
  article-title: Verification of the “first flush” phenomenon in mine water from coal mines in the Upper Silesian Coal Basin, Poland
  publication-title: J. Contam. Hydrol.
– volume: 25
  start-page: 425
  year: 1940
  end-page: 431
  ident: b0530
  article-title: Cryptocrystalline pyrite from Alpine county, California
  publication-title: Am. Mineral.
– year: 1994
  ident: b0395
  article-title: Natural Analogue Studies in the Geological Disposal of Radioactive Wastes
– volume: 32
  start-page: 409
  year: 1996
  end-page: 418
  ident: b0610
  article-title: Reactive solute transport in streams 1. Development of an equilibrium-based model
  publication-title: Water Resour. Res.
– reference: Bigham, J.M., Nordstrom, D.K., 2000. Iron and aluminum hydroxysulfates from acid sulfate waters. In: Alpers, C.N., Jambor, J. L., Nordstrom, D.K. (Eds.), Sulfate Minerals – Crystallography, Geochemistry, and Environmental Significance. Mineral. Soc. Amer. 40, Washington, DC, pp. 351–403.
– reference: Nordstrom, D.K., 2005. A river on the edge – water quality in the Red River and the USGS background study. In: Price, L.G., Bland, D., McLemore, V.T., Barker, J.M. (Eds.), Mining in New Mexico, Decision-Makers Conference 2005, Taos Region. Socorro, NM, New Mexico Bur. Geol. Mineral Resour., pp. 64–67.
– volume: 23
  start-page: 3404
  year: 2008
  end-page: 3422
  ident: b0175
  article-title: Laboratory and field evaluation of a flushable oxic limestone drain for treatment of net-acidic, metal-laden drainage from a flooded anthracite mine, Pennsylvania
  publication-title: Appl. Geochem.
– volume: 57
  start-page: 642
  year: 1991
  end-page: 644
  ident: b0515
  article-title: Rate of bioleaching by
  publication-title: Appl. Environ. Microbiol.
– reference: Walton-Day, K., Ortiz, R.F., von Guerard, P.B., 1995. Sources of water having low pH and elevated metal concentrations in the upper Alamosa River from the headwaters to the outlet of Terrace Reservior, south-central Colorado, April–September 1993. In: Proc.: Summitville Forum ’95. Colorado Geol. Surv. Spec. Publ. 38, Denver, CO, pp. 160–170.
– year: 1950
  ident: b0585
  article-title: Geochemistry
– reference: Rupert, M.G., 2001. Relations among Rainstorm Runoff, Streamflow, pH, and Metal Concentrations, Summitville Mine Area, Upper Alamosa River Basin, Southwest Colorado, 1995–97. US Geol. Surv. Water-Resour. Invest. Rep. 01-4027.
– volume: 13
  start-page: 263
  year: 2005
  end-page: 287
  ident: b0240
  article-title: Geochemistry and the understanding of ground-water systems
  publication-title: Hydrogeol. J.
– reference: Clarke, F.W., 1924. The Data of Geochemistry, 5th ed. US Geol. Surv. Bull. 770.
– volume: 32
  start-page: 1361
  year: 1998
  end-page: 1368
  ident: b0705
  article-title: Trace metal adsorption onto an acid mine drainage iron(III) oxy hydroxy sulfate
  publication-title: Environ. Sci. Technol.
– reference: Hendrickson, G.E., Krieger, R.A., 1960. Relationship of Chemical Quality of Water to Stream Discharge in Kentucky. Internat. Geol. Cong. XXI Session, Part 1, pp. 66–75.
– volume: 23
  start-page: 203
  year: 2008
  end-page: 226
  ident: b0170
  article-title: Dissolved metals and associated constituents in abandoned coal-mine discharges, Pennsylvania, USA: 2. Geochemical controls on constituent concentrations
  publication-title: Appl. Geochem.
– reference: Nimick, D.A., Church, S.E., Finger, S.E., 2004. Summary and Conclusions from Investigation of the Effects of Historical Mining in the Boulder River Watershed, Jefferson County, Montana. US Geol. Surv. Prof. Paper 1652-A.
– volume: 22
  start-page: 4011
  year: 2008
  end-page: 4022
  ident: b0140
  article-title: Metals fate and transport modelling in streams and watersheds: state of the science and USEPA workshop review
  publication-title: Hydrol. Process.
– start-page: 227
  year: 2003
  end-page: 238
  ident: b0465
  article-title: Effects of microbiological and geochemical interactions in mine drainage
  publication-title: Environmental Aspects of Mine Wastes
– volume: 16
  start-page: 605
  year: 1982
  end-page: 612
  ident: b0255
  article-title: Transport of iron, manganese, cadmium, copper, and zinc by Magela Creek, Northern Territory, Australia
  publication-title: Water Res.
– start-page: 261
  year: 2003
  end-page: 282
  ident: b0320
  article-title: Use of field-scale experiments and reactive-solute-transport modeling to evaluate remediation alternatives in streams affected by acid mine drainage
  publication-title: Environmental Aspects of Mine Wastes
– volume: 25
  start-page: 288
  year: 2010
  end-page: 301
  ident: b0135
  article-title: Wash-out processes of evaporitic sulfate salts in the Tinto River: hydrogeochemical evolution and environmental impact
  publication-title: Appl. Geochem.
– reference: Ortiz, R.F., Ferguson, S.A., 2001. Characterization of Water quality in Selected Tributaries of the Alamosa River, Southwestern Colorado, Including Comparisons to Instream Water-quality Standards and Toxicological Reference Values, 1995–97. US Geol. Surv. Water-Resour. Invest. Rep. 00-4170.
– volume: 44
  start-page: 47
  year: 2000
  end-page: 69
  ident: b0720
  article-title: Predicting temporal changes in total iron concentrations in groundwaters flowing from abandoned deep mines: a first approximation
  publication-title: J. Contam. Hydrol.
– reference: McKibben, M.A., 1984. Kinetics of Aqueous Pyrite Oxidation by Ferric Iron, Oxygen, and Hydrogen Peroxide from pH 1-4 and 20-40 °C. Ph.D. Thesis, Pennsylvania State Univ.
– reference: Miller, W.M., McHugh, J.B., 1994. Natural Acid Drainage from Altered Areas within and Adjacent to the Upper Alamosa River, Colorado. US Geol. Surv. Open-File Rep. 94-144.
– volume: 19
  start-page: 732
  year: 1983
  end-page: 738
  ident: b0065
  article-title: Simulation of solute transport in a mountain pool-and-riffle stream with a kinetic mass transfer model for sorption
  publication-title: Water Resour. Res.
– start-page: 169
  year: 1974
  end-page: 192
  ident: b0675
  article-title: Suspended sediment and solute yields from a small catchment prior to urbanization
  publication-title: Fluvial Processes in Instrumented Watersheds
– start-page: 255
  year: 1993
  end-page: 294
  ident: b0570
  article-title: Environmental tracers for age dating young ground water
  publication-title: Regional Ground-Water Quality
– volume: 36
  start-page: 484
  year: 2002
  end-page: 492
  ident: b0645
  article-title: Modeling metal removal onto natural particles formed during mixing of acid rock drainage with ambient surface water
  publication-title: Environ. Sci. Technol.
– start-page: 261
  year: 1990
  end-page: 287
  ident: b0340
  article-title: Effects of trace metals on aquatic benthos
  publication-title: Metal Ecotoxicology: Concepts and Applications
– reference: Alpers, C.N., Nordstrom, D.K., Burchard, J.M., 1992. Compilation and Interpretation of Water Quality and Discharge Data for Acid Mine Waters at Iron Mountain, Shasta County, California, 1940-91. US Geol. Surv. Water-Resour. Invest. Rep. 91-4160.
– reference: Ball, J.W., Nordstrom, D.K., 1985. Major and Trace-element Analyses of Acid Mine Waters in the Leviathan Mine Drainage Basin, California/Nevada--October, 1981 to October, 1982. US Geol. Surv. Water-Resour. Invest. Rep. 85-4169.
– reference: Ball, J.W., Runkel, R.L., Nordstrom, D.K., 2005. Questa Baseline and Pre-mining Ground-water Quality Investigation. 12. Geochemical and Reactive-transport Modeling based on Tracer Injection-synoptic Sampling Studies for the Red River, New Mexico, 2001–2002. US Geol. Surv. Sci.-Invest. Rep. 2005-5149.
– volume: 92
  start-page: 193
  year: 2007
  end-page: 197
  ident: b0410
  article-title: Crystal structure of tooeleite, Fe
  publication-title: Am. Mineral.
– reference: Vincent, K.R., 2008. Questa Baseline and Pre-mining Ground-water Quality Investigation. 17. Geomorphology of the Red River Valley, Taos County, New Mexico and Influence on Ground-water Flow in the Shallow Alluvial Aquifer. US Geol. Surv. Sci. Invest. Rep. 2006-5156.
– start-page: 244
  year: 1994
  end-page: 260
  ident: b0700
  article-title: Transport and natural attenuation of Cu, Zn, As, and Fe in the acid mine drainage of Leviathan and Bryant creeks
  publication-title: The Environmental Geochemistry of Sulfide Oxidation
– start-page: 373
  year: 1999
  end-page: 432
  ident: b0565
  article-title: Geologic controls on the composition of natural waters and mine waters draining diverse mineral-deposit types
  publication-title: The Environmental Geochemistry of Mineral Deposits. Part B: Case Studies and Research Topics
– volume: 35
  start-page: 3829
  year: 1999
  end-page: 3840
  ident: b0615
  article-title: Reactive solute transport in streams: a surface complexation approach for trace metal sorption
  publication-title: Water Resour. Res.
– reference: Ortiz, R.F., Stogner Sr., R.W., 2001. Diurnal Variations in Metal Concentrations in the Alamosa River and Wightman Fork, Southwestern Colorado, 1995–97. US Geol. Surv. Water-Resour. Invest. Rep. 00-4160.
– reference: Nordstrom, D.K., 2004. Modeling low-temperature geochemical processes. In: Drever, J.I. (Ed.) Surface and Ground Water, Weathering, and Soils. Holland, H.D., Turekian, K.K. (Exec. Eds.), Treatise on Geochemistry, vol. 5. Elsevier, pp. 37–72.
– volume: 40
  start-page: 267
  year: 2001
  end-page: 278
  ident: b0715
  article-title: Arsenic in groundwaters: an international study
  publication-title: Environ. Geol.
– reference: Kinkel, A.R., Hall, W.E., Albers, J.P., 1956. Geology and Base-metal Deposits of the West Shasta Copper–Zinc District, Shasta County, California. US Geol. Surv. Prof. Paper 285.
– reference: Posey, H.H., Pendleton, J.A., Van Zyl, D., 1995. In: Proc.: Summitville Forum ’95. Colorado Geol. Surv. Spec. Publ. 38, Denver, CO.
– volume: 19
  start-page: 29
  year: 2004
  end-page: 53
  ident: b0650
  article-title: Development of a database for modeling cation adsorption on hydrous manganese oxide using the diffuse double layer model
  publication-title: Appl. Geochem.
– volume: 96
  start-page: 3455
  year: 1999
  end-page: 3462
  ident: b0495
  article-title: Negative pH, efflorescent mineralogy, and consequences for environmental restoration at the Iron Mountain Superfund site, California
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 32
  start-page: 657
  year: 1998
  end-page: 662
  ident: b0710
  article-title: Rapid oxidation of geothermal arsenic (III) in stream waters of eastern Sierra Nevada
  publication-title: Environ. Sci. Technol.
– volume: 100
  start-page: 97
  year: 2009
  end-page: 104
  ident: b0485
  article-title: Acid rock drainage and climate change
  publication-title: J. Geochem. Explor.
– volume: 232
  start-page: 54
  year: 1986
  end-page: 56
  ident: b0500
  article-title: The geochemical behavior of aluminum in acidified surface waters
  publication-title: Science
– volume: 40
  start-page: 48
  year: 2001
  end-page: 59
  ident: b0095
  article-title: Bioavailability of metals in stream food webs and hazards to brook trout (
  publication-title: Arch. Environ. Contam. Toxicol.
– reference: Alpers, C.N., Nordstrom, D.K., Verosub, K.L., Helm-Clark, C., 2007. Paleomagnetic Determination of Pre-mining Metal-flux Rates at the Iron Mountain Superfund Site, Northern California. Eos Trans. AGU 88 (23) Jt. Assem. Suppl. Abstract GP41B-04.
– start-page: 37
  year: 1982
  end-page: 56
  ident: b0460
  article-title: Aqueous pyrite oxidation and the consequent formation of secondary iron minerals
  publication-title: Acid Sulfate Weathering
– volume: 33
  start-page: 3850
  year: 1999
  end-page: 3856
  ident: b0545
  article-title: Modeling removal of Cd, Cu, Pb, and Zn in acidic groundwater during neutralization by ambient surface waters and groundwaters
  publication-title: Environ. Sci. Technol.
– reference: Younger, P.L., Blanchere, A., 2004. First-flush, reverse first-flush and partial first-flush: dynamics of short- and long-term changes in the quality of water flowing from deep mine systems. In: Price, W.A., Bellefontaine, K. (Eds.), Proc. 10th Ann. British Columbia ML/ARD Workshop, Performance of ARD Generating Wastes, Material Characterization and MEND Projects.
– volume: vol. 6A
  start-page: 133
  year: 1999
  end-page: 160
  ident: b0490
  article-title: Geochemistry of acid mine waters
  publication-title: The Environmental Geochemistry of Mineral Deposits
– year: 1990
  ident: b0190
  article-title: Surface Complexation Modeling
– volume: 39
  start-page: 1921
  year: 2005
  end-page: 1931
  ident: b0345
  article-title: Why is metal bioaccumulation so variable? Biodynamics as a unifying concept
  publication-title: Environ. Sci. Technol.
– volume: 60
  start-page: 1021
  year: 2010
  end-page: 1036
  ident: b0305
  article-title: Evaluating remediation alternatives for mine drainage, Little Cottonwood Creek, Utah, USA
  publication-title: Environ. Earth Sci.
– reference: Ball, J.W., Nordstrom, D.K., 1989. Final Revised Analyses of Trace Elements from Acid Mine Waters in the Leviathan Mine Drainage Basin, California and Nevada – October 1981 to October 1982. US Geol. Surv. Water-Resour. Invest. Rep. 89-4138.
– reference: Hendrickson, G.E., Krieger, R.A., 1964. Geochemistry of Natural Waters of the Blue Grass Region, Kentucky. US Geol. Surv. Water-Supply Paper 1700.
– volume: 294
  start-page: 101
  year: 2010
  end-page: 110
  ident: b0360
  article-title: The dependence of chemical weathering rates on fluid residence time
  publication-title: Earth Planet. Sci. Lett.
– volume: 269
  start-page: 124
  year: 2010
  end-page: 136
  ident: b0325
  article-title: Reactive solute-transport simulation of pre-mining metal concentrations in mine-impacted catchments: Redwell Basin, Colorado, USA
  publication-title: Chem. Geol.
– volume: 36
  start-page: 1093
  year: 2002
  end-page: 1101
  ident: b0605
  article-title: Evaluating remedial alternatives for an acid mine drainage system – application of a reactive transport model
  publication-title: Environ. Sci. Technol.
– volume: 36
  start-page: 121
  year: 2008
  end-page: 152
  ident: b0105
  article-title: Groundwater age and groundwater age dating
  publication-title: Ann. Rev. Earth Planet. Sci.
– volume: 20
  start-page: 1797
  year: 1984
  end-page: 1803
  ident: b0075
  article-title: Interactions of solutes and streambed sediment. Part I. An experimental analysis of cation and anion transport in a mountain stream
  publication-title: Water Resour. Res.
– volume: 283
  start-page: 3
  year: 2011
  end-page: 17
  ident: b0450
  article-title: Diel biogeochemical processes and their effect on the aqueous chemistry of streams: a review
  publication-title: Chem. Geol.
– volume: 45
  start-page: 25
  year: 1992
  end-page: 51
  ident: b0640
  article-title: The regional geology of the Poços de Caldas alkaline complex: mineralogy and geochemistry of selected nepheline syenites and phonolites
  publication-title: J. Geochem. Explor.
– reference: Kimball, B.A., Nordstrom, D.K., Runkel, R.L., Vincent, K.R., Verplanck, P.L., 2006. Questa Baseline and Pre-mining Ground-water Quality Investigation. 23. Quantification of Mass Loading from Mined and Unmined Areas along the Red River, New Mexico. US Geol. Surv. Sci. Invest. Report 2006-5004.
– volume: 340
  start-page: 52
  year: 1989
  end-page: 54
  ident: b0205
  article-title: Influence of coupling of sorption and photosynthetic processes on trace elements cycles in natural waters
  publication-title: Nature
– reference: Nordstrom, D.K., 2008. Questa Baseline and Pre-Mining Ground-Water Quality Investigation. 25. Summary of Results and Baseline and Pre-mining Ground-water Geochemistry, Red River Valley, Taos County, New Mexico, 2001–2005. US Geol. Surv. Prof. Paper 1728.
– volume: 240
  start-page: 637
  year: 1988
  end-page: 640
  ident: b0385
  article-title: Iron photoreduction and oxidation in an acidic mountain stream
  publication-title: Science
– volume: 283
  start-page: 1
  year: 2011
  end-page: 2
  ident: b0430
  article-title: Diel biogeochemical processes in terrestrial waters
  publication-title: Chem. Geol.
– reference: McAda, D.P., Naus, C.A., 2008. Questa Baseline and Pre-mining Ground-water quality Investigation. 22. Ground-water Budget for the Straight Creek Drainage Basin, Red River Valley, New Mexico – with a Section on Sulphur Gulch Water Budget by Vincent, K.R. US Geol. Surv. Sci. Invest. Rep. 2007-5149.
– reference: > (Chapter B6).
– reference: Runkel, R.L., 1998. One Dimensional Transport with Inflow and Storage (OTIS): A Solute Transport Model for Streams and Rivers. US Geol. Surv. Water-Resour. Invest. Rep. 98-4018, 73 p.
– reference: Ball, J.W., Nordstrom, D.K., 1991. User’s Manual for WATEQ4F, with Revised Thermodynamic Data Base and Test Cases for Calculating Speciation of Major, Trace and Redox Elements in Natural Waters. US Geol. Surv. Open-File Rep. 91-183.
– volume: 75
  start-page: 111
  year: 1984
  end-page: 141
  ident: b0275
  article-title: Transport and concentration controls for chloride, strontium, potassium and lead in Uvas Creek, a small cobble-bed stream in Santa Clara County, California, USA, 2. Mathematical modeling
  publication-title: J. Hydrol.
– volume: 37
  start-page: 1705
  year: 2003
  end-page: 1712
  ident: b0405
  article-title: Bacterial formation of tooeleite and mixed arsenic(III) or arsenic(V)-iron(III) gels in the Carnoulès acid mine drainage, France. A XANES, XRD, and SEM study
  publication-title: Environ. Sci. Technol.
– volume: 34
  start-page: 435
  year: 1953
  end-page: 442
  ident: b0185
  article-title: Relation of the mineral constituents in solution to stream flow, Saline River, near Russel, Kansas
  publication-title: Am. Geophys. Union Trans.
– volume: 26
  start-page: 2316
  year: 1992
  ident: 10.1016/j.apgeochem.2011.06.002_b0630
  article-title: Metals in water: determining natural background concentrations in mineralized areas
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es00036a001
– volume: 240
  start-page: 637
  year: 1988
  ident: 10.1016/j.apgeochem.2011.06.002_b0385
  article-title: Iron photoreduction and oxidation in an acidic mountain stream
  publication-title: Science
  doi: 10.1126/science.240.4852.637
– volume: 13
  start-page: 263
  year: 2005
  ident: 10.1016/j.apgeochem.2011.06.002_b0240
  article-title: Geochemistry and the understanding of ground-water systems
  publication-title: Hydrogeol. J.
  doi: 10.1007/s10040-004-0429-y
– start-page: 373
  year: 1999
  ident: 10.1016/j.apgeochem.2011.06.002_b0565
  article-title: Geologic controls on the composition of natural waters and mine waters draining diverse mineral-deposit types
– volume: 35
  start-page: 3857
  year: 2001
  ident: 10.1016/j.apgeochem.2011.06.002_b0235
  article-title: Rapid arsenite oxidation by Thermus aquaticus and Thermus thermophilus: field and laboratory investigations
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es010816f
– volume: 41
  start-page: 913
  year: 2003
  ident: 10.1016/j.apgeochem.2011.06.002_b0125
  article-title: The geochemical evolution of a riparian ground water in a forested Piedmont catchment
  publication-title: Ground Water
  doi: 10.1111/j.1745-6584.2003.tb02434.x
– volume: 50
  start-page: 1509
  year: 1986
  ident: 10.1016/j.apgeochem.2011.06.002_b0375
  article-title: Oxidation of pyrite in low temperature acidic solutions: rate laws and surface textures
  publication-title: Geochim. Cosmochim. Acta
  doi: 10.1016/0016-7037(86)90325-X
– volume: 26
  start-page: 237
  year: 1975
  ident: 10.1016/j.apgeochem.2011.06.002_b0680
  article-title: Variations in the natural chemical concentrations of river water during flood flows, and the lag effect: some further comments
  publication-title: J. Hydrol.
  doi: 10.1016/0022-1694(75)90005-0
– year: 2008
  ident: 10.1016/j.apgeochem.2011.06.002_b0350
– volume: 36
  start-page: 1093
  year: 2002
  ident: 10.1016/j.apgeochem.2011.06.002_b0605
  article-title: Evaluating remedial alternatives for an acid mine drainage system – application of a reactive transport model
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es0109794
– ident: 10.1016/j.apgeochem.2011.06.002_b0560
  doi: 10.3133/ofr20051442
– start-page: 261
  year: 1990
  ident: 10.1016/j.apgeochem.2011.06.002_b0340
  article-title: Effects of trace metals on aquatic benthos
– start-page: 270
  year: 1967
  ident: 10.1016/j.apgeochem.2011.06.002_b0415
  article-title: Redox equilibria and measurements of potentials in the aquatic environment
– volume: 47
  start-page: 665
  year: 1983
  ident: 10.1016/j.apgeochem.2011.06.002_b0575
  article-title: Development of reaction models for ground-water systems
  publication-title: Geochim. Cosmochim. Acta
  doi: 10.1016/0016-7037(83)90102-3
– ident: 10.1016/j.apgeochem.2011.06.002_b0055
– volume: 19
  start-page: 732
  year: 1983
  ident: 10.1016/j.apgeochem.2011.06.002_b0065
  article-title: Simulation of solute transport in a mountain pool-and-riffle stream with a kinetic mass transfer model for sorption
  publication-title: Water Resour. Res.
  doi: 10.1029/WR019i003p00732
– ident: 10.1016/j.apgeochem.2011.06.002_b0100
– volume: 39
  start-page: 1247
  year: 2003
  ident: 10.1016/j.apgeochem.2011.06.002_b0445
  article-title: Diel cycles in dissolved metal concentrations in streams: occurrence and possible causes
  publication-title: Water Resour. Res.
  doi: 10.1029/2002WR001571
– volume: 25
  start-page: 288
  year: 2010
  ident: 10.1016/j.apgeochem.2011.06.002_b0135
  article-title: Wash-out processes of evaporitic sulfate salts in the Tinto River: hydrogeochemical evolution and environmental impact
  publication-title: Appl. Geochem.
  doi: 10.1016/j.apgeochem.2009.11.014
– volume: 18
  start-page: 219
  year: 1973
  ident: 10.1016/j.apgeochem.2011.06.002_b0195
  article-title: The variation of dissolved constituents with discharge in some Norfolk rivers
  publication-title: J. Hydrol.
  doi: 10.1016/0022-1694(73)90049-8
– year: 1994
  ident: 10.1016/j.apgeochem.2011.06.002_b0395
– volume: 92
  start-page: 66
  year: 2007
  ident: 10.1016/j.apgeochem.2011.06.002_b0250
  article-title: Verification of the “first flush” phenomenon in mine water from coal mines in the Upper Silesian Coal Basin, Poland
  publication-title: J. Contam. Hydrol.
  doi: 10.1016/j.jconhyd.2006.12.001
– volume: 53
  start-page: 611
  year: 2007
  ident: 10.1016/j.apgeochem.2011.06.002_b0215
  article-title: Influence of diurnal cycles on monitoring of metal concentrations and loads in streams draining abandoned mine lands: an example from High Ore Creek, Montana
  publication-title: Environ. Geol.
  doi: 10.1007/s00254-007-0676-z
– volume: 278
  start-page: 1235
  year: 1978
  ident: 10.1016/j.apgeochem.2011.06.002_b0090
  article-title: Rate control of mineral dissolution under earth surface conditions
  publication-title: Am. J. Sci.
  doi: 10.2475/ajs.278.9.1235
– volume: 43
  start-page: 931
  year: 1980
  ident: 10.1016/j.apgeochem.2011.06.002_b0155
  article-title: Hydrobasaluminite and basaluminite from Chickerell, Dorset
  publication-title: Mineral. Mag.
  doi: 10.1180/minmag.1980.043.331.18
– ident: 10.1016/j.apgeochem.2011.06.002_b0435
– volume: 36
  start-page: 484
  year: 2002
  ident: 10.1016/j.apgeochem.2011.06.002_b0645
  article-title: Modeling metal removal onto natural particles formed during mixing of acid rock drainage with ambient surface water
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es0109085
– ident: 10.1016/j.apgeochem.2011.06.002_b0335
  doi: 10.3133/sir20045245
– volume: 16
  start-page: 605
  year: 1982
  ident: 10.1016/j.apgeochem.2011.06.002_b0255
  article-title: Transport of iron, manganese, cadmium, copper, and zinc by Magela Creek, Northern Territory, Australia
  publication-title: Water Res.
  doi: 10.1016/0043-1354(82)90081-1
– volume: 22
  start-page: 1899
  year: 2007
  ident: 10.1016/j.apgeochem.2011.06.002_b0620
  article-title: A simulation-based approach for estimating premining water quality: Red Mountain Creek, Colorado
  publication-title: Appl. Geochem.
  doi: 10.1016/j.apgeochem.2007.03.054
– ident: 10.1016/j.apgeochem.2011.06.002_b0110
  doi: 10.1515/9781501508660-009
– volume: 44
  start-page: 193
  year: 1996
  ident: 10.1016/j.apgeochem.2011.06.002_b0400
  article-title: A few occurrences of basaluminite in Japan
  publication-title: Chigaku Kenkyu
– ident: 10.1016/j.apgeochem.2011.06.002_b0390
  doi: 10.3133/ofr94144
– volume: 26
  start-page: 989
  year: 1990
  ident: 10.1016/j.apgeochem.2011.06.002_b0080
  article-title: Characterization of transport in an acidic and metal-rich mountain stream based on a lithium tracer injection and simulations of transient storage
  publication-title: Water Resour. Res.
  doi: 10.1029/WR026i005p00989
– volume: 283
  start-page: 1
  year: 2011
  ident: 10.1016/j.apgeochem.2011.06.002_b0430
  article-title: Diel biogeochemical processes in terrestrial waters
  publication-title: Chem. Geol.
– volume: 23
  start-page: 3404
  year: 2008
  ident: 10.1016/j.apgeochem.2011.06.002_b0175
  article-title: Laboratory and field evaluation of a flushable oxic limestone drain for treatment of net-acidic, metal-laden drainage from a flooded anthracite mine, Pennsylvania
  publication-title: Appl. Geochem.
  doi: 10.1016/j.apgeochem.2008.07.015
– ident: 10.1016/j.apgeochem.2011.06.002_b0725
– volume: 100
  start-page: 97
  year: 2009
  ident: 10.1016/j.apgeochem.2011.06.002_b0485
  article-title: Acid rock drainage and climate change
  publication-title: J. Geochem. Explor.
  doi: 10.1016/j.gexplo.2008.08.002
– ident: 10.1016/j.apgeochem.2011.06.002_b0060
  doi: 10.3133/sir20055149
– volume: 32
  start-page: 657
  year: 1998
  ident: 10.1016/j.apgeochem.2011.06.002_b0710
  article-title: Rapid oxidation of geothermal arsenic (III) in stream waters of eastern Sierra Nevada
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es970637r
– ident: 10.1016/j.apgeochem.2011.06.002_b0040
– ident: 10.1016/j.apgeochem.2011.06.002_b0315
  doi: 10.3133/sir20065004
– ident: 10.1016/j.apgeochem.2011.06.002_b0535
– year: 2009
  ident: 10.1016/j.apgeochem.2011.06.002_b0555
– ident: 10.1016/j.apgeochem.2011.06.002_b0600
  doi: 10.3133/tm6B6
– volume: 19
  start-page: 29
  year: 2004
  ident: 10.1016/j.apgeochem.2011.06.002_b0650
  article-title: Development of a database for modeling cation adsorption on hydrous manganese oxide using the diffuse double layer model
  publication-title: Appl. Geochem.
  doi: 10.1016/S0883-2927(03)00115-X
– start-page: 63
  year: 1966
  ident: 10.1016/j.apgeochem.2011.06.002_b0200
  article-title: Leviathan Mine
– ident: 10.1016/j.apgeochem.2011.06.002_b0025
– year: 1986
  ident: 10.1016/j.apgeochem.2011.06.002_b0245
– ident: 10.1016/j.apgeochem.2011.06.002_b0470
– volume: vol. 6A
  start-page: 133
  year: 1999
  ident: 10.1016/j.apgeochem.2011.06.002_b0490
  article-title: Geochemistry of acid mine waters
– ident: 10.1016/j.apgeochem.2011.06.002_b0005
– volume: 28
  start-page: 2065
  year: 1994
  ident: 10.1016/j.apgeochem.2011.06.002_b0310
  article-title: Coupling of hydrologic transport and chemical reaction in a stream affected by acid mine drainage
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es00061a014
– volume: 384
  start-page: 433
  year: 2007
  ident: 10.1016/j.apgeochem.2011.06.002_b0210
  article-title: Diel changes in water chemistry in an arsenic-rich and treatment pond system
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2007.06.029
– ident: 10.1016/j.apgeochem.2011.06.002_b0295
  doi: 10.3133/ofr78205
– ident: 10.1016/j.apgeochem.2011.06.002_b0265
– year: 1950
  ident: 10.1016/j.apgeochem.2011.06.002_b0585
– volume: 44
  start-page: 47
  year: 2000
  ident: 10.1016/j.apgeochem.2011.06.002_b0720
  article-title: Predicting temporal changes in total iron concentrations in groundwaters flowing from abandoned deep mines: a first approximation
  publication-title: J. Contam. Hydrol.
  doi: 10.1016/S0169-7722(00)00090-5
– ident: 10.1016/j.apgeochem.2011.06.002_b0370
– volume: 40
  start-page: 267
  year: 2001
  ident: 10.1016/j.apgeochem.2011.06.002_b0715
  article-title: Arsenic in groundwaters: an international study
  publication-title: Environ. Geol.
  doi: 10.1007/s002540000162
– ident: 10.1016/j.apgeochem.2011.06.002_b0150
– volume: 258A
  start-page: 57
  year: 1960
  ident: 10.1016/j.apgeochem.2011.06.002_b0230
  article-title: Oxidation of pyrite by iron sulfate solutions
  publication-title: Am. J. Sci.
– ident: 10.1016/j.apgeochem.2011.06.002_b0020
– ident: 10.1016/j.apgeochem.2011.06.002_b0475
– ident: 10.1016/j.apgeochem.2011.06.002_b0580
– ident: 10.1016/j.apgeochem.2011.06.002_b0280
– volume: 149
  start-page: 216
  year: 2007
  ident: 10.1016/j.apgeochem.2011.06.002_b0355
  article-title: The impact of episodic coal mine drainage pollution on benthic invertebrates in streams in the anthracite region of Pennsylvania
  publication-title: Environ. Pollut.
  doi: 10.1016/j.envpol.2006.12.030
– ident: 10.1016/j.apgeochem.2011.06.002_b0045
– volume: 57
  start-page: 642
  year: 1991
  ident: 10.1016/j.apgeochem.2011.06.002_b0515
  article-title: Rate of bioleaching by Thiobacillus ferrooxidans: results of an interlaboratory comparison
  publication-title: Appl. Environ. Microbiol.
  doi: 10.1128/AEM.57.3.642-644.1991
– ident: 10.1016/j.apgeochem.2011.06.002_b0480
  doi: 10.3133/pp1728
– volume: 32
  start-page: 409
  year: 1996
  ident: 10.1016/j.apgeochem.2011.06.002_b0610
  article-title: Reactive solute transport in streams 1. Development of an equilibrium-based model
  publication-title: Water Resour. Res.
  doi: 10.1029/95WR03106
– start-page: 227
  year: 2003
  ident: 10.1016/j.apgeochem.2011.06.002_b0465
  article-title: Effects of microbiological and geochemical interactions in mine drainage
– volume: 283
  start-page: 3
  year: 2011
  ident: 10.1016/j.apgeochem.2011.06.002_b0450
  article-title: Diel biogeochemical processes and their effect on the aqueous chemistry of streams: a review
  publication-title: Chem. Geol.
  doi: 10.1016/j.chemgeo.2010.08.017
– start-page: 244
  year: 1994
  ident: 10.1016/j.apgeochem.2011.06.002_b0700
  article-title: Transport and natural attenuation of Cu, Zn, As, and Fe in the acid mine drainage of Leviathan and Bryant creeks
– ident: 10.1016/j.apgeochem.2011.06.002_b0115
  doi: 10.1016/B0-08-043751-6/09137-4
– volume: 33
  start-page: 3850
  year: 1999
  ident: 10.1016/j.apgeochem.2011.06.002_b0545
  article-title: Modeling removal of Cd, Cu, Pb, and Zn in acidic groundwater during neutralization by ambient surface waters and groundwaters
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es9900454
– volume: 45
  start-page: 53
  year: 1992
  ident: 10.1016/j.apgeochem.2011.06.002_b0665
  article-title: Hydrothermal and supergene uranium mineralization at the Osamu Utsumi mine, Poços de Caldas, Minas Gerais, Brazil
  publication-title: J. Geochem. Explor.
  doi: 10.1016/0375-6742(92)90122-O
– ident: 10.1016/j.apgeochem.2011.06.002_b0690
– ident: 10.1016/j.apgeochem.2011.06.002_b0365
  doi: 10.3133/sir20075149
– volume: 40
  start-page: 48
  year: 2001
  ident: 10.1016/j.apgeochem.2011.06.002_b0095
  article-title: Bioavailability of metals in stream food webs and hazards to brook trout (Salvelinus fontinalis) in the upper Animas River watershed, Colorado
  publication-title: Arch. Environ. Contam. Toxicol.
  doi: 10.1007/s002440010147
– ident: 10.1016/j.apgeochem.2011.06.002_b0260
– volume: 215
  start-page: 387
  year: 2005
  ident: 10.1016/j.apgeochem.2011.06.002_b0285
  article-title: Major and trace element composition of copiapite-group minerals and coexisting water from the Richmond mine, Iron Mountain, California
  publication-title: Chem. Geol.
  doi: 10.1016/j.chemgeo.2004.10.001
– volume: 20
  start-page: 492
  year: 1988
  ident: 10.1016/j.apgeochem.2011.06.002_b0380
  article-title: Diel variations in iron chemistry in an acidic stream in the Colorado Rocky Mountains, USA
  publication-title: Arctic Alp. Res.
  doi: 10.2307/1551347
– ident: 10.1016/j.apgeochem.2011.06.002_b0050
  doi: 10.3133/ofr90129
– volume: 269
  start-page: 124
  year: 2010
  ident: 10.1016/j.apgeochem.2011.06.002_b0325
  article-title: Reactive solute-transport simulation of pre-mining metal concentrations in mine-impacted catchments: Redwell Basin, Colorado, USA
  publication-title: Chem. Geol.
  doi: 10.1016/j.chemgeo.2009.05.024
– volume: 75
  start-page: 111
  year: 1984
  ident: 10.1016/j.apgeochem.2011.06.002_b0275
  article-title: Transport and concentration controls for chloride, strontium, potassium and lead in Uvas Creek, a small cobble-bed stream in Santa Clara County, California, USA, 2. Mathematical modeling
  publication-title: J. Hydrol.
  doi: 10.1016/0022-1694(84)90047-7
– volume: 6
  start-page: 11
  year: 1988
  ident: 10.1016/j.apgeochem.2011.06.002_b0670
  article-title: Microbial oxidation of arsenite and occurrence of arsenite-oxidizing bacteria in acid mine water from a sulfur-pyrite mine
  publication-title: Geomicrobiol. J.
  doi: 10.1080/01490458809377818
– volume: 340
  start-page: 52
  year: 1989
  ident: 10.1016/j.apgeochem.2011.06.002_b0205
  article-title: Influence of coupling of sorption and photosynthetic processes on trace elements cycles in natural waters
  publication-title: Nature
  doi: 10.1038/340052a0
– start-page: 255
  year: 1993
  ident: 10.1016/j.apgeochem.2011.06.002_b0570
  article-title: Environmental tracers for age dating young ground water
– volume: 30
  start-page: 3016
  year: 1996
  ident: 10.1016/j.apgeochem.2011.06.002_b0120
  article-title: Reactive solute transport in an acidic stream: experimental pH increase and simulation of controls on pH, aluminum, and iron
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es960055u
– ident: 10.1016/j.apgeochem.2011.06.002_b0145
  doi: 10.3133/pp1651
– volume: 23
  start-page: 166
  year: 2008
  ident: 10.1016/j.apgeochem.2011.06.002_b0165
  article-title: Dissolved metals and associated constituents in abandoned coal-mine discharges, Pennsylvania, USA: 1. Constituent concentrations and correlations
  publication-title: Appl. Geochem.
  doi: 10.1016/j.apgeochem.2007.10.011
– ident: 10.1016/j.apgeochem.2011.06.002_b0420
– ident: 10.1016/j.apgeochem.2011.06.002_b0330
  doi: 10.3133/pp285
– ident: 10.1016/j.apgeochem.2011.06.002_b0590
– ident: 10.1016/j.apgeochem.2011.06.002_b0130
  doi: 10.3133/pp1729
– start-page: 261
  year: 2003
  ident: 10.1016/j.apgeochem.2011.06.002_b0320
  article-title: Use of field-scale experiments and reactive-solute-transport modeling to evaluate remediation alternatives in streams affected by acid mine drainage
– volume: 19
  start-page: 718
  year: 1983
  ident: 10.1016/j.apgeochem.2011.06.002_b0070
  article-title: Simulation of solute transport in a mountain pool-and-riffle stream – a transient storage model
  publication-title: Water Resour. Res.
  doi: 10.1029/WR019i003p00718
– ident: 10.1016/j.apgeochem.2011.06.002_b0085
– ident: 10.1016/j.apgeochem.2011.06.002_b0695
– start-page: 335
  year: 2003
  ident: 10.1016/j.apgeochem.2011.06.002_b0685
  article-title: Passive and active treatment of acid mine drainage
– volume: 24
  start-page: 106
  year: 2009
  ident: 10.1016/j.apgeochem.2011.06.002_b0455
  article-title: An empirical method for estimating instream pre-mining pH and dissolved Cu concentration in catchments with acidic drainage and ferricrete
  publication-title: Appl. Geochem.
  doi: 10.1016/j.apgeochem.2008.11.007
– volume: 34
  start-page: 435
  year: 1953
  ident: 10.1016/j.apgeochem.2011.06.002_b0185
  article-title: Relation of the mineral constituents in solution to stream flow, Saline River, near Russel, Kansas
  publication-title: Am. Geophys. Union Trans.
  doi: 10.1029/TR034i003p00435
– ident: 10.1016/j.apgeochem.2011.06.002_b0520
– volume: 32
  start-page: 1361
  year: 1998
  ident: 10.1016/j.apgeochem.2011.06.002_b0705
  article-title: Trace metal adsorption onto an acid mine drainage iron(III) oxy hydroxy sulfate
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es9704390
– volume: 37
  start-page: 1705
  year: 2003
  ident: 10.1016/j.apgeochem.2011.06.002_b0405
  article-title: Bacterial formation of tooeleite and mixed arsenic(III) or arsenic(V)-iron(III) gels in the Carnoulès acid mine drainage, France. A XANES, XRD, and SEM study
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es025688p
– volume: 35
  start-page: 3829
  year: 1999
  ident: 10.1016/j.apgeochem.2011.06.002_b0615
  article-title: Reactive solute transport in streams: a surface complexation approach for trace metal sorption
  publication-title: Water Resour. Res.
  doi: 10.1029/1999WR900259
– volume: 36
  start-page: 484
  year: 2003
  ident: 10.1016/j.apgeochem.2011.06.002_b0035
  article-title: Modeling precipitation and sorption of elements during mixing of river water and porewater in the Coeur d’Alene River basin
  publication-title: Environ. Sci. Technol.
– volume: 294
  start-page: 101
  year: 2010
  ident: 10.1016/j.apgeochem.2011.06.002_b0360
  article-title: The dependence of chemical weathering rates on fluid residence time
  publication-title: Earth Planet. Sci. Lett.
  doi: 10.1016/j.epsl.2010.03.010
– volume: 75
  start-page: 67
  year: 1984
  ident: 10.1016/j.apgeochem.2011.06.002_b0300
  article-title: Transport and concentration controls for chloride, strontium, potassium and lead in Uvas Creek, a small cobble-bed stream in Santa Clara County, California, USA, 1. Conceptual model
  publication-title: J. Hydrol.
  doi: 10.1016/0022-1694(84)90046-5
– volume: 36
  start-page: 121
  year: 2008
  ident: 10.1016/j.apgeochem.2011.06.002_b0105
  article-title: Groundwater age and groundwater age dating
  publication-title: Ann. Rev. Earth Planet. Sci.
  doi: 10.1146/annurev.earth.36.031207.124210
– volume: 4
  start-page: 233
  year: 1976
  ident: 10.1016/j.apgeochem.2011.06.002_b0730
  article-title: Solute transport and modeling of water quality in a small stream
  publication-title: J. Res. US Geol. Surv.
– ident: 10.1016/j.apgeochem.2011.06.002_b0180
– volume: 69
  start-page: 2505
  year: 2005
  ident: 10.1016/j.apgeochem.2011.06.002_b0220
  article-title: Diel behavior of iron and other heavy metals in a mountain stream with acidic to neutral pH: Fisher Creek, Montana, USA
  publication-title: Geochim. Cosmochim. Acta
  doi: 10.1016/j.gca.2004.11.020
– volume: 45
  start-page: 25
  year: 1992
  ident: 10.1016/j.apgeochem.2011.06.002_b0640
  article-title: The regional geology of the Poços de Caldas alkaline complex: mineralogy and geochemistry of selected nepheline syenites and phonolites
  publication-title: J. Geochem. Explor.
  doi: 10.1016/0375-6742(92)90121-N
– start-page: 94
  year: 1971
  ident: 10.1016/j.apgeochem.2011.06.002_b0290
  article-title: Silica variation in stream water with time and discharge
– start-page: 199
  year: 1993
  ident: 10.1016/j.apgeochem.2011.06.002_b0540
  article-title: Geochemical models
– volume: 96
  start-page: 3455
  year: 1999
  ident: 10.1016/j.apgeochem.2011.06.002_b0495
  article-title: Negative pH, efflorescent mineralogy, and consequences for environmental restoration at the Iron Mountain Superfund site, California
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.96.7.3455
– ident: 10.1016/j.apgeochem.2011.06.002_b0015
– volume: 252
  start-page: 202
  year: 2008
  ident: 10.1016/j.apgeochem.2011.06.002_b0225
  article-title: Photoreduction fuels biogeochemical cycling of iron for Spain’s acid rivers
  publication-title: Chem. Geol.
  doi: 10.1016/j.chemgeo.2008.03.004
– start-page: 37
  year: 1982
  ident: 10.1016/j.apgeochem.2011.06.002_b0460
  article-title: Aqueous pyrite oxidation and the consequent formation of secondary iron minerals
– start-page: 227
  year: 1993
  ident: 10.1016/j.apgeochem.2011.06.002_b0160
  article-title: Uses of environmental isotopes
– ident: 10.1016/j.apgeochem.2011.06.002_b0525
– volume: 232
  start-page: 54
  year: 1986
  ident: 10.1016/j.apgeochem.2011.06.002_b0500
  article-title: The geochemical behavior of aluminum in acidified surface waters
  publication-title: Science
  doi: 10.1126/science.232.4746.54
– volume: 32
  start-page: 419
  year: 1996
  ident: 10.1016/j.apgeochem.2011.06.002_b0625
  article-title: Reactive solute transport in streams 2. Simulation of a pH modification experiment
  publication-title: Water Resour. Res.
  doi: 10.1029/95WR03107
– volume: 25
  start-page: 425
  year: 1940
  ident: 10.1016/j.apgeochem.2011.06.002_b0530
  article-title: Cryptocrystalline pyrite from Alpine county, California
  publication-title: Am. Mineral.
– ident: 10.1016/j.apgeochem.2011.06.002_b0030
– ident: 10.1016/j.apgeochem.2011.06.002_b0660
  doi: 10.3133/sir20065156
– volume: 92
  start-page: 193
  year: 2007
  ident: 10.1016/j.apgeochem.2011.06.002_b0410
  article-title: Crystal structure of tooeleite, Fe6(AsO3)4SO4(OH)4 4H2O, a new iron arsenite oxyhydroxysulfate mineral relevant to acid mine drainage
  publication-title: Am. Mineral.
  doi: 10.2138/am.2007.2361
– start-page: 169
  year: 1974
  ident: 10.1016/j.apgeochem.2011.06.002_b0675
  article-title: Suspended sediment and solute yields from a small catchment prior to urbanization
– volume: 45
  start-page: 215
  year: 1992
  ident: 10.1016/j.apgeochem.2011.06.002_b0270
  article-title: Geomorphological and hydrogeological features of the Poços de Caldas caldera analogue study sites
  publication-title: J. Geochem. Explor.
  doi: 10.1016/0375-6742(92)90126-S
– ident: 10.1016/j.apgeochem.2011.06.002_b0425
  doi: 10.3133/sir20055088
– ident: 10.1016/j.apgeochem.2011.06.002_b0550
– volume: 20
  start-page: 1797
  year: 1984
  ident: 10.1016/j.apgeochem.2011.06.002_b0075
  article-title: Interactions of solutes and streambed sediment. Part I. An experimental analysis of cation and anion transport in a mountain stream
  publication-title: Water Resour. Res.
  doi: 10.1029/WR020i012p01797
– start-page: 398
  year: 1990
  ident: 10.1016/j.apgeochem.2011.06.002_b0510
  article-title: Revised chemical equilibrium data for water-mineral reactions and their limitations
– ident: 10.1016/j.apgeochem.2011.06.002_b0635
– volume: 22
  start-page: 4011
  year: 2008
  ident: 10.1016/j.apgeochem.2011.06.002_b0140
  article-title: Metals fate and transport modelling in streams and watersheds: state of the science and USEPA workshop review
  publication-title: Hydrol. Process.
  doi: 10.1002/hyp.7114
– volume: 21
  start-page: 529
  year: 2002
  ident: 10.1016/j.apgeochem.2011.06.002_b0595
  article-title: A new metric for determining the importance of transient storage
  publication-title: J. North Am. Benthol. Soc.
  doi: 10.2307/1468428
– year: 1990
  ident: 10.1016/j.apgeochem.2011.06.002_b0190
– volume: 39
  start-page: 1921
  year: 2005
  ident: 10.1016/j.apgeochem.2011.06.002_b0345
  article-title: Why is metal bioaccumulation so variable? Biodynamics as a unifying concept
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es048947e
– ident: 10.1016/j.apgeochem.2011.06.002_b0010
– volume: 47
  start-page: 603
  year: 2005
  ident: 10.1016/j.apgeochem.2011.06.002_b0440
  article-title: Seasonality of diel cycles of dissolved trace-metal concentrations in a Rocky Mountain stream
  publication-title: Environ. Geol.
  doi: 10.1007/s00254-004-1178-x
– volume: 24
  start-page: 255
  year: 2009
  ident: 10.1016/j.apgeochem.2011.06.002_b0655
  article-title: Naturally acidic surface- and ground-waters draining porphyry-related mineralized areas of the southern Rocky Mountains, Colorado and New Mexico
  publication-title: Appl. Geochem.
  doi: 10.1016/j.apgeochem.2008.11.014
– volume: 60
  start-page: 1021
  year: 2010
  ident: 10.1016/j.apgeochem.2011.06.002_b0305
  article-title: Evaluating remediation alternatives for mine drainage, Little Cottonwood Creek, Utah, USA
  publication-title: Environ. Earth Sci.
  doi: 10.1007/s12665-009-0240-0
– volume: 45
  start-page: 249
  year: 1992
  ident: 10.1016/j.apgeochem.2011.06.002_b0505
  article-title: Ground water chemistry and geochemical modeling of water-rock interactions at the Osamu Utsumi mine and the Morro do Ferro analogue study sites, Poços de Caldas, Minas Gerais, Brazil
  publication-title: J. Geochem. Explor.
  doi: 10.1016/0375-6742(92)90127-T
– volume: 23
  start-page: 203
  year: 2008
  ident: 10.1016/j.apgeochem.2011.06.002_b0170
  article-title: Dissolved metals and associated constituents in abandoned coal-mine discharges, Pennsylvania, USA: 2. Geochemical controls on constituent concentrations
  publication-title: Appl. Geochem.
  doi: 10.1016/j.apgeochem.2007.10.003
SSID ssj0005702
Score 2.5136325
SecondaryResourceType review_article
Snippet ► Hydrogeochemistry of mines and mineralized areas is complex. ► Mass balances and saturation indices add insight and organization to acid rock drainage data....
The formation of acid mine drainage from metals extraction or natural acid rock drainage and its mixing with surface waters is a complex process that depends...
SourceID proquest
pascalfrancis
crossref
fao
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1777
SubjectTerms acid mine drainage
acidity
alkalinity
aluminum
alunite
anglesite
Archaea
bacteria
barite
Bioremediation
chlorides
climatology
drainage
Earth sciences
Earth, ocean, space
engineering
Engineering and environment geology. Geothermics
Exact sciences and technology
Flow rates
fluorides
Geochemistry
geomorphology
hydrolysis
iron
jarosite
lakes
metalloids
Metals
mineralization
mineralogy
Minerals
Mining
mixing
oxidation
Pollution, environment geology
pyrites
remediation
rivers
Sorption
streams
surface water
temperature
Trace elements
United States Geological Survey
water pollution
water quality standards
weathering
Title Hydrogeochemical processes governing the origin, transport and fate of major and trace elements from mine wastes and mineralized rock to surface waters
URI https://dx.doi.org/10.1016/j.apgeochem.2011.06.002
https://www.proquest.com/docview/1694492995
https://www.proquest.com/docview/963888802
Volume 26
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpR1db9Mw0BpDSLwgPrUyqA6JR0JTx0ls3qaJUUDsZVTam-U4drVBk6pJNW0P_A3-LndOUlEB2gN5i3MnO77z-Xy-D8Ze59x4afM4QgGcRsKpMipEmkSZ48alMitlOCh-Oc1mc_HpPD3fY8dDLAy5Vfayv5PpQVr3LZN-Nieri4vJGa6PhCueU9KzZBpiqYXIicvf_vjNzSMPfocEHBH0jo-XWS0cFaZa9rk8s6195S871B1vanKdNA3Onu_KXvwhwcO2dPKQPej1STjqhvyI7bnqMbv3IdTrvX7Cfs6uy3Xdd0_0gFUXGeAaWIQyu7h1ASqB0FXIegPtkO0cTFWCR1UUag9Lc1mvQwt-tw5c53XeAIWnwBJVVbgyyDBNgKF3MqDcuBKwu2_Q1tBs1p4wrwzl83zK5ifvvx7Por4WQ2TwqNpGyjvnZFzKjErT5zZDSVHQnWw6LRMj8tzFNqHcaEaoJIu5tdLHlCtPlrmySiTP2H5VV-6AAd31cGml8qUT3EtTFDaN8YTPfSJsMh2xbJh_bftE5VQv47sePNIu9ZZwmging28eH7F4i7jqcnXcjvJuILDeYTuNO8rtyAfIEtosUBzr-Rkn4xFq31Op8B_GO3yyHQ8XqCEpibivBsbRuKDplsZUrt40epopIVBpVemIwT9gSGriE_Pn_zP-Q3Y_WMhDZOULtt-uN-4lqlhtMQ5raMzuHn38PDv9BYpCJ0w
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELZKEYIL4qluC8VIHAmbOE5ic0MVZYG2l3al3izHj1VbNlltsqrKgb_B32XGSVasAPVAbnE8smOPx-PxzHyEvCmY9sIUcQQCOIu4kzYqeZZGuWPaZSK3IhwUj0_yyZR_Oc_Ot8jBEAuDbpW97O9kepDWfcm4H83x4uJifArrI2WSFZj0LE0wlvoutCIQxuDdj9_8PIrgeIi1I6y-4eSlFzOHyFTzPplnvjaw_GWLuuN1jb6TuoHh8x3uxR8iPOxLh4_Iw16hpB-6Pj8mW656Qu59CoC9N0_Jz8mNXdZ98zghdNGFBriGzgLOLuxdFLRA2kFkvaXtkO6c6spSD7oorT2d68t6GUrgu3HUdW7nDcX4FDoHXZVea-CYJtTBd7SgfHeWQnNXtK1ps1p6pLzWmNDzGZkefjw7mEQ9GEOk4azaRtI750RsRY7Y9IXJQVSUeCmbJTbVvChcbFJMjqa5TPOYGSN8jMnyhC2kkTx9TrarunI7hOJlDxNGSG8dZ17osjRZDEd85lNu0mRE8mH8lekzlSNgxjc1uKRdqvXEKZw4FZzz2IjEa8JFl6zjdpL3wwSrDb5TsKXcTrwDLKH0DOSxmp4ytB6B-p0ICf-wv8En6_4wDiqSFED7emAcBSsar2l05epVo5Jccg5aq8xGhP6jDopNeGK2-z_9f0XuT86Oj9TR55Ove-RBMJeHMMsXZLtdrtxL0Lfacj-sp18IiCja
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=proceeding&rft.title=Applied+geochemistry&rft.atitle=Hydrogeochemical+processes+governing+the+origin%2C+transport+and+fate+of+major+and+trace+elements+from+mine+wastes+and+mineralized+rock+to+surface+waters&rft.au=KIRK+NORDSTROM%2C+D&rft.date=2011-11-01&rft.pub=Elsevier&rft.issn=0883-2927&rft.volume=26&rft.issue=11&rft.spage=1777&rft.epage=1791&rft_id=info:doi/10.1016%2Fj.apgeochem.2011.06.002&rft.externalDBID=n%2Fa&rft.externalDocID=24818982
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0883-2927&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0883-2927&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0883-2927&client=summon