Semidefinite bounds for nonbinary codes based on quadruples

For nonnegative integers \(q,n,d\), let \(A_q(n,d)\) denote the maximum cardinality of a code of length \(n\) over an alphabet \([q]\) with \(q\) letters and with minimum distance at least \(d\). We consider the following upper bound on \(A_q(n,d)\). For any \(k\), let \(\CC_k\) be the collection of...

Full description

Saved in:
Bibliographic Details
Published inarXiv.org
Main Authors Litjens, Bart, Polak, Sven, Schrijver, Alexander
Format Paper Journal Article
LanguageEnglish
Published Ithaca Cornell University Library, arXiv.org 08.02.2016
Subjects
Online AccessGet full text
ISSN2331-8422
DOI10.48550/arxiv.1602.02531

Cover

Loading…
Abstract For nonnegative integers \(q,n,d\), let \(A_q(n,d)\) denote the maximum cardinality of a code of length \(n\) over an alphabet \([q]\) with \(q\) letters and with minimum distance at least \(d\). We consider the following upper bound on \(A_q(n,d)\). For any \(k\), let \(\CC_k\) be the collection of codes of cardinality at most \(k\). Then \(A_q(n,d)\) is at most the maximum value of \(\sum_{v\in[q]^n}x(\{v\})\), where \(x\) is a function \(\CC_4\to R_+\) such that \(x(\emptyset)=1\) and \(x(C)=0\) if \(C\) has minimum distance less than \(d\), and such that the \(\CC_2\times\CC_2\) matrix \((x(C\cup C'))_{C,C'\in\CC_2}\) is positive semidefinite. By the symmetry of the problem, we can apply representation theory to reduce the problem to a semidefinite programming problem with order bounded by a polynomial in \(n\). It yields the new upper bounds \(A_4(6,3)\leq 176\), \(A_4(7,4)\leq 155\), \(A_5(7,4)\leq 489\), and \(A_5(7,5)\leq 87\).
AbstractList For nonnegative integers \(q,n,d\), let \(A_q(n,d)\) denote the maximum cardinality of a code of length \(n\) over an alphabet \([q]\) with \(q\) letters and with minimum distance at least \(d\). We consider the following upper bound on \(A_q(n,d)\). For any \(k\), let \(\CC_k\) be the collection of codes of cardinality at most \(k\). Then \(A_q(n,d)\) is at most the maximum value of \(\sum_{v\in[q]^n}x(\{v\})\), where \(x\) is a function \(\CC_4\to R_+\) such that \(x(\emptyset)=1\) and \(x(C)=0\) if \(C\) has minimum distance less than \(d\), and such that the \(\CC_2\times\CC_2\) matrix \((x(C\cup C'))_{C,C'\in\CC_2}\) is positive semidefinite. By the symmetry of the problem, we can apply representation theory to reduce the problem to a semidefinite programming problem with order bounded by a polynomial in \(n\). It yields the new upper bounds \(A_4(6,3)\leq 176\), \(A_4(7,4)\leq 155\), \(A_5(7,4)\leq 489\), and \(A_5(7,5)\leq 87\).
Designs, Codes and Cryptography, 84 (1) (2017), 87-100 For nonnegative integers $q,n,d$, let $A_q(n,d)$ denote the maximum cardinality of a code of length $n$ over an alphabet $[q]$ with $q$ letters and with minimum distance at least $d$. We consider the following upper bound on $A_q(n,d)$. For any $k$, let $\CC_k$ be the collection of codes of cardinality at most $k$. Then $A_q(n,d)$ is at most the maximum value of $\sum_{v\in[q]^n}x(\{v\})$, where $x$ is a function $\CC_4\to R_+$ such that $x(\emptyset)=1$ and $x(C)=0$ if $C$ has minimum distance less than $d$, and such that the $\CC_2\times\CC_2$ matrix $(x(C\cup C'))_{C,C'\in\CC_2}$ is positive semidefinite. By the symmetry of the problem, we can apply representation theory to reduce the problem to a semidefinite programming problem with order bounded by a polynomial in $n$. It yields the new upper bounds $A_4(6,3)\leq 176$, $A_4(7,4)\leq 155$, $A_5(7,4)\leq 489$, and $A_5(7,5)\leq 87$.
Author Polak, Sven
Litjens, Bart
Schrijver, Alexander
Author_xml – sequence: 1
  givenname: Bart
  surname: Litjens
  fullname: Litjens, Bart
– sequence: 2
  givenname: Sven
  surname: Polak
  fullname: Polak, Sven
– sequence: 3
  givenname: Alexander
  surname: Schrijver
  fullname: Schrijver, Alexander
BackLink https://doi.org/10.1007/s10623-016-0216-5$$DView published paper (Access to full text may be restricted)
https://doi.org/10.48550/arXiv.1602.02531$$DView paper in arXiv
BookMark eNotj81KAzEURoMoWGsfwJUB11OTm5_J4EqKVaHgwu6Hm0kCU9qkTTqib-_Yuvo2h49zbshlTNETcsfZXBql2CPm7_5rzjWDOQMl-AWZgBC8MhLgmsxK2TDGQNeglJiQp0-_650PfeyPnto0RFdoSJmOt7aPmH9ol5wv1GLxjqZIDwO6POy3vtySq4Db4mf_OyXr5ct68VatPl7fF8-rChWIyoCT2hspHVqrQ8cDosbGOhRSdYwFUNgELoxWiAhao-5AG4um0846J6bk_nx7Kmv3ud-NWu1fYXsqHImHM7HP6TD4cmw3achxdGqB1TWXTd0I8Qu1SlYY
ContentType Paper
Journal Article
Copyright 2016. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
http://arxiv.org/licenses/nonexclusive-distrib/1.0
Copyright_xml – notice: 2016. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: http://arxiv.org/licenses/nonexclusive-distrib/1.0
DBID 8FE
8FG
ABJCF
ABUWG
AFKRA
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
HCIFZ
L6V
M7S
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
AKZ
GOX
DOI 10.48550/arxiv.1602.02531
DatabaseName ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Materials Science & Engineering
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
Technology collection
ProQuest One Community College
ProQuest Central Korea
SciTech Premium Collection
ProQuest Engineering Collection
Engineering Database
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering collection
arXiv Mathematics
arXiv.org
DatabaseTitle Publicly Available Content Database
Engineering Database
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
ProQuest One Academic UKI Edition
ProQuest Central Korea
Materials Science & Engineering Collection
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
Engineering Collection
DatabaseTitleList Publicly Available Content Database

Database_xml – sequence: 1
  dbid: GOX
  name: arXiv.org
  url: http://arxiv.org/find
  sourceTypes: Open Access Repository
– sequence: 2
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 2331-8422
ExternalDocumentID 1602_02531
Genre Working Paper/Pre-Print
GroupedDBID 8FE
8FG
ABJCF
ABUWG
AFKRA
ALMA_UNASSIGNED_HOLDINGS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
FRJ
HCIFZ
L6V
M7S
M~E
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
AKZ
GOX
ID FETCH-LOGICAL-a523-82d46e844dabb6fc1faa6a9bda345c00f25a9f13865aaa266a6c268ba8c6dbdd3
IEDL.DBID GOX
IngestDate Wed Jul 23 01:56:19 EDT 2025
Mon Jun 30 08:19:52 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a523-82d46e844dabb6fc1faa6a9bda345c00f25a9f13865aaa266a6c268ba8c6dbdd3
Notes SourceType-Working Papers-1
ObjectType-Working Paper/Pre-Print-1
content type line 50
OpenAccessLink https://arxiv.org/abs/1602.02531
PQID 2077149793
PQPubID 2050157
ParticipantIDs arxiv_primary_1602_02531
proquest_journals_2077149793
PublicationCentury 2000
PublicationDate 20160208
2016-02-08
PublicationDateYYYYMMDD 2016-02-08
PublicationDate_xml – month: 02
  year: 2016
  text: 20160208
  day: 08
PublicationDecade 2010
PublicationPlace Ithaca
PublicationPlace_xml – name: Ithaca
PublicationTitle arXiv.org
PublicationYear 2016
Publisher Cornell University Library, arXiv.org
Publisher_xml – name: Cornell University Library, arXiv.org
SSID ssj0002672553
Score 1.585965
SecondaryResourceType preprint
Snippet For nonnegative integers \(q,n,d\), let \(A_q(n,d)\) denote the maximum cardinality of a code of length \(n\) over an alphabet \([q]\) with \(q\) letters and...
Designs, Codes and Cryptography, 84 (1) (2017), 87-100 For nonnegative integers $q,n,d$, let $A_q(n,d)$ denote the maximum cardinality of a code of length $n$...
SourceID arxiv
proquest
SourceType Open Access Repository
Aggregation Database
SubjectTerms Codes
Integers
Mathematics - Combinatorics
Mathematics - Optimization and Control
Mathematics - Representation Theory
Polynomials
Semidefinite programming
Upper bounds
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1NS8NAEF20QfDmJ61W2YPXaLvZJBs8CEqlCJaiFXoLsx-BgrZp0oo_35ltqgfBSw6bQ8js7szbtzPzGLtK06JvXByF-EhDKYQLgSQBrcuc6hncY7626nmUDN_k0zSeNoRb3aRVbn2id9R2YYgjJyYkRTSPy-muXIakGkW3q42Exi4L0AWruMWC-8Fo_PLDsogkRcwcba4zffOuG6i-Zp9EqohrjPckLhf4oT_O2EeYxwMWjKF01SHbcfMjtucTM019zG5f3cfMumJG2JBrEkGqOQJNjsd27WtpOVWl15zCkeWLOV-uwVbr8t3VJ2zyOJg8DMNG8CAEPA-GSliZOCWlBU01OP0CIIFMW4hkbHq9QsSQFX1S6QQAjKyQGJEoDcokVlsbnbIWfty1GdeFRmQQOWlTJzMyjeiZzCpq_iIQIXRY2_90Xm56WuRkj9zbo8O6WzvkzXqu81_rn_3_-pztI6TY5DWrLmutqrW7wLC90pfN3HwDfeaXvQ
  priority: 102
  providerName: ProQuest
Title Semidefinite bounds for nonbinary codes based on quadruples
URI https://www.proquest.com/docview/2077149793
https://arxiv.org/abs/1602.02531
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwdV3PS8MwFH5s8-JFFJVN58jBa7FN0zbFk8p-IGyKTtitvDQpDHTOdhNP_u2-pB0exEsOISX0Jen3PZrvewCXSVIEuYlCj5rEE5wbD21JQG1SI_2czpjTVk1n8eRF3C-iRQvYTguD5dfys_YHVtVVEFs_TR5ZoXSbc3tla_ywqH9OOiuuZvzvOOKYruvPp9XhxegQDhqix27qlTmCllkdw_WzeVtqUywt02PKljSqGNFGRkm4cspYZjXmFbPgotn7in1sUZfb9aupTmA-Gs7vJl5TvsBDyu48ybWIjRRCo7KKmqBAjDFVGkMR5b5f8AjTIrA1NxGRcBLjnMdSocxjrbQOT6FDk5suMFUowvnQCJ0YkRKiRNzPUy2tlQsnvO9B1710tq4dKjIbj8zFowf9XRyyZndWGfeThDIjOppn_z95DvtEDuobyrIPnU25NRcEwBs1gLYcjQewdzucPT4N3JpQO_0e_gDQg4lF
linkProvider Cornell University
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LS8NAEB5qg-jNJ1ar7kGP0XSzeSEiqC2tfVC0Qm9hN7uBgrZp0_r4Uf5HZ7etHgRvveSQQEJm5_Ht7Mx8AGdBkFYS5bk2XgKbUapsrikBpYpU6CRoY6a3qt3x68_soe_1C_C17IXRZZVLn2gctRwlOkeuMyEBonlUp5tsbGvWKH26uqTQmKtFU32-45Ytv27c4_qeU1qr9u7q9oJVwOa46bJDKpmvQsYkF7rRpZJy7vNISO4yL3GclHo8SiuaCpNzjuGL-wn1Q8HDxJdCShdfuwYWoowIjci6rXa6jz9JHeoHCNHd-empmRV2yScfgzedw6EXCC80l51lbv3x_Sag1bbA6vJMTbahoIY7sG7qQJN8F66e1OtAqnSgoSgRmnMpJ4hryXA0FKZ1l-gm-Jzo6CfJaEjGMy4ns-xF5XvQW4Uk9qGIH1cHQEQqEIi4islAsQhDnkedJJKhnjVDEZCU4MD8dJzNR2jEWh6xkUcJyks5xAvzyePfxT78__EpbNR77VbcanSaR7CJaGZeUh2WoTidzNQxIoapOFmsE4F4xZrxDWvr1gA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Semidefinite+bounds+for+nonbinary+codes+based+on+quadruples&rft.jtitle=arXiv.org&rft.au=Litjens%2C+Bart&rft.au=Polak%2C+Sven&rft.au=Schrijver%2C+Alexander&rft.date=2016-02-08&rft.pub=Cornell+University+Library%2C+arXiv.org&rft.eissn=2331-8422&rft_id=info:doi/10.48550%2Farxiv.1602.02531