Compositional Thermostatics
We define a thermostatic system to be a convex space of states together with a concave function sending each state to its entropy, which is an extended real number. This definition applies to classical thermodynamics, classical statistical mechanics, quantum statistical mechanics, and also generaliz...
Saved in:
Published in | arXiv.org |
---|---|
Main Authors | , , |
Format | Paper Journal Article |
Language | English |
Published |
Ithaca
Cornell University Library, arXiv.org
10.02.2023
|
Subjects | |
Online Access | Get full text |
ISSN | 2331-8422 |
DOI | 10.48550/arxiv.2111.10315 |
Cover
Abstract | We define a thermostatic system to be a convex space of states together with a concave function sending each state to its entropy, which is an extended real number. This definition applies to classical thermodynamics, classical statistical mechanics, quantum statistical mechanics, and also generalized probabilistic theories of the sort studied in quantum foundations. It also allows us to treat a heat bath as a thermostatic system on an equal footing with any other. We construct an operad whose operations are convex relations from a product of convex spaces to a single convex space, and prove that thermostatic systems are algebras of this operad. This gives a general, rigorous formalism for combining thermostatic systems, which captures the fact that such systems maximize entropy subject to whatever constraints are imposed upon them. |
---|---|
AbstractList | We define a thermostatic system to be a convex space of states together with a concave function sending each state to its entropy, which is an extended real number. This definition applies to classical thermodynamics, classical statistical mechanics, quantum statistical mechanics, and also generalized probabilistic theories of the sort studied in quantum foundations. It also allows us to treat a heat bath as a thermostatic system on an equal footing with any other. We construct an operad whose operations are convex relations from a product of convex spaces to a single convex space, and prove that thermostatic systems are algebras of this operad. This gives a general, rigorous formalism for combining thermostatic systems, which captures the fact that such systems maximize entropy subject to whatever constraints are imposed upon them. J. Math. Phys. 64 (2023) 023304 We define a thermostatic system to be a convex space of states together with a concave function sending each state to its entropy, which is an extended real number. This definition applies to classical thermodynamics, classical statistical mechanics, quantum statistical mechanics, and also generalized probabilistic theories of the sort studied in quantum foundations. It also allows us to treat a heat bath as a thermostatic system on an equal footing with any other. We construct an operad whose operations are convex relations from a product of convex spaces to a single convex space, and prove that thermostatic systems are algebras of this operad. This gives a general, rigorous formalism for combining thermostatic systems, which captures the fact that such systems maximize entropy subject to whatever constraints are imposed upon them. |
Author | Moeller, Joe Lynch, Owen Baez, John C |
Author_xml | – sequence: 1 givenname: John surname: Baez middlename: C fullname: Baez, John C – sequence: 2 givenname: Owen surname: Lynch fullname: Lynch, Owen – sequence: 3 givenname: Joe surname: Moeller fullname: Moeller, Joe |
BackLink | https://doi.org/10.48550/arXiv.2111.10315$$DView paper in arXiv https://doi.org/10.1063/5.0089375$$DView published paper (Access to full text may be restricted) |
BookMark | eNotj8FKw0AURQdRsNZ-gLhQcJ047715M5OlFKtCwU32YZJMMaXJxJlU9O-trau7OVzOuRLnQxi8EDcgc2WZ5aOL391XjgCQgyTgMzFDIsisQrwUi5S2UkrUBplpJm6XoR9D6qYuDG53X3742Ic0ualr0rW42Lhd8ov_nYty9VwuX7P1-8vb8mmdOUbKWHn0da2sBwbQYFQNVgMyYYPItq1JERW-2LRsjLGKW5RGO-UKKZvW01zcnW6P5tUYu97Fn-qvoDoWHIiHEzHG8Ln3aaq2YR8PvqlCLSWT1JroF-9FR90 |
ContentType | Paper Journal Article |
Copyright | 2023. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. http://arxiv.org/licenses/nonexclusive-distrib/1.0 |
Copyright_xml | – notice: 2023. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: http://arxiv.org/licenses/nonexclusive-distrib/1.0 |
DBID | 8FE 8FG ABJCF ABUWG AFKRA AZQEC BENPR BGLVJ CCPQU DWQXO HCIFZ L6V M7S PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS AKZ GOX |
DOI | 10.48550/arxiv.2111.10315 |
DatabaseName | ProQuest SciTech Collection ProQuest Technology Collection ProQuest Materials Science & Engineering ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central Technology Collection ProQuest One ProQuest Central SciTech Premium Collection ProQuest Engineering Collection Engineering Database ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection arXiv Mathematics arXiv.org |
DatabaseTitle | Publicly Available Content Database Engineering Database Technology Collection ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest One Academic Eastern Edition ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Technology Collection ProQuest SciTech Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Engineering Collection ProQuest One Academic UKI Edition ProQuest Central Korea Materials Science & Engineering Collection ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) Engineering Collection |
DatabaseTitleList | Publicly Available Content Database |
Database_xml | – sequence: 1 dbid: GOX name: arXiv.org url: http://arxiv.org/find sourceTypes: Open Access Repository – sequence: 2 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Physics |
EISSN | 2331-8422 |
ExternalDocumentID | 2111_10315 |
Genre | Working Paper/Pre-Print |
GroupedDBID | 8FE 8FG ABJCF ABUWG AFKRA ALMA_UNASSIGNED_HOLDINGS AZQEC BENPR BGLVJ CCPQU DWQXO FRJ HCIFZ L6V M7S M~E PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS AKZ GOX |
ID | FETCH-LOGICAL-a523-54e2ebb48e15116174b18612532c2258db34339e9fd5777845d2076a4a900cde3 |
IEDL.DBID | GOX |
IngestDate | Wed Jul 23 00:24:44 EDT 2025 Mon Jun 30 09:28:22 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | false |
IsScholarly | false |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a523-54e2ebb48e15116174b18612532c2258db34339e9fd5777845d2076a4a900cde3 |
Notes | SourceType-Working Papers-1 ObjectType-Working Paper/Pre-Print-1 content type line 50 |
OpenAccessLink | https://arxiv.org/abs/2111.10315 |
PQID | 2600530663 |
PQPubID | 2050157 |
ParticipantIDs | arxiv_primary_2111_10315 proquest_journals_2600530663 |
PublicationCentury | 2000 |
PublicationDate | 20230210 |
PublicationDateYYYYMMDD | 2023-02-10 |
PublicationDate_xml | – month: 02 year: 2023 text: 20230210 day: 10 |
PublicationDecade | 2020 |
PublicationPlace | Ithaca |
PublicationPlace_xml | – name: Ithaca |
PublicationTitle | arXiv.org |
PublicationYear | 2023 |
Publisher | Cornell University Library, arXiv.org |
Publisher_xml | – name: Cornell University Library, arXiv.org |
SSID | ssj0002672553 |
Score | 1.8238953 |
SecondaryResourceType | preprint |
Snippet | We define a thermostatic system to be a convex space of states together with a concave function sending each state to its entropy, which is an extended real... J. Math. Phys. 64 (2023) 023304 We define a thermostatic system to be a convex space of states together with a concave function sending each state to its... |
SourceID | arxiv proquest |
SourceType | Open Access Repository Aggregation Database |
SubjectTerms | Entropy Mathematics - Category Theory Mathematics - Mathematical Physics Physics - Mathematical Physics Quantum statistics Statistical analysis Statistical mechanics |
SummonAdditionalLinks | – databaseName: ProQuest Technology Collection dbid: 8FG link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV07T8MwED5BKyQ2nmppQR1Y0zqxHTsTAyJUSCCGInWL7NiRkKAtSan4-dy5KQxILB580-fHvXy-D-CaJV6ayuEOWMsiYZIyMqV2ODjuLTUUcfTf-fEpnb6Ih7mctwm3pi2r3OnEoKjdsqQc-YQaqUtOBvJm9RERaxS9rrYUGvvQjdHS0DnX-f1PjiVJFXrMfPuYGVp3TUz99boZY9QTjwPBAfqkYeqPKg72JT-C7rNZ-foY9vziBA5CWWbZnMKArmtbVmXeRrin9fuS_gCh9Axm-d3sdhq1dAaRwWgvksIn3lqhPRpZiiqEjTX5Fzwp8VJpZ7ngPPNZ5aRSSgvpEqZSI0zGWOk8P4fOYrnwPRiRk8GckoZVFYplxm2coatglZYeYfahF0AVq23HioLwFgFvH4Y7nEV7Wpvid20v_hcP4JDo1qlqOWZD6KzrT3-JRnltr8LKfwMttIkt priority: 102 providerName: ProQuest |
Title | Compositional Thermostatics |
URI | https://www.proquest.com/docview/2600530663 https://arxiv.org/abs/2111.10315 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwdV09T8MwED21ZWFBIEAtLVEH1oDjj8YZAfVDSC0IFalbZMeO1IEPpS1i4rdz56RiQCweYmd4uTj3nuJ7B3DFuFemdBgBa1ksDS9iU2iHgxPekqGIo3rn-WI0e5EPK7VqwXBfC2Oqr_Vn7Q9sNzeoTpLr0IigDW3OSVxNH1f1z8lgxdWs_12HHDNc-vNpDflicgxHDdEb3taROYGWfzuFPm2_5pgUTmKMqtd3qulZF5szWE7Gy_tZ3LQniA2qt1hJz721UntMmqQSpE008QXBC9wk2lkhhch8VjqVpqmWynGWjow0GWOF8-IcOqjwfReGRBqYS5VhZYnTKhM2yTD121QrjzB70A2g8o_agSInvHnA24PBHmfevH2bnEznlSAycfH_nX04pNbpdAI5YQPobKudv8QEu7URtPVkGsHB3Xjx9ByFZ47j_Hv8Aw25fDY |
linkProvider | Cornell University |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LS8NAEB5qi-jNJ9ZW7UGPaZPsbpMcRFBbWvugSIXewm52A4K2Na2vH-V_dCZN9CB46yWHDAQ-ZjLzze48AM5t1wgZa9SAUrbFpRtZMvI1PjQzigaKaOp3HgybnQd-NxGTAnzlvTBUVpn7xNRR61lEZ-QNGqQuGAXIq_mLRVuj6HY1X6GxMoue-XzHlG1x2b1F_V64brs1vulY2VYBS2LSZQluXKMU9w3GOiL3XDk-hXnmRmjbvlaMMxaYINbC8zyfC-1iri-5DGw70obhZzegxKmhtQil69ZwdP9zqOM2PaTobHV7ms4Ka8jk4_GtjmmWU083KiAJTl_98f1pQGvvQGkk5ybZhYKZ7sFmWgcaLfahQv4hq-OSTzU0ouR5Rk1HKD2A8TqQHkJxOpuaI6gRq7G1J6QdxygWAVNOgNxEeb4wCLMMRymocL4akRES3jDFW4ZqjjPMfo9F-KvM4__FZ7DVGQ_6Yb877FVgm3a9U8m0Y1ehuExezQkygqU6zfRQg3DNmv8G0JjEEA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Compositional+Thermostatics&rft.jtitle=arXiv.org&rft.au=Baez%2C+John+C&rft.au=Lynch%2C+Owen&rft.au=Moeller%2C+Joe&rft.date=2023-02-10&rft.pub=Cornell+University+Library%2C+arXiv.org&rft.eissn=2331-8422&rft_id=info:doi/10.48550%2Farxiv.2111.10315 |