Deep learning for dynamic modeling and coded information storage of vector-soliton pulsations in mode-locked fiber lasers

Soliton pulsations are ubiquitous feature of non-stationary soliton dynamics in mode-locked lasers and many other physical systems. To overcome difficulties related to huge amount of necessary computations and low efficiency of traditional numerical methods in modeling the evolution of non-stationar...

Full description

Saved in:
Bibliographic Details
Published inarXiv.org
Main Authors Zhi-Zeng Si, Da-Lei, Wang, Bo-Wei, Zhu, Zhen-Tao Ju, Xue-Peng, Wang, Liu, Wei, Malomed, Boris A, Yue-Yue, Wang, Chao-Qing, Dai
Format Paper Journal Article
LanguageEnglish
Published Ithaca Cornell University Library, arXiv.org 05.08.2024
Subjects
Online AccessGet full text
ISSN2331-8422
DOI10.48550/arxiv.2407.18725

Cover

Abstract Soliton pulsations are ubiquitous feature of non-stationary soliton dynamics in mode-locked lasers and many other physical systems. To overcome difficulties related to huge amount of necessary computations and low efficiency of traditional numerical methods in modeling the evolution of non-stationary solitons, we propose a two-parallel bidirectional long short-term memory recurrent neural network, with the main objective to predict dynamics of vector-soliton pulsations in various complex states, whose real-time dynamics is verified by experiments. Besides, the scheme of coded information storage based on the TP-Bi_LSTM RNN, instead of actual pulse signals, is realized too. The findings offer new applications of deep learning to ultrafast optics and information storage.
AbstractList Soliton pulsations are ubiquitous feature of non-stationary soliton dynamics in mode-locked lasers and many other physical systems. To overcome difficulties related to huge amount of necessary computations and low efficiency of traditional numerical methods in modeling the evolution of non-stationary solitons, we propose a two-parallel bidirectional long short-term memory recurrent neural network, with the main objective to predict dynamics of vector-soliton pulsations in various complex states, whose real-time dynamics is verified by experiments. Besides, the scheme of coded information storage based on the TP-Bi_LSTM RNN, instead of actual pulse signals, is realized too. The findings offer new applications of deep learning to ultrafast optics and information storage.
Soliton pulsations are ubiquitous feature of non-stationary soliton dynamics in mode-locked lasers and many other physical systems. To overcome difficulties related to huge amount of necessary computations and low efficiency of traditional numerical methods in modeling the evolution of non-stationary solitons, we propose a two-parallel bidirectional long short-term memory recurrent neural network, with the main objective to predict dynamics of vector-soliton pulsations in various complex states, whose real-time dynamics is verified by experiments. Besides, the scheme of coded information storage based on the TP-Bi_LSTM RNN, instead of actual pulse signals, is realized too. The findings offer new applications of deep learning to ultrafast optics and information storage.
Author Da-Lei, Wang
Malomed, Boris A
Bo-Wei, Zhu
Liu, Wei
Yue-Yue, Wang
Zhen-Tao Ju
Zhi-Zeng Si
Xue-Peng, Wang
Chao-Qing, Dai
Author_xml – sequence: 1
  fullname: Zhi-Zeng Si
– sequence: 2
  givenname: Wang
  surname: Da-Lei
  fullname: Da-Lei, Wang
– sequence: 3
  givenname: Zhu
  surname: Bo-Wei
  fullname: Bo-Wei, Zhu
– sequence: 4
  fullname: Zhen-Tao Ju
– sequence: 5
  givenname: Wang
  surname: Xue-Peng
  fullname: Xue-Peng, Wang
– sequence: 6
  givenname: Wei
  surname: Liu
  fullname: Liu, Wei
– sequence: 7
  givenname: Boris
  surname: Malomed
  middlename: A
  fullname: Malomed, Boris A
– sequence: 8
  givenname: Wang
  surname: Yue-Yue
  fullname: Yue-Yue, Wang
– sequence: 9
  givenname: Dai
  surname: Chao-Qing
  fullname: Chao-Qing, Dai
BackLink https://doi.org/10.48550/arXiv.2407.18725$$DView paper in arXiv
https://doi.org/10.1002/lpor.202400097$$DView published paper (Access to full text may be restricted)
BookMark eNotkM1OwzAQhC0EEqX0AThhiXOK443j5IjKr1SJS-_RJtlULokd7LSib49pOa1m59vRam7YpXWWGLtLxTIrlBKP6H_MYSkzoZdpoaW6YDMJkCZFJuU1W4SwE0LIPDoKZuz4TDTyntBbY7e8c563R4uDafjgWur_lmhb3kTRcmMjMOBknOVhch63xF3HD9REkQTXmyk6474PJybEg1NM0rvmK953pibPewzkwy276rAPtPifc7Z5fdms3pP159vH6mmdoJKQaAGlbDIJXUt5CbVOUWWyESA7AZhpbFPUdU4SRCeoBMIaSOUSSiHbTGuYs_tz7KmXavRmQH-s_vqpTv1E4uFMjN597ylM1c7tvY0_VSAKpWOKAvgFdPprmA
ContentType Paper
Journal Article
Copyright 2024. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
http://arxiv.org/licenses/nonexclusive-distrib/1.0
Copyright_xml – notice: 2024. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: http://arxiv.org/licenses/nonexclusive-distrib/1.0
DBID 8FE
8FG
ABJCF
ABUWG
AFKRA
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
HCIFZ
L6V
M7S
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
ALA
GOX
DOI 10.48550/arxiv.2407.18725
DatabaseName ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
Proquest Central
Technology Collection
ProQuest One
ProQuest Central
SciTech Premium Collection
ProQuest Engineering Collection
Engineering Database
Proquest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
arXiv Nonlinear Science
arXiv.org
DatabaseTitle Publicly Available Content Database
Engineering Database
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
ProQuest One Academic UKI Edition
ProQuest Central Korea
Materials Science & Engineering Collection
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
Engineering Collection
DatabaseTitleList Publicly Available Content Database

Database_xml – sequence: 1
  dbid: GOX
  name: arXiv.org
  url: http://arxiv.org/find
  sourceTypes: Open Access Repository
– sequence: 2
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 2331-8422
ExternalDocumentID 2407_18725
Genre Working Paper/Pre-Print
GroupedDBID 8FE
8FG
ABJCF
ABUWG
AFKRA
ALMA_UNASSIGNED_HOLDINGS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
FRJ
HCIFZ
L6V
M7S
M~E
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
ALA
GOX
ID FETCH-LOGICAL-a523-70392c423fde693b71a542c032f03a47ad1a7b6e230f0e93eab3e5623902d4773
IEDL.DBID GOX
IngestDate Tue Jul 22 23:00:11 EDT 2025
Mon Jun 30 09:24:49 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a523-70392c423fde693b71a542c032f03a47ad1a7b6e230f0e93eab3e5623902d4773
Notes SourceType-Working Papers-1
ObjectType-Working Paper/Pre-Print-1
content type line 50
OpenAccessLink https://arxiv.org/abs/2407.18725
PQID 3085747753
PQPubID 2050157
ParticipantIDs arxiv_primary_2407_18725
proquest_journals_3085747753
PublicationCentury 2000
PublicationDate 20240805
PublicationDateYYYYMMDD 2024-08-05
PublicationDate_xml – month: 08
  year: 2024
  text: 20240805
  day: 05
PublicationDecade 2020
PublicationPlace Ithaca
PublicationPlace_xml – name: Ithaca
PublicationTitle arXiv.org
PublicationYear 2024
Publisher Cornell University Library, arXiv.org
Publisher_xml – name: Cornell University Library, arXiv.org
SSID ssj0002672553
Score 1.8805561
SecondaryResourceType preprint
Snippet Soliton pulsations are ubiquitous feature of non-stationary soliton dynamics in mode-locked lasers and many other physical systems. To overcome difficulties...
Soliton pulsations are ubiquitous feature of non-stationary soliton dynamics in mode-locked lasers and many other physical systems. To overcome difficulties...
SourceID arxiv
proquest
SourceType Open Access Repository
Aggregation Database
SubjectTerms Deep learning
Dynamic models
Fiber lasers
Information storage
Laser mode locking
Numerical methods
Physics - Optics
Physics - Pattern Formation and Solitons
Real time
Recurrent neural networks
Solitary waves
SummonAdditionalLinks – databaseName: ProQuest Technology Collection
  dbid: 8FG
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV09T8MwELWgFRIbnypQkAdWt07sxPXEAJQKCcRQpG6RE9sIgdrQtBX8e-5cFwYkVlvOcI7vns_v7hFyabQuubeSeW8HTFYCz5zRTOGrjUgzy3OsRn54zEfP8n6STWLCrYm0yo1PDI7azirMkfcFtmKXCtD1Vf3BUDUKX1ejhMY2aScQafA_HwzvfnIsaa4AMYv1Y2Zo3dU388_XVQ-vMb1koFAgux2G_rjiEF-Ge6T9ZGo33ydbbnpAdgIts2oOydeNczWNyg4vFAAmtWsJeRokbHDQTC3FwnRLYxNUNDVF0iO4CjrzdBUS86xBphvM1Mv3yOCBBeEzDALaG6z3yB6hAKcBEh6R8fB2fD1iUSyBGbhLMji4Oq0AG3nrci1KlZhMphUXqefCSGVsYlSZO7hxeO60cKYUDrGP5qkFs4pj0prOpq5DqDYCy28rY4SQyme6ylPvFJcmETLj7oR0gsmKet0Po0BrFsGaJ6S7sWIRz0JT_O7c6f_TZ2Q3BcgQ6HVZl7QW86U7h5C_KC_Cvn4DCpesJQ
  priority: 102
  providerName: ProQuest
Title Deep learning for dynamic modeling and coded information storage of vector-soliton pulsations in mode-locked fiber lasers
URI https://www.proquest.com/docview/3085747753
https://arxiv.org/abs/2407.18725
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwdV07T8MwELbasrAgEKAWSuWB1eD4Edcjjz6E1IJQkbpFTmwjBGqrvgQLv52zk4oBsWRwfIl0zuW-s7-7Q-jSaJ1TbwXx3naJKHiwOaOJCqc2nElL05CNPBqnwxfxMJXTGsK7XBiz_HzblvWB89V1CDeukq5iso7qjIXgavA4LQ8nYymuav7vPMCYcejPrzX6i_4hOqiAHr4pV-YI1dzsGH3dO7fAVaeGVwyAEduyJTyOLWnCIIT2OCSaW1wVNQ2qw4HECKaP5x5v40Y7WQXmGtxZbD4qRg4IxMcQcFDvIO8DGwQDPAaId4Im_d7kbkiq5gfEQGxIwBA1KwDreOtSzXOVGClYQTnzlBuhjE2MylMHEYSnTnNncu4CltGUWaEUP0WN2Xzmmghrw0M6bWEM50J5qYuUeaeoMAkXkroWakaVZYuyvkUWtJlFbbZQe6fFrPq2VxkPRfHhFZKf_S95jvYZuP9IlZNt1FgvN-4C3Pc676B6tz_ooL3b3vjpuRNXFK6j794PxXCfNA
linkProvider Cornell University
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LTwMhEJ6ojdGbz_iWgx7RLbCLHIwHtdZnPNTE24ZdwBhNu7Y-f5T_0Rm61YOJN68QIBmG4YP5ZgZgyxpTJMEpHoLb46qUdOas4Zq8NlKkLskoGvnyKmvfqLPb9HYMPkexMESrHNnEaKhdr6Q_8l1JqdiVRnR9UD1xqhpF3tVRCY2hWpz7jzd8sg32T49wf7eFaB13Dtu8rirALT66OGq4ESWCiOB8ZmShmzZVokykCIm0SlvXtLrIPELzkHgjvS2kJ5BgEuFwfYnTjkNDSWygwPTWyfeXjsg0AnQ59J3GTGG7tv9-_7pDr6ad5p6metyN2PTL8sfrrDUDjWtb-f4sjPnuHExGFmg5mIePI-8rVheSuGOIZ5kbVqxnsWIONdquYxQH71idc5V2lhHHEi0T6wX2Gv0AfEDEOuypXh5rwhAOiNNwvD8fcHwgsgpD9I4IdAE6_yHFRZjo9rp-CZixkqJ9S2ulVDqkpsxE8DpRtilVmvhlWIoiy6th-o2cpJlHaS7D2kiKeX30BvmPoqz83b0JU-3O5UV-cXp1vgrTAtFKZPalazDx3H_x64g2nouNuMcM8n_WqS8e9-aN
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Deep+learning+for+dynamic+modeling+and+coded+information+storage+of+vector-soliton+pulsations+in+mode-locked+fiber+lasers&rft.jtitle=arXiv.org&rft.au=Zhi-Zeng+Si&rft.au=Da-Lei%2C+Wang&rft.au=Bo-Wei%2C+Zhu&rft.au=Zhen-Tao+Ju&rft.date=2024-08-05&rft.pub=Cornell+University+Library%2C+arXiv.org&rft.eissn=2331-8422&rft_id=info:doi/10.48550%2Farxiv.2407.18725