Deep learning for dynamic modeling and coded information storage of vector-soliton pulsations in mode-locked fiber lasers
Soliton pulsations are ubiquitous feature of non-stationary soliton dynamics in mode-locked lasers and many other physical systems. To overcome difficulties related to huge amount of necessary computations and low efficiency of traditional numerical methods in modeling the evolution of non-stationar...
Saved in:
Published in | arXiv.org |
---|---|
Main Authors | , , , , , , , , |
Format | Paper Journal Article |
Language | English |
Published |
Ithaca
Cornell University Library, arXiv.org
05.08.2024
|
Subjects | |
Online Access | Get full text |
ISSN | 2331-8422 |
DOI | 10.48550/arxiv.2407.18725 |
Cover
Abstract | Soliton pulsations are ubiquitous feature of non-stationary soliton dynamics in mode-locked lasers and many other physical systems. To overcome difficulties related to huge amount of necessary computations and low efficiency of traditional numerical methods in modeling the evolution of non-stationary solitons, we propose a two-parallel bidirectional long short-term memory recurrent neural network, with the main objective to predict dynamics of vector-soliton pulsations in various complex states, whose real-time dynamics is verified by experiments. Besides, the scheme of coded information storage based on the TP-Bi_LSTM RNN, instead of actual pulse signals, is realized too. The findings offer new applications of deep learning to ultrafast optics and information storage. |
---|---|
AbstractList | Soliton pulsations are ubiquitous feature of non-stationary soliton dynamics in mode-locked lasers and many other physical systems. To overcome difficulties related to huge amount of necessary computations and low efficiency of traditional numerical methods in modeling the evolution of non-stationary solitons, we propose a two-parallel bidirectional long short-term memory recurrent neural network, with the main objective to predict dynamics of vector-soliton pulsations in various complex states, whose real-time dynamics is verified by experiments. Besides, the scheme of coded information storage based on the TP-Bi_LSTM RNN, instead of actual pulse signals, is realized too. The findings offer new applications of deep learning to ultrafast optics and information storage. Soliton pulsations are ubiquitous feature of non-stationary soliton dynamics in mode-locked lasers and many other physical systems. To overcome difficulties related to huge amount of necessary computations and low efficiency of traditional numerical methods in modeling the evolution of non-stationary solitons, we propose a two-parallel bidirectional long short-term memory recurrent neural network, with the main objective to predict dynamics of vector-soliton pulsations in various complex states, whose real-time dynamics is verified by experiments. Besides, the scheme of coded information storage based on the TP-Bi_LSTM RNN, instead of actual pulse signals, is realized too. The findings offer new applications of deep learning to ultrafast optics and information storage. |
Author | Da-Lei, Wang Malomed, Boris A Bo-Wei, Zhu Liu, Wei Yue-Yue, Wang Zhen-Tao Ju Zhi-Zeng Si Xue-Peng, Wang Chao-Qing, Dai |
Author_xml | – sequence: 1 fullname: Zhi-Zeng Si – sequence: 2 givenname: Wang surname: Da-Lei fullname: Da-Lei, Wang – sequence: 3 givenname: Zhu surname: Bo-Wei fullname: Bo-Wei, Zhu – sequence: 4 fullname: Zhen-Tao Ju – sequence: 5 givenname: Wang surname: Xue-Peng fullname: Xue-Peng, Wang – sequence: 6 givenname: Wei surname: Liu fullname: Liu, Wei – sequence: 7 givenname: Boris surname: Malomed middlename: A fullname: Malomed, Boris A – sequence: 8 givenname: Wang surname: Yue-Yue fullname: Yue-Yue, Wang – sequence: 9 givenname: Dai surname: Chao-Qing fullname: Chao-Qing, Dai |
BackLink | https://doi.org/10.48550/arXiv.2407.18725$$DView paper in arXiv https://doi.org/10.1002/lpor.202400097$$DView published paper (Access to full text may be restricted) |
BookMark | eNotkM1OwzAQhC0EEqX0AThhiXOK443j5IjKr1SJS-_RJtlULokd7LSib49pOa1m59vRam7YpXWWGLtLxTIrlBKP6H_MYSkzoZdpoaW6YDMJkCZFJuU1W4SwE0LIPDoKZuz4TDTyntBbY7e8c563R4uDafjgWur_lmhb3kTRcmMjMOBknOVhch63xF3HD9REkQTXmyk6474PJybEg1NM0rvmK953pibPewzkwy276rAPtPifc7Z5fdms3pP159vH6mmdoJKQaAGlbDIJXUt5CbVOUWWyESA7AZhpbFPUdU4SRCeoBMIaSOUSSiHbTGuYs_tz7KmXavRmQH-s_vqpTv1E4uFMjN597ylM1c7tvY0_VSAKpWOKAvgFdPprmA |
ContentType | Paper Journal Article |
Copyright | 2024. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. http://arxiv.org/licenses/nonexclusive-distrib/1.0 |
Copyright_xml | – notice: 2024. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: http://arxiv.org/licenses/nonexclusive-distrib/1.0 |
DBID | 8FE 8FG ABJCF ABUWG AFKRA AZQEC BENPR BGLVJ CCPQU DWQXO HCIFZ L6V M7S PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS ALA GOX |
DOI | 10.48550/arxiv.2407.18725 |
DatabaseName | ProQuest SciTech Collection ProQuest Technology Collection Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials Proquest Central Technology Collection ProQuest One ProQuest Central SciTech Premium Collection ProQuest Engineering Collection Engineering Database Proquest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection arXiv Nonlinear Science arXiv.org |
DatabaseTitle | Publicly Available Content Database Engineering Database Technology Collection ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest One Academic Eastern Edition ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Technology Collection ProQuest SciTech Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Engineering Collection ProQuest One Academic UKI Edition ProQuest Central Korea Materials Science & Engineering Collection ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) Engineering Collection |
DatabaseTitleList | Publicly Available Content Database |
Database_xml | – sequence: 1 dbid: GOX name: arXiv.org url: http://arxiv.org/find sourceTypes: Open Access Repository – sequence: 2 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Physics |
EISSN | 2331-8422 |
ExternalDocumentID | 2407_18725 |
Genre | Working Paper/Pre-Print |
GroupedDBID | 8FE 8FG ABJCF ABUWG AFKRA ALMA_UNASSIGNED_HOLDINGS AZQEC BENPR BGLVJ CCPQU DWQXO FRJ HCIFZ L6V M7S M~E PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS ALA GOX |
ID | FETCH-LOGICAL-a523-70392c423fde693b71a542c032f03a47ad1a7b6e230f0e93eab3e5623902d4773 |
IEDL.DBID | GOX |
IngestDate | Tue Jul 22 23:00:11 EDT 2025 Mon Jun 30 09:24:49 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | false |
IsScholarly | false |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a523-70392c423fde693b71a542c032f03a47ad1a7b6e230f0e93eab3e5623902d4773 |
Notes | SourceType-Working Papers-1 ObjectType-Working Paper/Pre-Print-1 content type line 50 |
OpenAccessLink | https://arxiv.org/abs/2407.18725 |
PQID | 3085747753 |
PQPubID | 2050157 |
ParticipantIDs | arxiv_primary_2407_18725 proquest_journals_3085747753 |
PublicationCentury | 2000 |
PublicationDate | 20240805 |
PublicationDateYYYYMMDD | 2024-08-05 |
PublicationDate_xml | – month: 08 year: 2024 text: 20240805 day: 05 |
PublicationDecade | 2020 |
PublicationPlace | Ithaca |
PublicationPlace_xml | – name: Ithaca |
PublicationTitle | arXiv.org |
PublicationYear | 2024 |
Publisher | Cornell University Library, arXiv.org |
Publisher_xml | – name: Cornell University Library, arXiv.org |
SSID | ssj0002672553 |
Score | 1.8805561 |
SecondaryResourceType | preprint |
Snippet | Soliton pulsations are ubiquitous feature of non-stationary soliton dynamics in mode-locked lasers and many other physical systems. To overcome difficulties... Soliton pulsations are ubiquitous feature of non-stationary soliton dynamics in mode-locked lasers and many other physical systems. To overcome difficulties... |
SourceID | arxiv proquest |
SourceType | Open Access Repository Aggregation Database |
SubjectTerms | Deep learning Dynamic models Fiber lasers Information storage Laser mode locking Numerical methods Physics - Optics Physics - Pattern Formation and Solitons Real time Recurrent neural networks Solitary waves |
SummonAdditionalLinks | – databaseName: ProQuest Technology Collection dbid: 8FG link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV09T8MwELWgFRIbnypQkAdWt07sxPXEAJQKCcRQpG6RE9sIgdrQtBX8e-5cFwYkVlvOcI7vns_v7hFyabQuubeSeW8HTFYCz5zRTOGrjUgzy3OsRn54zEfP8n6STWLCrYm0yo1PDI7azirMkfcFtmKXCtD1Vf3BUDUKX1ejhMY2aScQafA_HwzvfnIsaa4AMYv1Y2Zo3dU388_XVQ-vMb1koFAgux2G_rjiEF-Ge6T9ZGo33ydbbnpAdgIts2oOydeNczWNyg4vFAAmtWsJeRokbHDQTC3FwnRLYxNUNDVF0iO4CjrzdBUS86xBphvM1Mv3yOCBBeEzDALaG6z3yB6hAKcBEh6R8fB2fD1iUSyBGbhLMji4Oq0AG3nrci1KlZhMphUXqefCSGVsYlSZO7hxeO60cKYUDrGP5qkFs4pj0prOpq5DqDYCy28rY4SQyme6ylPvFJcmETLj7oR0gsmKet0Po0BrFsGaJ6S7sWIRz0JT_O7c6f_TZ2Q3BcgQ6HVZl7QW86U7h5C_KC_Cvn4DCpesJQ priority: 102 providerName: ProQuest |
Title | Deep learning for dynamic modeling and coded information storage of vector-soliton pulsations in mode-locked fiber lasers |
URI | https://www.proquest.com/docview/3085747753 https://arxiv.org/abs/2407.18725 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwdV07T8MwELbasrAgEKAWSuWB1eD4Edcjjz6E1IJQkbpFTmwjBGqrvgQLv52zk4oBsWRwfIl0zuW-s7-7Q-jSaJ1TbwXx3naJKHiwOaOJCqc2nElL05CNPBqnwxfxMJXTGsK7XBiz_HzblvWB89V1CDeukq5iso7qjIXgavA4LQ8nYymuav7vPMCYcejPrzX6i_4hOqiAHr4pV-YI1dzsGH3dO7fAVaeGVwyAEduyJTyOLWnCIIT2OCSaW1wVNQ2qw4HECKaP5x5v40Y7WQXmGtxZbD4qRg4IxMcQcFDvIO8DGwQDPAaId4Im_d7kbkiq5gfEQGxIwBA1KwDreOtSzXOVGClYQTnzlBuhjE2MylMHEYSnTnNncu4CltGUWaEUP0WN2Xzmmghrw0M6bWEM50J5qYuUeaeoMAkXkroWakaVZYuyvkUWtJlFbbZQe6fFrPq2VxkPRfHhFZKf_S95jvYZuP9IlZNt1FgvN-4C3Pc676B6tz_ooL3b3vjpuRNXFK6j794PxXCfNA |
linkProvider | Cornell University |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LTwMhEJ6ojdGbz_iWgx7RLbCLHIwHtdZnPNTE24ZdwBhNu7Y-f5T_0Rm61YOJN68QIBmG4YP5ZgZgyxpTJMEpHoLb46qUdOas4Zq8NlKkLskoGvnyKmvfqLPb9HYMPkexMESrHNnEaKhdr6Q_8l1JqdiVRnR9UD1xqhpF3tVRCY2hWpz7jzd8sg32T49wf7eFaB13Dtu8rirALT66OGq4ESWCiOB8ZmShmzZVokykCIm0SlvXtLrIPELzkHgjvS2kJ5BgEuFwfYnTjkNDSWygwPTWyfeXjsg0AnQ59J3GTGG7tv9-_7pDr6ad5p6metyN2PTL8sfrrDUDjWtb-f4sjPnuHExGFmg5mIePI-8rVheSuGOIZ5kbVqxnsWIONdquYxQH71idc5V2lhHHEi0T6wX2Gv0AfEDEOuypXh5rwhAOiNNwvD8fcHwgsgpD9I4IdAE6_yHFRZjo9rp-CZixkqJ9S2ulVDqkpsxE8DpRtilVmvhlWIoiy6th-o2cpJlHaS7D2kiKeX30BvmPoqz83b0JU-3O5UV-cXp1vgrTAtFKZPalazDx3H_x64g2nouNuMcM8n_WqS8e9-aN |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Deep+learning+for+dynamic+modeling+and+coded+information+storage+of+vector-soliton+pulsations+in+mode-locked+fiber+lasers&rft.jtitle=arXiv.org&rft.au=Zhi-Zeng+Si&rft.au=Da-Lei%2C+Wang&rft.au=Bo-Wei%2C+Zhu&rft.au=Zhen-Tao+Ju&rft.date=2024-08-05&rft.pub=Cornell+University+Library%2C+arXiv.org&rft.eissn=2331-8422&rft_id=info:doi/10.48550%2Farxiv.2407.18725 |