Verifying Graph Programs with First-Order Logic

We consider Hoare-style verification for the graph programming language GP 2. In previous work, graph properties were specified by so-called E-conditions which extend nested graph conditions. However, this type of assertions is not easy to comprehend by programmers that are used to formal specificat...

Full description

Saved in:
Bibliographic Details
Published inarXiv.org
Main Authors Wulandari, Gia S, Plump, Detlef
Format Paper Journal Article
LanguageEnglish
Published Ithaca Cornell University Library, arXiv.org 03.12.2020
Subjects
Online AccessGet full text
ISSN2331-8422
DOI10.48550/arxiv.2012.01662

Cover

Loading…
Abstract We consider Hoare-style verification for the graph programming language GP 2. In previous work, graph properties were specified by so-called E-conditions which extend nested graph conditions. However, this type of assertions is not easy to comprehend by programmers that are used to formal specifications in standard first-order logic. In this paper, we present an approach to verify GP 2 programs with a standard first-order logic. We show how to construct a strongest liberal postcondition with respect to a rule schema and a precondition. We then extend this construction to obtain strongest liberal postconditions for arbitrary loop-free programs. Compared with previous work, this allows to reason about a vastly generalised class of graph programs. In particular, many programs with nested loops can be verified with the new calculus.
AbstractList EPTCS 330, 2020, pp. 181-200 We consider Hoare-style verification for the graph programming language GP 2. In previous work, graph properties were specified by so-called E-conditions which extend nested graph conditions. However, this type of assertions is not easy to comprehend by programmers that are used to formal specifications in standard first-order logic. In this paper, we present an approach to verify GP 2 programs with a standard first-order logic. We show how to construct a strongest liberal postcondition with respect to a rule schema and a precondition. We then extend this construction to obtain strongest liberal postconditions for arbitrary loop-free programs. Compared with previous work, this allows to reason about a vastly generalised class of graph programs. In particular, many programs with nested loops can be verified with the new calculus.
We consider Hoare-style verification for the graph programming language GP 2. In previous work, graph properties were specified by so-called E-conditions which extend nested graph conditions. However, this type of assertions is not easy to comprehend by programmers that are used to formal specifications in standard first-order logic. In this paper, we present an approach to verify GP 2 programs with a standard first-order logic. We show how to construct a strongest liberal postcondition with respect to a rule schema and a precondition. We then extend this construction to obtain strongest liberal postconditions for arbitrary loop-free programs. Compared with previous work, this allows to reason about a vastly generalised class of graph programs. In particular, many programs with nested loops can be verified with the new calculus.
Author Wulandari, Gia S
Plump, Detlef
Author_xml – sequence: 1
  givenname: Gia
  surname: Wulandari
  middlename: S
  fullname: Wulandari, Gia S
– sequence: 2
  givenname: Detlef
  surname: Plump
  fullname: Plump, Detlef
BackLink https://doi.org/10.48550/arXiv.2012.01662$$DView paper in arXiv
https://doi.org/10.4204/EPTCS.330.11$$DView published paper (Access to full text may be restricted)
BookMark eNotz81OwzAQBGALgUQpfQBOROKc1F7_xD6iihakSOVQcY2cYKeuaBLWKdC3J7Sc9jI7mu-GXLZd6wi5YzQTWko6t_gTvjKgDDLKlIILMgHOWaoFwDWZxbijlILKQUo-IfM3h8EfQ9skK7T9NnnFrkG7j8l3GLbJMmAc0jW-O0yKrgn1Lbny9iO62f-dks3yabN4Tov16mXxWKRWAk9zo7RUGiR4KUQlDOVO81pK71ztpabUeG3rvALPlGDV-COM90Jr48EJw6fk_lx70pQ9hr3FY_mnKk-qMfFwTvTYfR5cHMpdd8B23FSCGHWCjT7-C7SrTuY
ContentType Paper
Journal Article
Copyright 2020. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
http://arxiv.org/licenses/nonexclusive-distrib/1.0
Copyright_xml – notice: 2020. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: http://arxiv.org/licenses/nonexclusive-distrib/1.0
DBID 8FE
8FG
ABJCF
ABUWG
AFKRA
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
HCIFZ
L6V
M7S
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
AKY
GOX
DOI 10.48550/arxiv.2012.01662
DatabaseName ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central (Alumni Edition)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
Technology collection
ProQuest One Community College
ProQuest Central Korea
SciTech Premium Collection
ProQuest Engineering Collection
Engineering Database
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest Publicly Available Content
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
arXiv Computer Science
arXiv.org
DatabaseTitle Publicly Available Content Database
Engineering Database
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
ProQuest One Academic UKI Edition
ProQuest Central Korea
Materials Science & Engineering Collection
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
Engineering Collection
DatabaseTitleList
Publicly Available Content Database
Database_xml – sequence: 1
  dbid: GOX
  name: arXiv.org
  url: http://arxiv.org/find
  sourceTypes: Open Access Repository
– sequence: 2
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 2331-8422
ExternalDocumentID 2012_01662
Genre Working Paper/Pre-Print
GroupedDBID 8FE
8FG
ABJCF
ABUWG
AFKRA
ALMA_UNASSIGNED_HOLDINGS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
FRJ
HCIFZ
L6V
M7S
M~E
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
AKY
GOX
ID FETCH-LOGICAL-a523-7968568252f544b4903e83c55feecf58009f8ac7b2f1641b52349ff4889f2e493
IEDL.DBID GOX
IngestDate Tue Jul 22 23:39:27 EDT 2025
Mon Jun 30 09:21:36 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a523-7968568252f544b4903e83c55feecf58009f8ac7b2f1641b52349ff4889f2e493
Notes SourceType-Working Papers-1
ObjectType-Working Paper/Pre-Print-1
content type line 50
OpenAccessLink https://arxiv.org/abs/2012.01662
PQID 2467241553
PQPubID 2050157
ParticipantIDs arxiv_primary_2012_01662
proquest_journals_2467241553
PublicationCentury 2000
PublicationDate 20201203
PublicationDateYYYYMMDD 2020-12-03
PublicationDate_xml – month: 12
  year: 2020
  text: 20201203
  day: 03
PublicationDecade 2020
PublicationPlace Ithaca
PublicationPlace_xml – name: Ithaca
PublicationTitle arXiv.org
PublicationYear 2020
Publisher Cornell University Library, arXiv.org
Publisher_xml – name: Cornell University Library, arXiv.org
SSID ssj0002672553
Score 1.744406
SecondaryResourceType preprint
Snippet We consider Hoare-style verification for the graph programming language GP 2. In previous work, graph properties were specified by so-called E-conditions which...
EPTCS 330, 2020, pp. 181-200 We consider Hoare-style verification for the graph programming language GP 2. In previous work, graph properties were specified by...
SourceID arxiv
proquest
SourceType Open Access Repository
Aggregation Database
SubjectTerms Computer Science - Logic in Computer Science
Formal specifications
Logic
Nested loops
Programming languages
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LSwMxEB60i-DNJ61W2YPX2DaP3c1JUFqLYC1Spbdlk02gl762ij_fmXSrB8Frwhwymdc3mcwA3GieYpyBwmu7BgGKSCzTCdfMOuEFL0tve_Qb-XmUDN_k01RN64RbVZdV7mxiMNTlwlKOvMNRo8nbKHG3XDGaGkWvq_UIjX2I0ARnqgHRfX80fv3JsnAkQpLtc2Zo3tUp1l-zT6rp4rcY7tCUnCgs_THGwcMMjiAaF0u3PoY9Nz-Bg1CYaatT6LyjiIS_SPEj9ZaOx9uCqiqmDGo8mGH0xl6of2ZMY5PtGUwG_cnDkNVDDliBGJClOslUgjCNeyWlkborXCasUt456xWGc9pnhU0N9whsegZppPYe1U577qQW59CYL-auCbFJTJaU3qESlrLgBoGD7nprexJNWJm6FjTDQfPlto9FTjzIAw9a0N6dPa9luMp_OX7x__YlHHJCoVTkIdrQ2Kw_3BW66o25ru_jG5rlke8
  priority: 102
  providerName: ProQuest
Title Verifying Graph Programs with First-Order Logic
URI https://www.proquest.com/docview/2467241553
https://arxiv.org/abs/2012.01662
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwdV09T8MwED21ZWFBIEAtlMgDa0Tir8QjoCYVUj-ECuoWxY4tdUGoLYiJ387ZScWAWDJY9mCfffeec_cMcKtohjgDN69JNBIUJk2sJFWxscwx2jTOpL4aeTaX0xf-tBbrHpBDLUy9_dp8tvrAeofM3F_VpdI72T6lPmWrXKzbn5NBiqvr_9sPMWZo-uNaQ7woTuGkA3rkvrXMGfTs2zncvaLBQ2URKb1SNFm26VE74u9DSbFBLBYvvBom8Y8gmwtYFZPV4zTuniyIa2R0caZkLiSSLuoE55qrhNmcGSGctcYJBGfK5bXJNHVIU1KNY7hyDg-RctRyxS5hgKzfDoFoqXPZOItHquE11UgDVOKMSTk6pCazIxiGiVbvrSpF5degCmswgvFh7lW3I3cVRY_oo7VgV_-PvIZj6vmkT9dgYxjstx_2BoPuXkfQz4sygqOHyXz5HAU74Hf2PfkBb7mDiw
linkProvider Cornell University
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LTwIxEG4IxOjNZ0BR96DHFWi7jx6MB3UBecgBDbfNttsmXABZfP0o_6MzXVYPJt64brNJp_PofNN5EHIhaAB-BgivakoAKMxXrvCpcJVmhtE0NaqF1ciDod954g8Tb1IiX0UtDKZVFjbRGup0rjBG3qCg0XjbeOxm8eLi1Ch8XS1GaORi0dOf7wDZsuvuHfD3ktLofnzbcddTBdwEQJcbCD_0fMBF1HicSy6aTIdMeZ7RWhkP_CdhwkQFkhpAEi0J_3BhDMi5MFRz7L0EFr_CGRPYqj-M2j8hHQo7hP3lb6e2U1gjWX5M3zCBjF6Bb4UjeSr20x_Lb6-zaJdURslCL_dISc_2yZbNAlXZAWk8gzzawienjY2snVGevZU5GK51oim4iu4jNut0cEazOiTjTdB-RMqz-UxXiSN9Gfqp0aDxKU-oBJQimkapFgd7mQa6RqqW0HiRN82I8QxiewY1Ui9oj9cKk8W_7D3-f_mcbHfGg37c7w57J2SHIvzF7BJWJ-XV8lWfgo-wkmeWMw6JNywJ3xgGysU
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Verifying+Graph+Programs+with+First-Order+Logic&rft.jtitle=arXiv.org&rft.au=Wulandari%2C+Gia+S&rft.au=Plump%2C+Detlef&rft.date=2020-12-03&rft.pub=Cornell+University+Library%2C+arXiv.org&rft.eissn=2331-8422&rft_id=info:doi/10.48550%2Farxiv.2012.01662