Changes in Cd, Cu, Ni, Pb and Zn Fractionation and Liberation Due to Mussel Shell Amendment on a Mine Soil
Mining activities are related to relevant environmental pollution issues that should be controlled. We used sequential extractions to fractionate Cd, Cu, Ni, Pb and Zn retained on unamended or mussel shell‐amended mine soil samples, all of them treated with a mixture of the five heavy metals (total...
Saved in:
Published in | Land degradation & development Vol. 27; no. 4; pp. 1276 - 1285 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Chichester
Blackwell Publishing Ltd
01.05.2016
Wiley Subscription Services, Inc |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Mining activities are related to relevant environmental pollution issues that should be controlled. We used sequential extractions to fractionate Cd, Cu, Ni, Pb and Zn retained on unamended or mussel shell‐amended mine soil samples, all of them treated with a mixture of the five heavy metals (total metal concentration of 1·57 mmol L−1), after 1, 7 and 30 days of incubation. In addition, we used the stirred flow chamber technique to study the release of each of the five heavy metals from these different unamended and shell‐amended soil samples. The results indicate that the shell amendment caused a decrease in the most soluble fraction, while increasing the most recalcitrant (least mobile) fraction. With equivalent implications, the stirred flow chamber experiments showed that mussel shell amendment was associated to a decrease in heavy metal release and increased retention. The highest mussel shell dose and incubation time caused the most relevant changes in pH values and thus in metal retention, also indicating the importance of pH modifications in the mechanism of retention acting in the amended samples. In view of these results, the use of mussel shell amendment can be encouraged to increase heavy metal retention in acid mine soils, in order to minimise risks of environmental pollution. Copyright © 2016 John Wiley & Sons, Ltd. |
---|---|
AbstractList | Mining activities are related to relevant environmental pollution issues that should be controlled. We used sequential extractions to fractionate Cd, Cu, Ni, Pb and Zn retained on unamended or mussel shell-amended mine soil samples, all of them treated with a mixture of the five heavy metals (total metal concentration of 1·57mmolL-1), after 1, 7 and 30days of incubation. In addition, we used the stirred flow chamber technique to study the release of each of the five heavy metals from these different unamended and shell-amended soil samples. The results indicate that the shell amendment caused a decrease in the most soluble fraction, while increasing the most recalcitrant (least mobile) fraction. With equivalent implications, the stirred flow chamber experiments showed that mussel shell amendment was associated to a decrease in heavy metal release and increased retention. The highest mussel shell dose and incubation time caused the most relevant changes in pH values and thus in metal retention, also indicating the importance of pH modifications in the mechanism of retention acting in the amended samples. In view of these results, the use of mussel shell amendment can be encouraged to increase heavy metal retention in acid mine soils, in order to minimise risks of environmental pollution. Copyright © 2016 John Wiley & Sons, Ltd. Mining activities are related to relevant environmental pollution issues that should be controlled. We used sequential extractions to fractionate Cd, Cu, Ni, Pb and Zn retained on unamended or mussel shell‐amended mine soil samples, all of them treated with a mixture of the five heavy metals (total metal concentration of 1·57 mmol L −1 ), after 1, 7 and 30 days of incubation. In addition, we used the stirred flow chamber technique to study the release of each of the five heavy metals from these different unamended and shell‐amended soil samples. The results indicate that the shell amendment caused a decrease in the most soluble fraction, while increasing the most recalcitrant (least mobile) fraction. With equivalent implications, the stirred flow chamber experiments showed that mussel shell amendment was associated to a decrease in heavy metal release and increased retention. The highest mussel shell dose and incubation time caused the most relevant changes in pH values and thus in metal retention, also indicating the importance of pH modifications in the mechanism of retention acting in the amended samples. In view of these results, the use of mussel shell amendment can be encouraged to increase heavy metal retention in acid mine soils, in order to minimise risks of environmental pollution. Copyright © 2016 John Wiley & Sons, Ltd. Mining activities are related to relevant environmental pollution issues that should be controlled. We used sequential extractions to fractionate Cd, Cu, Ni, Pb and Zn retained on unamended or mussel shell-amended mine soil samples, all of them treated with a mixture of the five heavy metals (total metal concentration of 1.57mmolL super(-1)), after 1, 7 and 30days of incubation. In addition, we used the stirred flow chamber technique to study the release of each of the five heavy metals from these different unamended and shell-amended soil samples. The results indicate that the shell amendment caused a decrease in the most soluble fraction, while increasing the most recalcitrant (least mobile) fraction. With equivalent implications, the stirred flow chamber experiments showed that mussel shell amendment was associated to a decrease in heavy metal release and increased retention. The highest mussel shell dose and incubation time caused the most relevant changes in pH values and thus in metal retention, also indicating the importance of pH modifications in the mechanism of retention acting in the amended samples. In view of these results, the use of mussel shell amendment can be encouraged to increase heavy metal retention in acid mine soils, in order to minimise risks of environmental pollution. Mining activities are related to relevant environmental pollution issues that should be controlled. We used sequential extractions to fractionate Cd, Cu, Ni, Pb and Zn retained on unamended or mussel shell‐amended mine soil samples, all of them treated with a mixture of the five heavy metals (total metal concentration of 1·57 mmol L−1), after 1, 7 and 30 days of incubation. In addition, we used the stirred flow chamber technique to study the release of each of the five heavy metals from these different unamended and shell‐amended soil samples. The results indicate that the shell amendment caused a decrease in the most soluble fraction, while increasing the most recalcitrant (least mobile) fraction. With equivalent implications, the stirred flow chamber experiments showed that mussel shell amendment was associated to a decrease in heavy metal release and increased retention. The highest mussel shell dose and incubation time caused the most relevant changes in pH values and thus in metal retention, also indicating the importance of pH modifications in the mechanism of retention acting in the amended samples. In view of these results, the use of mussel shell amendment can be encouraged to increase heavy metal retention in acid mine soils, in order to minimise risks of environmental pollution. Copyright © 2016 John Wiley & Sons, Ltd. Mining activities are related to relevant environmental pollution issues that should be controlled. We used sequential extractions to fractionate Cd, Cu, Ni, Pb and Zn retained on unamended or mussel shell‐amended mine soil samples, all of them treated with a mixture of the five heavy metals (total metal concentration of 1·57 mmol L⁻¹), after 1, 7 and 30 days of incubation. In addition, we used the stirred flow chamber technique to study the release of each of the five heavy metals from these different unamended and shell‐amended soil samples. The results indicate that the shell amendment caused a decrease in the most soluble fraction, while increasing the most recalcitrant (least mobile) fraction. With equivalent implications, the stirred flow chamber experiments showed that mussel shell amendment was associated to a decrease in heavy metal release and increased retention. The highest mussel shell dose and incubation time caused the most relevant changes in pH values and thus in metal retention, also indicating the importance of pH modifications in the mechanism of retention acting in the amended samples. In view of these results, the use of mussel shell amendment can be encouraged to increase heavy metal retention in acid mine soils, in order to minimise risks of environmental pollution. |
Author | Álvarez-Rodriguez, Esperanza Pérez-Armada, Lorena Núñez-Delgado, Avelino Fernández-Sanjurjo, María J. Arias-Estévez, Manuel Paradelo-Núñez, Remigio Fernández-Calviño, David Cutillas-Barreiro, Laura |
Author_xml | – sequence: 1 givenname: David surname: Fernández-Calviño fullname: Fernández-Calviño, David organization: Área de Edafoloxía e Química Agrícola, Dept. Bioloxía Vexetal e Ciencia do Solo, Facultade de Ciencias, Universidade de Vigo, Campus As Lagoas, s/n, 32004, Ourense, Spain – sequence: 2 givenname: Lorena surname: Pérez-Armada fullname: Pérez-Armada, Lorena organization: Área de Edafoloxía e Química Agrícola, Dept. Bioloxía Vexetal e Ciencia do Solo, Facultade de Ciencias, Universidade de Vigo, Campus As Lagoas, s/n, 32004, Ourense, Spain – sequence: 3 givenname: Laura surname: Cutillas-Barreiro fullname: Cutillas-Barreiro, Laura organization: Área de Edafoloxía e Química Agrícola, Dept. Bioloxía Vexetal e Ciencia do Solo, Facultade de Ciencias, Universidade de Vigo, Campus As Lagoas, s/n, 32004, Ourense, Spain – sequence: 4 givenname: Remigio surname: Paradelo-Núñez fullname: Paradelo-Núñez, Remigio organization: Área de Edafoloxía e Química Agrícola, Dept. Bioloxía Vexetal e Ciencia do Solo, Facultade de Ciencias, Universidade de Vigo, Campus As Lagoas, s/n, 32004, Ourense, Spain – sequence: 5 givenname: Avelino surname: Núñez-Delgado fullname: Núñez-Delgado, Avelino organization: Dept. Edafoloxía e Química Agrícola, Escola Politécnica Superior, Universidade de Santiago de Compostela, Campus Univ, s/n, 27002, Lugo, Spain – sequence: 6 givenname: María J. surname: Fernández-Sanjurjo fullname: Fernández-Sanjurjo, María J. organization: Dept. Edafoloxía e Química Agrícola, Escola Politécnica Superior, Universidade de Santiago de Compostela, Campus Univ, s/n, 27002, Lugo, Spain – sequence: 7 givenname: Esperanza surname: Álvarez-Rodriguez fullname: Álvarez-Rodriguez, Esperanza organization: Dept. Edafoloxía e Química Agrícola, Escola Politécnica Superior, Universidade de Santiago de Compostela, Campus Univ, s/n, 27002, Lugo, Spain – sequence: 8 givenname: Manuel surname: Arias-Estévez fullname: Arias-Estévez, Manuel email: Correspondence to: M. Arias-Estévez, Área de Edafoloxía e Química Agrícola, Dept. Bioloxía Vexetal e Ciencia do Solo, Facultade de Ciencias, Campus As Lagoas, s/n, 32004 Ourense, Spain., mastevez@uvigo.es organization: Área de Edafoloxía e Química Agrícola, Dept. Bioloxía Vexetal e Ciencia do Solo, Facultade de Ciencias, Universidade de Vigo, Campus As Lagoas, s/n, 32004, Ourense, Spain |
BookMark | eNqN0U9LHDEUAPBQLFSt4EcI9NLDzvYl2UySo4xdFdatVEXxEjKZTM12NmOTGdRv3xm3KC0t9ZC__F54L28HbYU2OIT2CUwJAP3UVHFKOfA3aJuAUhmZ8eutcS95xqiQ79BOSisAIGImttGquDXhm0vYB1xUE1z0E7z0E3xWYhMqfBPwPBrb-TaYcXq6XPjSxc3xsHe4a_Fpn5Jr8Pmtaxp8sHahGkaHR49PfXD4vPXNe_S2Nk1ye7_WXXQ5_3xRHGeLL0cnxcEiM5wynnHlKGUzo1gFjppcEHAgQIIlVgCYuiQlIzWxQwVAS8tVDTUtKwZEWmlKtos-bt69i-2P3qVOr32yQ2YmuLZPmkiW55QCgVdQkgPlTKj_U6FAMeBKDvTDH3TV9jEMNQ9KSkKZIPmgphtlY5tSdLW2vnv61S4a32gCemyoHhqqx4a-ZPAccBf92sTHv9FsQ-994x7_6fTi8Ovv3qfOPTx7E7_rXDDB9dXySMv5Gb-4WV5ryX4C6EO7kA |
CODEN | LDDEF6 |
CitedBy_id | crossref_primary_10_1007_s12649_017_9843_y crossref_primary_10_1016_j_jhazmat_2021_125921 crossref_primary_10_1016_j_geoderma_2017_07_040 crossref_primary_10_1016_j_scitotenv_2018_08_087 crossref_primary_10_1016_j_biombioe_2018_02_008 crossref_primary_10_1016_j_apsoil_2018_03_010 crossref_primary_10_1016_j_jenvman_2017_01_042 crossref_primary_10_1021_acs_jchemed_9b00445 crossref_primary_10_1002_etc_4958 crossref_primary_10_1016_j_chemosphere_2021_130897 crossref_primary_10_1002_ldr_2634 crossref_primary_10_1016_j_catena_2020_104905 crossref_primary_10_1016_j_eti_2024_103789 crossref_primary_10_3390_resources11050048 crossref_primary_10_1002_ldr_2714 crossref_primary_10_1016_j_cej_2021_130010 crossref_primary_10_1002_ldr_2638 crossref_primary_10_1038_s41598_023_35732_1 crossref_primary_10_3390_w9110886 crossref_primary_10_1016_j_jenvman_2020_110221 crossref_primary_10_3390_agronomy12102280 crossref_primary_10_1002_ldr_2696 crossref_primary_10_1007_s11356_018_3358_3 crossref_primary_10_3390_pr9111866 crossref_primary_10_1016_j_jclepro_2016_09_021 crossref_primary_10_1007_s10653_018_0072_5 crossref_primary_10_1016_j_envres_2020_110404 |
Cites_doi | 10.1002/ldr.2237 10.1016/j.biortech.2006.10.012 10.1016/j.chemosphere.2013.12.097 10.1016/j.jhazmat.2012.12.045 10.5194/se‐6‐857‐2015 10.5194/se‐6‐811‐2015 10.5194/se-6-985-2015 10.1007/s11270-012-1366-3 10.1002/(SICI)1099-145X(199909/10)10:5<435::AID-LDR339>3.0.CO;2-1 10.1016/S0048-9697(03)00261-4 10.1097/SS.0b013e31803063ab 10.1016/j.jhazmat.2011.01.046 10.1016/j.chemer.2013.08.003 10.1080/03067319308027619 10.1016/j.ecoleng.2015.04.085 10.1016/j.geoderma.2009.10.012 10.1016/j.catena.2015.09.010 10.1016/j.gexplo.2007.04.011 10.1039/a807854h 10.2343/geochemj.10.175 10.1016/j.cosust.2012.10.013 10.5194/soil-1-665-2015 10.1016/S0048-9697(98)00245-9 10.1097/00010694-199203000-00004 10.1016/S1002-0160(15)30036-9 10.1016/j.jcis.2011.09.057 10.1016/j.apsoil.2014.09.010 10.1016/j.ecoenv.2012.01.003 10.1016/j.jhazmat.2010.09.021 10.1023/A:1023037706905 10.1016/j.resconrec.2010.03.017 10.1002/ldr.2288 10.1007/BF02128650 10.1021/es0012725 10.1002/ldr.642 10.1016/0883-2927(95)00084-4 10.1016/j.chemosphere.2011.12.009 |
ContentType | Journal Article |
Copyright | Copyright © 2016 John Wiley & Sons, Ltd. |
Copyright_xml | – notice: Copyright © 2016 John Wiley & Sons, Ltd. |
DBID | BSCLL AAYXX CITATION 7ST 8FD C1K FR3 KR7 SOI 7TV 7S9 L.6 |
DOI | 10.1002/ldr.2505 |
DatabaseName | Istex CrossRef Environment Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database Civil Engineering Abstracts Environment Abstracts Pollution Abstracts AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef Civil Engineering Abstracts Engineering Research Database Technology Research Database Environment Abstracts Environmental Sciences and Pollution Management Pollution Abstracts AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | Civil Engineering Abstracts CrossRef Technology Research Database Pollution Abstracts AGRICOLA |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Agriculture |
EISSN | 1099-145X |
EndPage | 1285 |
ExternalDocumentID | 4052072991 10_1002_ldr_2505 LDR2505 ark_67375_WNG_8FP5TZNX_8 |
Genre | article |
GrantInformation_xml | – fundername: European Regional Development Fund – fundername: Spanish Ministry of Economy and Competitiveness funderid: CGL2012‐36805‐C02‐01; CGL2012‐36805‐C02‐02 |
GroupedDBID | .3N .GA .Y3 05W 0R~ 10A 1L6 1OB 1OC 1ZS 31~ 33P 3SF 3WU 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHBH AAHHS AANLZ AAONW AASGY AAXRX AAZKR ABCQN ABCUV ABEML ABIJN ABJNI ABOGM ABPVW ACAHQ ACBWZ ACCFJ ACCZN ACGFS ACIWK ACPOU ACSCC ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFRAH AFZJQ AGHSJ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR AMYDB ATUGU AUFTA AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BSCLL BY8 CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM DU5 EBD EBS ECGQY EDH EJD F00 F01 F04 FEDTE G-S G.N GNP GODZA H.T H.X HF~ HGLYW HVGLF HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES M62 MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ O66 O9- OIG P2P P2W P2X P4D PALCI Q.N Q11 QB0 QRW R.K RIWAO RJQFR ROL RWI RX1 SAMSI SUPJJ UB1 W8V W99 WBKPD WIB WIH WIK WOHZO WQJ WRC WUPDE WXSBR WYISQ XG1 XPP XV2 Y6R ZZTAW ~IA ~KM ~WT AAHQN AAMNL AANHP AAYCA ACRPL ACYXJ ADNMO AFWVQ ALVPJ AAYXX AEYWJ AGHNM AGQPQ AGYGG CITATION 7ST 8FD AAMMB AEFGJ AGXDD AIDQK AIDYY C1K FR3 KR7 SOI 7TV 7S9 L.6 |
ID | FETCH-LOGICAL-a5235-59e2234a93d0e2a6710e07080c1c700afb1b31f1c01702bc59f0f2bd3018c8ab3 |
IEDL.DBID | DR2 |
ISSN | 1085-3278 |
IngestDate | Fri Jul 11 18:28:06 EDT 2025 Fri Jul 11 13:09:53 EDT 2025 Thu Jul 10 23:21:03 EDT 2025 Sun Jul 13 04:29:54 EDT 2025 Tue Jul 01 00:36:41 EDT 2025 Thu Apr 24 22:59:10 EDT 2025 Wed Jan 22 16:20:53 EST 2025 Wed Oct 30 09:53:30 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Language | English |
License | http://onlinelibrary.wiley.com/termsAndConditions#vor |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a5235-59e2234a93d0e2a6710e07080c1c700afb1b31f1c01702bc59f0f2bd3018c8ab3 |
Notes | ArticleID:LDR2505 istex:40850FBCDC184046E36D16901CE4167943067B36 Spanish Ministry of Economy and Competitiveness - No. CGL2012-36805-C02-01; No. CGL2012-36805-C02-02 European Regional Development Fund ark:/67375/WNG-8FP5TZNX-8 ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0001-5373-1606 |
PQID | 1788123716 |
PQPubID | 1016359 |
PageCount | 10 |
ParticipantIDs | proquest_miscellaneous_1836622010 proquest_miscellaneous_1816025379 proquest_miscellaneous_1790930598 proquest_journals_1788123716 crossref_citationtrail_10_1002_ldr_2505 crossref_primary_10_1002_ldr_2505 wiley_primary_10_1002_ldr_2505_LDR2505 istex_primary_ark_67375_WNG_8FP5TZNX_8 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2016-05 May 2016 2016-05-00 20160501 |
PublicationDateYYYYMMDD | 2016-05-01 |
PublicationDate_xml | – month: 05 year: 2016 text: 2016-05 |
PublicationDecade | 2010 |
PublicationPlace | Chichester |
PublicationPlace_xml | – name: Chichester |
PublicationTitle | Land degradation & development |
PublicationTitleAlternate | Land Degrad. Develop |
PublicationYear | 2016 |
Publisher | Blackwell Publishing Ltd Wiley Subscription Services, Inc |
Publisher_xml | – name: Blackwell Publishing Ltd – name: Wiley Subscription Services, Inc |
References | Cheung CW, Chan CK, Porter JF, McKay G. 2001. Combined diffusion model for the sorption of cadmium, copper, and zinc ions onto bone char. Environmental Science and Technology 35: 1511-1522. Mahar A, Wang P, Li R, Zhang Z. 2015. Immobilization of lead and cadmium in contaminated soil using amendments: a review. Pedosphere 25: 555-568. Brummer GW. 1986. Heavy metals species, mobility and availability in soils. The importance of chemical speciation in environmental processes. Springer-Verlag: Heidelberg, Berlin. Fernández-Pazos MT, Garrido-Rodriguez B, Nóvoa-Muñoz JC, Arias-Estévez M, Fernández-Sanjurjo MJ, Núñez-Delgado A, Álvarez E. 2013. Cr(VI) adsorption and desorption on soils and biosorbents. Water, Air, and Soil Pollution 224:1366. Ure AM, Quevauviller P, Muntau H, Griepink B. 1993. Speciation of heavy metals in soils and sediments. An account of the improvement and harmonization of extraction techniques undertaken under the auspices of the BCR of the Commission of the European Communities. International Journal of Environmental Analytical Chemistry 51: 135-151. Garrido-Rodríguez B, Fernández-Calviño D, Nóvoa-Muñoz JC, Arias-Estévez M, Díaz-Raviña M, Alvarez-Rodriguez E, Fernández-Sanjurjo MJ, Núñez-Delgado A. 2013. pH-dependent copper release in acid soils treated with crushed mussel shell. Journal of Environmental Science and Technology 10: 983-994. Arias M, Nuñez A, Barral MT, Dı́az-Fierros F. 1998. Pollution potential of copper mine spoil used for road making. The Science of the Total Environment 221(2-3): 111-116. Fernández-Calviño D, Garrido-Rodríguez B, Arias-Estévez M, Díaz-Raviña M, Álvarez-Rodriguez E, Fernández-Sanjurjo MJ, Núñez-Delgado A. 2015a. Effect of crushed mussel shell addition on bacterial growth in acid polluted soils. Applied Soil Ecology 85: 65-68. Kitano Y, Kanamori N, Yoshioka S. 1976. Adsorption of zinc and copper ion son calcite and aragonite and its influence on the transformation of aragonite to calcite. Geochemical Journal 10: 175-179. Zapusek U, Lestan D. 2009. Fractionation, mobility and bio-accessibility of Cu, Zn, Cd, Pb and Ni in aged artificial soil mixtures. Geoderma 154: 164-169. Garrido-Rodríguez B, Cutillas Barreiro L, Fernández-Calviño D, Arias-Estévez M, Fernández-Sanjurjo MJ, Álvarez-Rodríguez E, Núñez-Delgado A. 2014. Competitive adsorption and transport of Cd, Cu, Ni and Zn in a mine soil amended with mussel shell. Chemosphere 107: 379-385. Kelly J, Thornton I, Simpson PR. 1996. Urban geochemistry: a study of influence of anthropogenic activity on heavy metal content of soils in traditionally industrial and non-industrial areas of Britain. Applied Geochemistry 11: 363-370. Mohawesh Y, Taimeh A, Ziadat F. 2015. Effects of land use changes and soil conservation intervention on soil properties as indicators for land degradation under a Mediterranean. Solid Earth 6: 857-868. DOI: 10.5194/se-6-857-2015. Paz-Ferreiro J, Baez-Bernal D, Castro Insúa J, García Pomar MI. 2012. Effect of mussel shell addition on the chemical and biological properties of a Cambisol. Chemosphere 86: 117-1121. Pérez-Novo C, Fernández-Calviño D, Bermudez-Couso A, López-Periago JE, Arias-Estévez M. 2011. Influence of phosphorus on Cu sorption kinetics: stirred flow chamber experiments. Journal of Hazardous Materials 185: 220-226. Mol G, Keesstra S. 2012. Soil science in a changing world. Current Opinion in Environmental Sustainability 4: 473-477. DOI: 10.1016/j.cosust.2012.10.013. Vega FA, Covelo EF, Andrade ML. 2005. Limiting factors for reforestation of mine spoils from Galicia (Spain). Land Degradation & Development 16: 27-36. DOI:10.1002/ldr.642. Navarro MC, Pérez-Sirvent C, Martínez-Sánchez MJ, Vidal J, Tovar PJ, Bech J. 2008. Abandoned mine sites as a source of contamination by heavy metals: a case study in a semi-arid zone. Journal of Geochemical Exploration 96: 183-193. Hart PBS, West AW, Kings JA, Watts HM, Howe JC. 1999. Land restoration management after topsoil mining and implications for restoration policy guidelines in New Zealand. Land Degradation & Development 10: 435-453. Forján R, Asensio V, Rodriguez-Vila A, Covelo EF. 2016. Contribution of waste and biochar amendment to the sorption of metals in a copper mine tailing. Catena 137: 120-125. Ahmad M, Lee SS, Yang JE, Ro HM, Lee YH, Ok YS. 2012. Effects of soil dilution and amendments (mussel shell, cow bone, and biochar) on Pb availability and phytotoxicity in military shooting range soil. Ecotoxicology and Environmental Safety 79: 225-231. Rauret G, López-Sánchez JF, Sahuquillo A, Rubio R, Davidson C, Ureb A, Quevauvillerc P. 1999. Improvement of the BCR three step sequential extraction procedure prior to the certification of new sediment and soil reference materials. Journal of Environmental Monitoring 1: 57-61. Chen X, Wright V, Conca JL, Peurrung LM. 1997. Evaluation of heavy metal remediation using mineral apatite. Water, Air, and Soil Pollution 98: 57-78. Basta NT, Tabatabai MA. 1992. Effect of cropping systems on adsorption of metals by soils: II. Effect of pH. Soil Science 153: 195-204. Carvalho PCS, Neiva AMR, Silva MVG, Ferreira da Silva EA. 2014. Geochemical comparison of waters and stream sediments close to abandoned Sb-Au and As-Au mining areas, northern Portugal. Chemie der Erde 74: 267-283. Arias-Estévez M, Nóvoa-Muñoz JC, Pateiro M, López-Periago E. 2007. Influence of aging on copper fractionation in an acid soil. Soil Science 172: 225-232. Masto RE, Sheik S, Nehru G, Selvi VA, George J, Ram LC. 2015. Assessment of environmental soil quality around Sonepur Bazari mine of Raniganj coalfield, India. Solid Earth 6: 811-821. DOI: 10.5194/se-6-811-2015. Mahmoud E, El-Kader NA. 2015. Heavy metal immobilization in contaminated soils using phosphogypsum and rice straw compost. Land Degradation & Development 26: 819-824. DOI: 10.1002/ldr.2288. Bolan NS, Adriano DC, Mani PA, Duraisamy A. 2003. Immobilization and phytoavailability of cadmium in variable charge soils. II. Effect of lime addition. Plant and Soil 251: 187-198. Fernández-Calviño D, Bermúdez-Couso A, Garrido-Rodríguez B, Peña Rodríguez S, Arias-Estévez M. 2012. Copper release kinetics from a long-term contaminated acid soil using a stirred flow chamber: effect of ionic strength and pH. Journal of Colloid and Interface Science 367: 422-428. Dai Q, Liu Z, Shao H, Yang Z. 2015. Karst bare slope soil erosion and soil quality: a simulation case study. Solid Earth 6: 985-995. DOI:10.5194/se-6-985-2015. Perlatti F, Osório Ferreira T, Espíndola Romero R, Gomes Costa MC, Otero XL. 2015. Copper accumulation and changes in soil physical-chemical properties promoted by native plants in an abandoned mine site in northeastern Brazil: implications for restoration of mine sites. Ecological Engineering 82: 103-111. Smith P, Cotrufo MF, Rumpel C, Paustian K, Kuikman PJ, Elliott JA, McDowell R, Griffiths RI, Asakawa S, Bustamante M, House JI, Sobocká J, Harper R, Pan G, West PC, Gerber JS, Clark JM, Adhya T, Scholes RJ, Scholes MC. 2015. Biogeochemical cycles and biodiversity as key drivers of ecosystem services provided by soils. SOIL 1: 665-685. DOI:10.5194/soil-1-665-2015. Ramírez-Pérez A, Paradelo M, Nóvoa-Muñoz JC, Arias-Estévez M, Fernández-Sanjurjo MJ, Álvarez-Rodríguez E, Núñez-Delgado A. 2013. Heavy metals retention in copper mine soil treated with mussel shell. Batch and column experiments. Journal of Hazardous Materials 248-249: 122-130. Schwab P, Zhu D, Banks MK. 2007. Heavy metal leaching from mine tailings as affected by organics amendments. Bioresource Technology 98: 2935-2941. Roy M, McDonald LM. 2015. Metal uptake in plants and health risk assessments in metal-contaminated smelter soils. Land Degradation & Development 26: 785-792. DOI: 10.1002/ldr.2237. Iribarren D, Moreira MT, Feijoo G. 2010. Implementing by-product management into the life cycle assessment of the mussel sector. Resources, Conservation and Recycling 54: 1219-1230. Álvarez E, Fernández Marcos ML, Vaamonde C, Fernández-Sanjurjo MJ. 2003. Heavy metals in the dump of an abandoned mine in Galicia (NW Spain) and in the spontaneously occurring vegetation. The Science of the Total Environment 313: 185-197. Lee SH, Park H, Koo N, Hyun S, Hwang A. 2011. Evaluation of the effectiveness of various amendments on trace metals stabilization by chemical and biological methods. Journal of Hazardous Materials 188: 44-51. 2015; 1 2010; 54 2015; 6 2015a; 85 2009; 154 2013; 224 2008; 96 1991 2015b 1999; 1 2003; 313 2012; 367 2012; 79 2007; 98 2003; 251 1996; 11 2014; 107 1976; 10 2015; 26 2013; 248–249 2015; 25 2007; 172 2015; 82 1993; 51 1992; 153 1997; 98 2013; 10 1986 1999; 10 2016; 137 1998; 221 2014; 74 2011; 185 2005; 16 2001; 35 2012; 4 2011; 188 2012; 86 e_1_2_7_6_1 e_1_2_7_5_1 e_1_2_7_4_1 e_1_2_7_3_1 e_1_2_7_8_1 e_1_2_7_7_1 e_1_2_7_18_1 e_1_2_7_17_1 e_1_2_7_40_1 e_1_2_7_2_1 e_1_2_7_15_1 e_1_2_7_41_1 e_1_2_7_14_1 e_1_2_7_42_1 e_1_2_7_13_1 e_1_2_7_12_1 e_1_2_7_11_1 e_1_2_7_10_1 e_1_2_7_26_1 e_1_2_7_27_1 e_1_2_7_28_1 e_1_2_7_29_1 Garrido‐Rodríguez B (e_1_2_7_19_1) 2013; 10 Fernández‐Calviño D (e_1_2_7_16_1) 2015 e_1_2_7_30_1 e_1_2_7_25_1 e_1_2_7_31_1 Brummer GW (e_1_2_7_9_1) 1986 e_1_2_7_24_1 e_1_2_7_32_1 e_1_2_7_23_1 e_1_2_7_33_1 e_1_2_7_22_1 e_1_2_7_34_1 e_1_2_7_21_1 e_1_2_7_35_1 e_1_2_7_20_1 e_1_2_7_36_1 e_1_2_7_37_1 e_1_2_7_38_1 e_1_2_7_39_1 |
References_xml | – reference: Perlatti F, Osório Ferreira T, Espíndola Romero R, Gomes Costa MC, Otero XL. 2015. Copper accumulation and changes in soil physical-chemical properties promoted by native plants in an abandoned mine site in northeastern Brazil: implications for restoration of mine sites. Ecological Engineering 82: 103-111. – reference: Vega FA, Covelo EF, Andrade ML. 2005. Limiting factors for reforestation of mine spoils from Galicia (Spain). Land Degradation & Development 16: 27-36. DOI:10.1002/ldr.642. – reference: Mol G, Keesstra S. 2012. Soil science in a changing world. Current Opinion in Environmental Sustainability 4: 473-477. DOI: 10.1016/j.cosust.2012.10.013. – reference: Masto RE, Sheik S, Nehru G, Selvi VA, George J, Ram LC. 2015. Assessment of environmental soil quality around Sonepur Bazari mine of Raniganj coalfield, India. Solid Earth 6: 811-821. DOI: 10.5194/se-6-811-2015. – reference: Zapusek U, Lestan D. 2009. Fractionation, mobility and bio-accessibility of Cu, Zn, Cd, Pb and Ni in aged artificial soil mixtures. Geoderma 154: 164-169. – reference: Bolan NS, Adriano DC, Mani PA, Duraisamy A. 2003. Immobilization and phytoavailability of cadmium in variable charge soils. II. Effect of lime addition. Plant and Soil 251: 187-198. – reference: Arias M, Nuñez A, Barral MT, Dı́az-Fierros F. 1998. Pollution potential of copper mine spoil used for road making. The Science of the Total Environment 221(2-3): 111-116. – reference: Mahar A, Wang P, Li R, Zhang Z. 2015. Immobilization of lead and cadmium in contaminated soil using amendments: a review. Pedosphere 25: 555-568. – reference: Lee SH, Park H, Koo N, Hyun S, Hwang A. 2011. Evaluation of the effectiveness of various amendments on trace metals stabilization by chemical and biological methods. Journal of Hazardous Materials 188: 44-51. – reference: Dai Q, Liu Z, Shao H, Yang Z. 2015. Karst bare slope soil erosion and soil quality: a simulation case study. Solid Earth 6: 985-995. DOI:10.5194/se-6-985-2015. – reference: Ure AM, Quevauviller P, Muntau H, Griepink B. 1993. Speciation of heavy metals in soils and sediments. An account of the improvement and harmonization of extraction techniques undertaken under the auspices of the BCR of the Commission of the European Communities. International Journal of Environmental Analytical Chemistry 51: 135-151. – reference: Paz-Ferreiro J, Baez-Bernal D, Castro Insúa J, García Pomar MI. 2012. Effect of mussel shell addition on the chemical and biological properties of a Cambisol. Chemosphere 86: 117-1121. – reference: Ahmad M, Lee SS, Yang JE, Ro HM, Lee YH, Ok YS. 2012. Effects of soil dilution and amendments (mussel shell, cow bone, and biochar) on Pb availability and phytotoxicity in military shooting range soil. Ecotoxicology and Environmental Safety 79: 225-231. – reference: Brummer GW. 1986. Heavy metals species, mobility and availability in soils. The importance of chemical speciation in environmental processes. Springer-Verlag: Heidelberg, Berlin. – reference: Schwab P, Zhu D, Banks MK. 2007. Heavy metal leaching from mine tailings as affected by organics amendments. Bioresource Technology 98: 2935-2941. – reference: Álvarez E, Fernández Marcos ML, Vaamonde C, Fernández-Sanjurjo MJ. 2003. Heavy metals in the dump of an abandoned mine in Galicia (NW Spain) and in the spontaneously occurring vegetation. The Science of the Total Environment 313: 185-197. – reference: Garrido-Rodríguez B, Fernández-Calviño D, Nóvoa-Muñoz JC, Arias-Estévez M, Díaz-Raviña M, Alvarez-Rodriguez E, Fernández-Sanjurjo MJ, Núñez-Delgado A. 2013. pH-dependent copper release in acid soils treated with crushed mussel shell. Journal of Environmental Science and Technology 10: 983-994. – reference: Ramírez-Pérez A, Paradelo M, Nóvoa-Muñoz JC, Arias-Estévez M, Fernández-Sanjurjo MJ, Álvarez-Rodríguez E, Núñez-Delgado A. 2013. Heavy metals retention in copper mine soil treated with mussel shell. Batch and column experiments. Journal of Hazardous Materials 248-249: 122-130. – reference: Roy M, McDonald LM. 2015. Metal uptake in plants and health risk assessments in metal-contaminated smelter soils. Land Degradation & Development 26: 785-792. DOI: 10.1002/ldr.2237. – reference: Smith P, Cotrufo MF, Rumpel C, Paustian K, Kuikman PJ, Elliott JA, McDowell R, Griffiths RI, Asakawa S, Bustamante M, House JI, Sobocká J, Harper R, Pan G, West PC, Gerber JS, Clark JM, Adhya T, Scholes RJ, Scholes MC. 2015. Biogeochemical cycles and biodiversity as key drivers of ecosystem services provided by soils. SOIL 1: 665-685. DOI:10.5194/soil-1-665-2015. – reference: Basta NT, Tabatabai MA. 1992. Effect of cropping systems on adsorption of metals by soils: II. Effect of pH. Soil Science 153: 195-204. – reference: Iribarren D, Moreira MT, Feijoo G. 2010. Implementing by-product management into the life cycle assessment of the mussel sector. Resources, Conservation and Recycling 54: 1219-1230. – reference: Fernández-Calviño D, Garrido-Rodríguez B, Arias-Estévez M, Díaz-Raviña M, Álvarez-Rodriguez E, Fernández-Sanjurjo MJ, Núñez-Delgado A. 2015a. Effect of crushed mussel shell addition on bacterial growth in acid polluted soils. Applied Soil Ecology 85: 65-68. – reference: Garrido-Rodríguez B, Cutillas Barreiro L, Fernández-Calviño D, Arias-Estévez M, Fernández-Sanjurjo MJ, Álvarez-Rodríguez E, Núñez-Delgado A. 2014. Competitive adsorption and transport of Cd, Cu, Ni and Zn in a mine soil amended with mussel shell. Chemosphere 107: 379-385. – reference: Hart PBS, West AW, Kings JA, Watts HM, Howe JC. 1999. Land restoration management after topsoil mining and implications for restoration policy guidelines in New Zealand. Land Degradation & Development 10: 435-453. – reference: Fernández-Calviño D, Bermúdez-Couso A, Garrido-Rodríguez B, Peña Rodríguez S, Arias-Estévez M. 2012. Copper release kinetics from a long-term contaminated acid soil using a stirred flow chamber: effect of ionic strength and pH. Journal of Colloid and Interface Science 367: 422-428. – reference: Kelly J, Thornton I, Simpson PR. 1996. Urban geochemistry: a study of influence of anthropogenic activity on heavy metal content of soils in traditionally industrial and non-industrial areas of Britain. Applied Geochemistry 11: 363-370. – reference: Navarro MC, Pérez-Sirvent C, Martínez-Sánchez MJ, Vidal J, Tovar PJ, Bech J. 2008. Abandoned mine sites as a source of contamination by heavy metals: a case study in a semi-arid zone. Journal of Geochemical Exploration 96: 183-193. – reference: Pérez-Novo C, Fernández-Calviño D, Bermudez-Couso A, López-Periago JE, Arias-Estévez M. 2011. Influence of phosphorus on Cu sorption kinetics: stirred flow chamber experiments. Journal of Hazardous Materials 185: 220-226. – reference: Forján R, Asensio V, Rodriguez-Vila A, Covelo EF. 2016. Contribution of waste and biochar amendment to the sorption of metals in a copper mine tailing. Catena 137: 120-125. – reference: Fernández-Pazos MT, Garrido-Rodriguez B, Nóvoa-Muñoz JC, Arias-Estévez M, Fernández-Sanjurjo MJ, Núñez-Delgado A, Álvarez E. 2013. Cr(VI) adsorption and desorption on soils and biosorbents. Water, Air, and Soil Pollution 224:1366. – reference: Mahmoud E, El-Kader NA. 2015. Heavy metal immobilization in contaminated soils using phosphogypsum and rice straw compost. Land Degradation & Development 26: 819-824. DOI: 10.1002/ldr.2288. – reference: Mohawesh Y, Taimeh A, Ziadat F. 2015. Effects of land use changes and soil conservation intervention on soil properties as indicators for land degradation under a Mediterranean. Solid Earth 6: 857-868. DOI: 10.5194/se-6-857-2015. – reference: Cheung CW, Chan CK, Porter JF, McKay G. 2001. Combined diffusion model for the sorption of cadmium, copper, and zinc ions onto bone char. Environmental Science and Technology 35: 1511-1522. – reference: Rauret G, López-Sánchez JF, Sahuquillo A, Rubio R, Davidson C, Ureb A, Quevauvillerc P. 1999. Improvement of the BCR three step sequential extraction procedure prior to the certification of new sediment and soil reference materials. Journal of Environmental Monitoring 1: 57-61. – reference: Chen X, Wright V, Conca JL, Peurrung LM. 1997. Evaluation of heavy metal remediation using mineral apatite. Water, Air, and Soil Pollution 98: 57-78. – reference: Kitano Y, Kanamori N, Yoshioka S. 1976. Adsorption of zinc and copper ion son calcite and aragonite and its influence on the transformation of aragonite to calcite. Geochemical Journal 10: 175-179. – reference: Arias-Estévez M, Nóvoa-Muñoz JC, Pateiro M, López-Periago E. 2007. Influence of aging on copper fractionation in an acid soil. Soil Science 172: 225-232. – reference: Carvalho PCS, Neiva AMR, Silva MVG, Ferreira da Silva EA. 2014. Geochemical comparison of waters and stream sediments close to abandoned Sb-Au and As-Au mining areas, northern Portugal. Chemie der Erde 74: 267-283. – volume: 10 start-page: 435 year: 1999 end-page: 453 article-title: Land restoration management after topsoil mining and implications for restoration policy guidelines in New Zealand publication-title: Land Degradation & Development – volume: 188 start-page: 44 year: 2011 end-page: 51 article-title: Evaluation of the effectiveness of various amendments on trace metals stabilization by chemical and biological methods publication-title: Journal of Hazardous Materials – volume: 85 start-page: 65 year: 2015a end-page: 68 article-title: Effect of crushed mussel shell addition on bacterial growth in acid polluted soils publication-title: Applied Soil Ecology – volume: 137 start-page: 120 year: 2016 end-page: 125 article-title: Contribution of waste and biochar amendment to the sorption of metals in a copper mine tailing publication-title: Catena – volume: 251 start-page: 187 year: 2003 end-page: 198 article-title: Immobilization and phytoavailability of cadmium in variable charge soils. II. Effect of lime addition publication-title: Plant and Soil – volume: 25 start-page: 555 year: 2015 end-page: 568 article-title: Immobilization of lead and cadmium in contaminated soil using amendments: a review publication-title: Pedosphere – volume: 98 start-page: 57 year: 1997 end-page: 78 article-title: Evaluation of heavy metal remediation using mineral apatite publication-title: Water, Air, and Soil Pollution – volume: 98 start-page: 2935 year: 2007 end-page: 2941 article-title: Heavy metal leaching from mine tailings as affected by organics amendments publication-title: Bioresource Technology – volume: 221 start-page: 111 issue: 2–3 year: 1998 end-page: 116 article-title: Pollution potential of copper mine spoil used for road making publication-title: The Science of the Total Environment – volume: 153 start-page: 195 year: 1992 end-page: 204 article-title: Effect of cropping systems on adsorption of metals by soils: II. Effect of pH publication-title: Soil Science – volume: 96 start-page: 183 year: 2008 end-page: 193 article-title: Abandoned mine sites as a source of contamination by heavy metals: a case study in a semi‐arid zone publication-title: Journal of Geochemical Exploration – volume: 313 start-page: 185 year: 2003 end-page: 197 article-title: Heavy metals in the dump of an abandoned mine in Galicia (NW Spain) and in the spontaneously occurring vegetation publication-title: The Science of the Total Environment – volume: 54 start-page: 1219 year: 2010 end-page: 1230 article-title: Implementing by‐product management into the life cycle assessment of the mussel sector publication-title: Resources, Conservation and Recycling – volume: 185 start-page: 220 year: 2011 end-page: 226 article-title: Influence of phosphorus on Cu sorption kinetics: stirred flow chamber experiments publication-title: Journal of Hazardous Materials – volume: 16 start-page: 27 year: 2005 end-page: 36 article-title: Limiting factors for reforestation of mine spoils from Galicia (Spain) publication-title: Land Degradation & Development – volume: 1 start-page: 57 year: 1999 end-page: 61 article-title: Improvement of the BCR three step sequential extraction procedure prior to the certification of new sediment and soil reference materials publication-title: Journal of Environmental Monitoring – volume: 6 start-page: 811 year: 2015 end-page: 821 article-title: Assessment of environmental soil quality around Sonepur Bazari mine of Raniganj coalfield, India publication-title: Solid Earth – volume: 367 start-page: 422 year: 2012 end-page: 428 article-title: Copper release kinetics from a long‐term contaminated acid soil using a stirred flow chamber: effect of ionic strength and pH publication-title: Journal of Colloid and Interface Science – volume: 35 start-page: 1511 year: 2001 end-page: 1522 article-title: Combined diffusion model for the sorption of cadmium, copper, and zinc ions onto bone char publication-title: Environmental Science and Technology – year: 1986 – volume: 10 start-page: 175 year: 1976 end-page: 179 article-title: Adsorption of zinc and copper ion son calcite and aragonite and its influence on the transformation of aragonite to calcite publication-title: Geochemical Journal – volume: 51 start-page: 135 year: 1993 end-page: 151 article-title: Speciation of heavy metals in soils and sediments. An account of the improvement and harmonization of extraction techniques undertaken under the auspices of the BCR of the Commission of the European Communities publication-title: International Journal of Environmental Analytical Chemistry – volume: 248–249 start-page: 122 year: 2013 end-page: 130 article-title: Heavy metals retention in copper mine soil treated with mussel shell publication-title: Batch and column experiments. Journal of Hazardous Materials – volume: 6 start-page: 985 year: 2015 end-page: 995 article-title: Karst bare slope soil erosion and soil quality: a simulation case study publication-title: Solid Earth – volume: 107 start-page: 379 year: 2014 end-page: 385 article-title: Competitive adsorption and transport of Cd, Cu, Ni and Zn in a mine soil amended with mussel shell publication-title: Chemosphere – volume: 26 start-page: 819 year: 2015 end-page: 824 article-title: Heavy metal immobilization in contaminated soils using phosphogypsum and rice straw compost publication-title: Land Degradation & Development – volume: 74 start-page: 267 year: 2014 end-page: 283 article-title: Geochemical comparison of waters and stream sediments close to abandoned Sb‐Au and As‐Au mining areas, northern Portugal publication-title: Chemie der Erde – volume: 86 start-page: 117 year: 2012 end-page: 1121 article-title: Effect of mussel shell addition on the chemical and biological properties of a Cambisol publication-title: Chemosphere – volume: 1 start-page: 665 year: 2015 end-page: 685 article-title: Biogeochemical cycles and biodiversity as key drivers of ecosystem services provided by soils publication-title: SOIL – volume: 4 start-page: 473 year: 2012 end-page: 477 article-title: Soil science in a changing world publication-title: Current Opinion in Environmental Sustainability – volume: 79 start-page: 225 year: 2012 end-page: 231 article-title: Effects of soil dilution and amendments (mussel shell, cow bone, and biochar) on Pb availability and phytotoxicity in military shooting range soil publication-title: Ecotoxicology and Environmental Safety – volume: 224 start-page: 1366 year: 2013 article-title: Cr(VI) adsorption and desorption on soils and biosorbents publication-title: Water, Air, and Soil Pollution – volume: 154 start-page: 164 year: 2009 end-page: 169 article-title: Fractionation, mobility and bio‐accessibility of Cu, Zn, Cd, Pb and Ni in aged artificial soil mixtures publication-title: Geoderma – volume: 11 start-page: 363 year: 1996 end-page: 370 article-title: Urban geochemistry: a study of influence of anthropogenic activity on heavy metal content of soils in traditionally industrial and non‐industrial areas of Britain publication-title: Applied Geochemistry – year: 1991 – volume: 172 start-page: 225 year: 2007 end-page: 232 article-title: Influence of aging on copper fractionation in an acid soil publication-title: Soil Science – volume: 82 start-page: 103 year: 2015 end-page: 111 article-title: Copper accumulation and changes in soil physical‐chemical properties promoted by native plants in an abandoned mine site in northeastern Brazil: implications for restoration of mine sites publication-title: Ecological Engineering – year: 2015b – volume: 26 start-page: 785 year: 2015 end-page: 792 article-title: Metal uptake in plants and health risk assessments in metal‐contaminated smelter soils publication-title: Land Degradation & Development – volume: 10 start-page: 983 year: 2013 end-page: 994 article-title: pH‐dependent copper release in acid soils treated with crushed mussel shell publication-title: Journal of Environmental Science and Technology – volume: 6 start-page: 857 year: 2015 end-page: 868 article-title: Effects of land use changes and soil conservation intervention on soil properties as indicators for land degradation under a Mediterranean publication-title: Solid Earth – ident: e_1_2_7_37_1 doi: 10.1002/ldr.2237 – ident: e_1_2_7_38_1 doi: 10.1016/j.biortech.2006.10.012 – ident: e_1_2_7_20_1 doi: 10.1016/j.chemosphere.2013.12.097 – ident: e_1_2_7_35_1 doi: 10.1016/j.jhazmat.2012.12.045 – ident: e_1_2_7_29_1 doi: 10.5194/se‐6‐857‐2015 – ident: e_1_2_7_28_1 doi: 10.5194/se‐6‐811‐2015 – volume-title: Heavy metals species, mobility and availability in soils. The importance of chemical speciation in environmental processes year: 1986 ident: e_1_2_7_9_1 – ident: e_1_2_7_13_1 doi: 10.5194/se-6-985-2015 – ident: e_1_2_7_17_1 doi: 10.1007/s11270-012-1366-3 – ident: e_1_2_7_21_1 doi: 10.1002/(SICI)1099-145X(199909/10)10:5<435::AID-LDR339>3.0.CO;2-1 – ident: e_1_2_7_4_1 doi: 10.1016/S0048-9697(03)00261-4 – ident: e_1_2_7_3_1 – ident: e_1_2_7_6_1 doi: 10.1097/SS.0b013e31803063ab – ident: e_1_2_7_25_1 doi: 10.1016/j.jhazmat.2011.01.046 – ident: e_1_2_7_10_1 doi: 10.1016/j.chemer.2013.08.003 – ident: e_1_2_7_40_1 doi: 10.1080/03067319308027619 – ident: e_1_2_7_34_1 doi: 10.1016/j.ecoleng.2015.04.085 – ident: e_1_2_7_42_1 doi: 10.1016/j.geoderma.2009.10.012 – ident: e_1_2_7_18_1 doi: 10.1016/j.catena.2015.09.010 – ident: e_1_2_7_31_1 doi: 10.1016/j.gexplo.2007.04.011 – ident: e_1_2_7_36_1 doi: 10.1039/a807854h – volume-title: Phosphate in soils. Interaction with micronutrients, radionuclides and heavy metals year: 2015 ident: e_1_2_7_16_1 – ident: e_1_2_7_24_1 doi: 10.2343/geochemj.10.175 – ident: e_1_2_7_30_1 doi: 10.1016/j.cosust.2012.10.013 – ident: e_1_2_7_39_1 doi: 10.5194/soil-1-665-2015 – ident: e_1_2_7_5_1 doi: 10.1016/S0048-9697(98)00245-9 – ident: e_1_2_7_7_1 doi: 10.1097/00010694-199203000-00004 – ident: e_1_2_7_26_1 doi: 10.1016/S1002-0160(15)30036-9 – ident: e_1_2_7_14_1 doi: 10.1016/j.jcis.2011.09.057 – ident: e_1_2_7_15_1 doi: 10.1016/j.apsoil.2014.09.010 – ident: e_1_2_7_2_1 doi: 10.1016/j.ecoenv.2012.01.003 – ident: e_1_2_7_33_1 doi: 10.1016/j.jhazmat.2010.09.021 – ident: e_1_2_7_8_1 doi: 10.1023/A:1023037706905 – volume: 10 start-page: 983 year: 2013 ident: e_1_2_7_19_1 article-title: pH‐dependent copper release in acid soils treated with crushed mussel shell publication-title: Journal of Environmental Science and Technology – ident: e_1_2_7_22_1 doi: 10.1016/j.resconrec.2010.03.017 – ident: e_1_2_7_27_1 doi: 10.1002/ldr.2288 – ident: e_1_2_7_11_1 doi: 10.1007/BF02128650 – ident: e_1_2_7_12_1 doi: 10.1021/es0012725 – ident: e_1_2_7_41_1 doi: 10.1002/ldr.642 – ident: e_1_2_7_23_1 doi: 10.1016/0883-2927(95)00084-4 – ident: e_1_2_7_32_1 doi: 10.1016/j.chemosphere.2011.12.009 |
SSID | ssj0001747 |
Score | 2.2402768 |
Snippet | Mining activities are related to relevant environmental pollution issues that should be controlled. We used sequential extractions to fractionate Cd, Cu, Ni,... |
SourceID | proquest crossref wiley istex |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 1276 |
SubjectTerms | Cadmium copper Environmental risk Fractionation heavy metal mobility Heavy metals Lead Lead (metal) Metal concentrations metal fractionation metal release mine tailings Mines mining Mollusks mussel shell Mussels Nickel pollution Pollution abatement Retention risk shell (molluscs) soil Soil (material) Soil amendment soil sampling zinc |
Title | Changes in Cd, Cu, Ni, Pb and Zn Fractionation and Liberation Due to Mussel Shell Amendment on a Mine Soil |
URI | https://api.istex.fr/ark:/67375/WNG-8FP5TZNX-8/fulltext.pdf https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fldr.2505 https://www.proquest.com/docview/1788123716 https://www.proquest.com/docview/1790930598 https://www.proquest.com/docview/1816025379 https://www.proquest.com/docview/1836622010 |
Volume | 27 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLbQ9gIP3BGFgYyE4KXpHCdx7MeqUCZEq4ltohoPlp04qKykKGmkab9-58RJxxBMCClSbieJb-f4S_L5MyGvmVDCGmaDNFNZEEvYsoVTgU2YgQ7EmTTHAc6zuTg4iT8ukkXHqsSxMF4fYvvBDT2jjdfo4MbW-1eioau8GmH_DeEXqVqIhz5fKUcB0E57bn3EU9nrzjK-3194rSfaxUI9vwYzfwWrbW8zvUe-9un0JJOzUbOxo-ziNwnH_8vIfXK3A6F07FvNA3LLlQ_JnfG3qhPicI_Idz_soKbLkk7yIZ00QzpfDumhpabM6WlJp5UfE9FWbXuwZZ_43XeNo5s1nTV17Vb0CNmmdPzDlTl-jKRoT2eQcHq0Xq4ek5Pp--PJQdDNyxAYeG1NgkQ5ABWxUVHOHDcCQIqDyCFZFmYpY6awoY3CIsxQm4fbLFEFK7jNIZbITBobPSE75bp0TwlNrGU2lyIObR4LFhmJi-SxKKQRhRqQt30d6awTLce5M1bayy1zDaWnsfQG5NXW8qcX6viDzZu2mrcGpjpDYlua6C_zD1pOD5Pj0_lCywHZ69uB7ny61iEq7_MIXjDhWdvT4I34i8WUbt2gjWIKQqiSN9jIUADSjFJ1k00kBEemAqS5bTx_zZT-BO0e1s_-1fA5uQ03Fp61uUd2NlXjXgCy2tiXrQ9dAlSDHMc |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9NAEF6V9gAceCMCBRaJxyVO12t7vXvgECWElCZWRVM16mXZtdcoNDgojsXjL_FX-FHM-pFSBBWXHpAs-TXyvmZ2Ztcz3yD0lDDBtCLaCWMROz6HK50a4eiAKFAgRoWJDXAeR2x46L-ZBtMN9L2JhanwIdYbblYyyvnaCrjdkN45RQ2dJ8uOVeC1R-We-foZ1mv5y90-DO4zSgevJr2hU6cUcBSsuAInEAb0oa-ElxBDFQP9aoDpOYndOCREpdrVnpu6sYWVoToOREpSqhMQAx5zpT347iW0ZROIW6D-_ttTrCow7cPGm9-jIW-QbgndaWp6Rvdt2WH8csaw_dU8LvXb4Dr60fRM5dZy0ilWuhN_-w008j_puhvoWm1n424lGDfRhsluoavd98saa8TcRh-qyIoczzLcS9q4V7RxNGvjfY1VluDjDA-WVdhHyb3lw9LBprrtFwavFnhc5LmZ4wPrUIu7H02W2P1WbOnxGHoKHyxm8zvo8EIaexdtZovM3EM40JrohDPf1YnPiKe4PTj1WcoVS0ULvWiYQsY1LrtNDzKXFaI0lTBa0o5WCz1ZU36qsEj-QPO85Ks1gVqeWN-9MJBH0WvJB_vB5DiaSt5C2w3jyXrayqVrkwtQD9bQUNb6NUw49i-SysyisDSCCNASgp9Dw10GxrQXivNoPMaodcaAOpfc-tdGyREIGpzv_yvhY3R5OBmP5Gg32nuArkAhrHJS3Uabq2VhHoIhudKPSgHG6N1Fs_1PAdp4wA |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwELZKKyE48EYsFDASj8tm6ziJYx84rHYJLe2uVrQVq16MnTho6ZKtko14_CT-Cn-KcR5biqDi0gNSpLxG8WvGM3ZmvkHoKWGCaUW0E8YidnwOVzo1wtEBUaBAjAoTG-A8GrPtQ__NNJiuoe9tLEyND7HacLOSUc3XVsBPknTrFDR0nuQ9q78bh8pd8_UzLNeKlztDGNtnlEavDgbbTpNRwFGw4AqcQBhQh74SXkIMVQzUqwGe5yR245AQlWpXe27qxhZVhuo4EClJqU5ACnjMlfbgu5fQhs-IsGkihm9PoarAsg9bZ36PhrwFuiV0q63pGdW3YUfxyxm79lfruFJv0XX0o-2Y2qvluFcudS_-9htm5P_RczfQtcbKxv1aLG6iNZPdQlf7H_IGacTcRh_ruIoCzzI8SLp4UHbxeNbFE41VluCjDEd5HfRR8W71sHKvqW-HpcHLBR6VRWHmeN-60-L-J5MldrcVW3o8go7C-4vZ_A46vJDG3kXr2SIz9xAOtCY64cx3dQJs4yluD059lnLFUtFBL1qekHGDym6Tg8xljSdNJYyWtKPVQU9WlCc1EskfaJ5XbLUiUPmx9dwLA_lu_FryaBIcHI2nknfQZst3spm0Cuna1ALUgxU0lLV6DdON_YekMrMoLY0gAnSE4OfQcJeBKe2F4jwajzFqXTGgzhWz_rVRcg_kDM73_5XwMbo8GUZyb2e8-wBdgTJY7aG6idaXeWkeghW51I8q8cXo_UVz_U_-rndv |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Changes+in+Cd%2C+Cu%2C+Ni%2C+Pb+and+Zn+Fractionation+and+Liberation+Due+to+Mussel+Shell+Amendment+on+a+Mine+Soil&rft.jtitle=Land+degradation+%26+development&rft.au=Fern%C3%A1ndez%E2%80%90Calvi%C3%B1o%2C+David&rft.au=P%C3%A9rez%E2%80%90Armada%2C+Lorena&rft.au=Cutillas%E2%80%90Barreiro%2C+Laura&rft.au=Paradelo%E2%80%90N%C3%BA%C3%B1ez%2C+Remigio&rft.date=2016-05-01&rft.issn=1085-3278&rft.eissn=1099-145X&rft.volume=27&rft.issue=4&rft.spage=1276&rft.epage=1285&rft_id=info:doi/10.1002%2Fldr.2505&rft.externalDBID=10.1002%252Fldr.2505&rft.externalDocID=LDR2505 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1085-3278&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1085-3278&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1085-3278&client=summon |