Semidefinite bounds for nonbinary codes based on quadruples
For nonnegative integers \(q,n,d\), let \(A_q(n,d)\) denote the maximum cardinality of a code of length \(n\) over an alphabet \([q]\) with \(q\) letters and with minimum distance at least \(d\). We consider the following upper bound on \(A_q(n,d)\). For any \(k\), let \(\CC_k\) be the collection of...
Saved in:
Published in | arXiv.org |
---|---|
Main Authors | , , |
Format | Paper Journal Article |
Language | English |
Published |
Ithaca
Cornell University Library, arXiv.org
08.02.2016
|
Subjects | |
Online Access | Get full text |
ISSN | 2331-8422 |
DOI | 10.48550/arxiv.1602.02531 |
Cover
Loading…
Abstract | For nonnegative integers \(q,n,d\), let \(A_q(n,d)\) denote the maximum cardinality of a code of length \(n\) over an alphabet \([q]\) with \(q\) letters and with minimum distance at least \(d\). We consider the following upper bound on \(A_q(n,d)\). For any \(k\), let \(\CC_k\) be the collection of codes of cardinality at most \(k\). Then \(A_q(n,d)\) is at most the maximum value of \(\sum_{v\in[q]^n}x(\{v\})\), where \(x\) is a function \(\CC_4\to R_+\) such that \(x(\emptyset)=1\) and \(x(C)=0\) if \(C\) has minimum distance less than \(d\), and such that the \(\CC_2\times\CC_2\) matrix \((x(C\cup C'))_{C,C'\in\CC_2}\) is positive semidefinite. By the symmetry of the problem, we can apply representation theory to reduce the problem to a semidefinite programming problem with order bounded by a polynomial in \(n\). It yields the new upper bounds \(A_4(6,3)\leq 176\), \(A_4(7,4)\leq 155\), \(A_5(7,4)\leq 489\), and \(A_5(7,5)\leq 87\). |
---|---|
AbstractList | For nonnegative integers \(q,n,d\), let \(A_q(n,d)\) denote the maximum cardinality of a code of length \(n\) over an alphabet \([q]\) with \(q\) letters and with minimum distance at least \(d\). We consider the following upper bound on \(A_q(n,d)\). For any \(k\), let \(\CC_k\) be the collection of codes of cardinality at most \(k\). Then \(A_q(n,d)\) is at most the maximum value of \(\sum_{v\in[q]^n}x(\{v\})\), where \(x\) is a function \(\CC_4\to R_+\) such that \(x(\emptyset)=1\) and \(x(C)=0\) if \(C\) has minimum distance less than \(d\), and such that the \(\CC_2\times\CC_2\) matrix \((x(C\cup C'))_{C,C'\in\CC_2}\) is positive semidefinite. By the symmetry of the problem, we can apply representation theory to reduce the problem to a semidefinite programming problem with order bounded by a polynomial in \(n\). It yields the new upper bounds \(A_4(6,3)\leq 176\), \(A_4(7,4)\leq 155\), \(A_5(7,4)\leq 489\), and \(A_5(7,5)\leq 87\). Designs, Codes and Cryptography, 84 (1) (2017), 87-100 For nonnegative integers $q,n,d$, let $A_q(n,d)$ denote the maximum cardinality of a code of length $n$ over an alphabet $[q]$ with $q$ letters and with minimum distance at least $d$. We consider the following upper bound on $A_q(n,d)$. For any $k$, let $\CC_k$ be the collection of codes of cardinality at most $k$. Then $A_q(n,d)$ is at most the maximum value of $\sum_{v\in[q]^n}x(\{v\})$, where $x$ is a function $\CC_4\to R_+$ such that $x(\emptyset)=1$ and $x(C)=0$ if $C$ has minimum distance less than $d$, and such that the $\CC_2\times\CC_2$ matrix $(x(C\cup C'))_{C,C'\in\CC_2}$ is positive semidefinite. By the symmetry of the problem, we can apply representation theory to reduce the problem to a semidefinite programming problem with order bounded by a polynomial in $n$. It yields the new upper bounds $A_4(6,3)\leq 176$, $A_4(7,4)\leq 155$, $A_5(7,4)\leq 489$, and $A_5(7,5)\leq 87$. |
Author | Polak, Sven Litjens, Bart Schrijver, Alexander |
Author_xml | – sequence: 1 givenname: Bart surname: Litjens fullname: Litjens, Bart – sequence: 2 givenname: Sven surname: Polak fullname: Polak, Sven – sequence: 3 givenname: Alexander surname: Schrijver fullname: Schrijver, Alexander |
BackLink | https://doi.org/10.1007/s10623-016-0216-5$$DView published paper (Access to full text may be restricted) https://doi.org/10.48550/arXiv.1602.02531$$DView paper in arXiv |
BookMark | eNotj81KAzEURoMoWGsfwJUB11OTm5_J4EqKVaHgwu6Hm0kCU9qkTTqib-_Yuvo2h49zbshlTNETcsfZXBql2CPm7_5rzjWDOQMl-AWZgBC8MhLgmsxK2TDGQNeglJiQp0-_650PfeyPnto0RFdoSJmOt7aPmH9ol5wv1GLxjqZIDwO6POy3vtySq4Db4mf_OyXr5ct68VatPl7fF8-rChWIyoCT2hspHVqrQ8cDosbGOhRSdYwFUNgELoxWiAhao-5AG4um0846J6bk_nx7Kmv3ud-NWu1fYXsqHImHM7HP6TD4cmw3achxdGqB1TWXTd0I8Qu1SlYY |
ContentType | Paper Journal Article |
Copyright | 2016. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. http://arxiv.org/licenses/nonexclusive-distrib/1.0 |
Copyright_xml | – notice: 2016. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: http://arxiv.org/licenses/nonexclusive-distrib/1.0 |
DBID | 8FE 8FG ABJCF ABUWG AFKRA AZQEC BENPR BGLVJ CCPQU DWQXO HCIFZ L6V M7S PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS AKZ GOX |
DOI | 10.48550/arxiv.1602.02531 |
DatabaseName | ProQuest SciTech Collection ProQuest Technology Collection ProQuest Materials Science & Engineering ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central Technology collection ProQuest One Community College ProQuest Central Korea SciTech Premium Collection ProQuest Engineering Collection Engineering Database ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering collection arXiv Mathematics arXiv.org |
DatabaseTitle | Publicly Available Content Database Engineering Database Technology Collection ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest One Academic Eastern Edition ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Technology Collection ProQuest SciTech Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Engineering Collection ProQuest One Academic UKI Edition ProQuest Central Korea Materials Science & Engineering Collection ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) Engineering Collection |
DatabaseTitleList | Publicly Available Content Database |
Database_xml | – sequence: 1 dbid: GOX name: arXiv.org url: http://arxiv.org/find sourceTypes: Open Access Repository – sequence: 2 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Physics |
EISSN | 2331-8422 |
ExternalDocumentID | 1602_02531 |
Genre | Working Paper/Pre-Print |
GroupedDBID | 8FE 8FG ABJCF ABUWG AFKRA ALMA_UNASSIGNED_HOLDINGS AZQEC BENPR BGLVJ CCPQU DWQXO FRJ HCIFZ L6V M7S M~E PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS AKZ GOX |
ID | FETCH-LOGICAL-a523-82d46e844dabb6fc1faa6a9bda345c00f25a9f13865aaa266a6c268ba8c6dbdd3 |
IEDL.DBID | GOX |
IngestDate | Wed Jul 23 01:56:19 EDT 2025 Mon Jun 30 08:19:52 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | false |
IsScholarly | false |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a523-82d46e844dabb6fc1faa6a9bda345c00f25a9f13865aaa266a6c268ba8c6dbdd3 |
Notes | SourceType-Working Papers-1 ObjectType-Working Paper/Pre-Print-1 content type line 50 |
OpenAccessLink | https://arxiv.org/abs/1602.02531 |
PQID | 2077149793 |
PQPubID | 2050157 |
ParticipantIDs | arxiv_primary_1602_02531 proquest_journals_2077149793 |
PublicationCentury | 2000 |
PublicationDate | 20160208 2016-02-08 |
PublicationDateYYYYMMDD | 2016-02-08 |
PublicationDate_xml | – month: 02 year: 2016 text: 20160208 day: 08 |
PublicationDecade | 2010 |
PublicationPlace | Ithaca |
PublicationPlace_xml | – name: Ithaca |
PublicationTitle | arXiv.org |
PublicationYear | 2016 |
Publisher | Cornell University Library, arXiv.org |
Publisher_xml | – name: Cornell University Library, arXiv.org |
SSID | ssj0002672553 |
Score | 1.585965 |
SecondaryResourceType | preprint |
Snippet | For nonnegative integers \(q,n,d\), let \(A_q(n,d)\) denote the maximum cardinality of a code of length \(n\) over an alphabet \([q]\) with \(q\) letters and... Designs, Codes and Cryptography, 84 (1) (2017), 87-100 For nonnegative integers $q,n,d$, let $A_q(n,d)$ denote the maximum cardinality of a code of length $n$... |
SourceID | arxiv proquest |
SourceType | Open Access Repository Aggregation Database |
SubjectTerms | Codes Integers Mathematics - Combinatorics Mathematics - Optimization and Control Mathematics - Representation Theory Polynomials Semidefinite programming Upper bounds |
SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1NS8NAEF20QfDmJ61W2YPXaLvZJBs8CEqlCJaiFXoLsx-BgrZp0oo_35ltqgfBSw6bQ8js7szbtzPzGLtK06JvXByF-EhDKYQLgSQBrcuc6hncY7626nmUDN_k0zSeNoRb3aRVbn2id9R2YYgjJyYkRTSPy-muXIakGkW3q42Exi4L0AWruMWC-8Fo_PLDsogkRcwcba4zffOuG6i-Zp9EqohrjPckLhf4oT_O2EeYxwMWjKF01SHbcfMjtucTM019zG5f3cfMumJG2JBrEkGqOQJNjsd27WtpOVWl15zCkeWLOV-uwVbr8t3VJ2zyOJg8DMNG8CAEPA-GSliZOCWlBU01OP0CIIFMW4hkbHq9QsSQFX1S6QQAjKyQGJEoDcokVlsbnbIWfty1GdeFRmQQOWlTJzMyjeiZzCpq_iIQIXRY2_90Xm56WuRkj9zbo8O6WzvkzXqu81_rn_3_-pztI6TY5DWrLmutqrW7wLC90pfN3HwDfeaXvQ priority: 102 providerName: ProQuest |
Title | Semidefinite bounds for nonbinary codes based on quadruples |
URI | https://www.proquest.com/docview/2077149793 https://arxiv.org/abs/1602.02531 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwdV3PS8MwFH5s8-JFFJVN58jBa7FN0zbFk8p-IGyKTtitvDQpDHTOdhNP_u2-pB0exEsOISX0Jen3PZrvewCXSVIEuYlCj5rEE5wbD21JQG1SI_2czpjTVk1n8eRF3C-iRQvYTguD5dfys_YHVtVVEFs_TR5ZoXSbc3tla_ywqH9OOiuuZvzvOOKYruvPp9XhxegQDhqix27qlTmCllkdw_WzeVtqUywt02PKljSqGNFGRkm4cspYZjXmFbPgotn7in1sUZfb9aupTmA-Gs7vJl5TvsBDyu48ybWIjRRCo7KKmqBAjDFVGkMR5b5f8AjTIrA1NxGRcBLjnMdSocxjrbQOT6FDk5suMFUowvnQCJ0YkRKiRNzPUy2tlQsnvO9B1710tq4dKjIbj8zFowf9XRyyZndWGfeThDIjOppn_z95DvtEDuobyrIPnU25NRcEwBs1gLYcjQewdzucPT4N3JpQO_0e_gDQg4lF |
linkProvider | Cornell University |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LS8NAEB5qg-jNJ1ar7kGP0XSzeSEiqC2tfVC0Qm9hN7uBgrZp0_r4Uf5HZ7etHgRvveSQQEJm5_Ht7Mx8AGdBkFYS5bk2XgKbUapsrikBpYpU6CRoY6a3qt3x68_soe_1C_C17IXRZZVLn2gctRwlOkeuMyEBonlUp5tsbGvWKH26uqTQmKtFU32-45Ytv27c4_qeU1qr9u7q9oJVwOa46bJDKpmvQsYkF7rRpZJy7vNISO4yL3GclHo8SiuaCpNzjuGL-wn1Q8HDxJdCShdfuwYWoowIjci6rXa6jz9JHeoHCNHd-empmRV2yScfgzedw6EXCC80l51lbv3x_Sag1bbA6vJMTbahoIY7sG7qQJN8F66e1OtAqnSgoSgRmnMpJ4hryXA0FKZ1l-gm-Jzo6CfJaEjGMy4ns-xF5XvQW4Uk9qGIH1cHQEQqEIi4islAsQhDnkedJJKhnjVDEZCU4MD8dJzNR2jEWh6xkUcJyks5xAvzyePfxT78__EpbNR77VbcanSaR7CJaGZeUh2WoTidzNQxIoapOFmsE4F4xZrxDWvr1gA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Semidefinite+bounds+for+nonbinary+codes+based+on+quadruples&rft.jtitle=arXiv.org&rft.au=Litjens%2C+Bart&rft.au=Polak%2C+Sven&rft.au=Schrijver%2C+Alexander&rft.date=2016-02-08&rft.pub=Cornell+University+Library%2C+arXiv.org&rft.eissn=2331-8422&rft_id=info:doi/10.48550%2Farxiv.1602.02531 |