Compositional Thermostatics

We define a thermostatic system to be a convex space of states together with a concave function sending each state to its entropy, which is an extended real number. This definition applies to classical thermodynamics, classical statistical mechanics, quantum statistical mechanics, and also generaliz...

Full description

Saved in:
Bibliographic Details
Published inarXiv.org
Main Authors Baez, John C, Lynch, Owen, Moeller, Joe
Format Paper Journal Article
LanguageEnglish
Published Ithaca Cornell University Library, arXiv.org 10.02.2023
Subjects
Online AccessGet full text
ISSN2331-8422
DOI10.48550/arxiv.2111.10315

Cover

Abstract We define a thermostatic system to be a convex space of states together with a concave function sending each state to its entropy, which is an extended real number. This definition applies to classical thermodynamics, classical statistical mechanics, quantum statistical mechanics, and also generalized probabilistic theories of the sort studied in quantum foundations. It also allows us to treat a heat bath as a thermostatic system on an equal footing with any other. We construct an operad whose operations are convex relations from a product of convex spaces to a single convex space, and prove that thermostatic systems are algebras of this operad. This gives a general, rigorous formalism for combining thermostatic systems, which captures the fact that such systems maximize entropy subject to whatever constraints are imposed upon them.
AbstractList We define a thermostatic system to be a convex space of states together with a concave function sending each state to its entropy, which is an extended real number. This definition applies to classical thermodynamics, classical statistical mechanics, quantum statistical mechanics, and also generalized probabilistic theories of the sort studied in quantum foundations. It also allows us to treat a heat bath as a thermostatic system on an equal footing with any other. We construct an operad whose operations are convex relations from a product of convex spaces to a single convex space, and prove that thermostatic systems are algebras of this operad. This gives a general, rigorous formalism for combining thermostatic systems, which captures the fact that such systems maximize entropy subject to whatever constraints are imposed upon them.
J. Math. Phys. 64 (2023) 023304 We define a thermostatic system to be a convex space of states together with a concave function sending each state to its entropy, which is an extended real number. This definition applies to classical thermodynamics, classical statistical mechanics, quantum statistical mechanics, and also generalized probabilistic theories of the sort studied in quantum foundations. It also allows us to treat a heat bath as a thermostatic system on an equal footing with any other. We construct an operad whose operations are convex relations from a product of convex spaces to a single convex space, and prove that thermostatic systems are algebras of this operad. This gives a general, rigorous formalism for combining thermostatic systems, which captures the fact that such systems maximize entropy subject to whatever constraints are imposed upon them.
Author Moeller, Joe
Lynch, Owen
Baez, John C
Author_xml – sequence: 1
  givenname: John
  surname: Baez
  middlename: C
  fullname: Baez, John C
– sequence: 2
  givenname: Owen
  surname: Lynch
  fullname: Lynch, Owen
– sequence: 3
  givenname: Joe
  surname: Moeller
  fullname: Moeller, Joe
BackLink https://doi.org/10.48550/arXiv.2111.10315$$DView paper in arXiv
https://doi.org/10.1063/5.0089375$$DView published paper (Access to full text may be restricted)
BookMark eNotj8FKw0AURQdRsNZ-gLhQcJ047715M5OlFKtCwU32YZJMMaXJxJlU9O-trau7OVzOuRLnQxi8EDcgc2WZ5aOL391XjgCQgyTgMzFDIsisQrwUi5S2UkrUBplpJm6XoR9D6qYuDG53X3742Ic0ualr0rW42Lhd8ov_nYty9VwuX7P1-8vb8mmdOUbKWHn0da2sBwbQYFQNVgMyYYPItq1JERW-2LRsjLGKW5RGO-UKKZvW01zcnW6P5tUYu97Fn-qvoDoWHIiHEzHG8Ln3aaq2YR8PvqlCLSWT1JroF-9FR90
ContentType Paper
Journal Article
Copyright 2023. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
http://arxiv.org/licenses/nonexclusive-distrib/1.0
Copyright_xml – notice: 2023. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: http://arxiv.org/licenses/nonexclusive-distrib/1.0
DBID 8FE
8FG
ABJCF
ABUWG
AFKRA
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
HCIFZ
L6V
M7S
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
AKZ
GOX
DOI 10.48550/arxiv.2111.10315
DatabaseName ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Materials Science & Engineering
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
Technology Collection
ProQuest One
ProQuest Central
SciTech Premium Collection
ProQuest Engineering Collection
Engineering Database
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
arXiv Mathematics
arXiv.org
DatabaseTitle Publicly Available Content Database
Engineering Database
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
ProQuest One Academic UKI Edition
ProQuest Central Korea
Materials Science & Engineering Collection
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
Engineering Collection
DatabaseTitleList Publicly Available Content Database

Database_xml – sequence: 1
  dbid: GOX
  name: arXiv.org
  url: http://arxiv.org/find
  sourceTypes: Open Access Repository
– sequence: 2
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 2331-8422
ExternalDocumentID 2111_10315
Genre Working Paper/Pre-Print
GroupedDBID 8FE
8FG
ABJCF
ABUWG
AFKRA
ALMA_UNASSIGNED_HOLDINGS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
FRJ
HCIFZ
L6V
M7S
M~E
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
AKZ
GOX
ID FETCH-LOGICAL-a523-54e2ebb48e15116174b18612532c2258db34339e9fd5777845d2076a4a900cde3
IEDL.DBID GOX
IngestDate Wed Jul 23 00:24:44 EDT 2025
Mon Jun 30 09:28:22 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a523-54e2ebb48e15116174b18612532c2258db34339e9fd5777845d2076a4a900cde3
Notes SourceType-Working Papers-1
ObjectType-Working Paper/Pre-Print-1
content type line 50
OpenAccessLink https://arxiv.org/abs/2111.10315
PQID 2600530663
PQPubID 2050157
ParticipantIDs arxiv_primary_2111_10315
proquest_journals_2600530663
PublicationCentury 2000
PublicationDate 20230210
PublicationDateYYYYMMDD 2023-02-10
PublicationDate_xml – month: 02
  year: 2023
  text: 20230210
  day: 10
PublicationDecade 2020
PublicationPlace Ithaca
PublicationPlace_xml – name: Ithaca
PublicationTitle arXiv.org
PublicationYear 2023
Publisher Cornell University Library, arXiv.org
Publisher_xml – name: Cornell University Library, arXiv.org
SSID ssj0002672553
Score 1.8238953
SecondaryResourceType preprint
Snippet We define a thermostatic system to be a convex space of states together with a concave function sending each state to its entropy, which is an extended real...
J. Math. Phys. 64 (2023) 023304 We define a thermostatic system to be a convex space of states together with a concave function sending each state to its...
SourceID arxiv
proquest
SourceType Open Access Repository
Aggregation Database
SubjectTerms Entropy
Mathematics - Category Theory
Mathematics - Mathematical Physics
Physics - Mathematical Physics
Quantum statistics
Statistical analysis
Statistical mechanics
SummonAdditionalLinks – databaseName: ProQuest Technology Collection
  dbid: 8FG
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV07T8MwED5BKyQ2nmppQR1Y0zqxHTsTAyJUSCCGInWL7NiRkKAtSan4-dy5KQxILB580-fHvXy-D-CaJV6ayuEOWMsiYZIyMqV2ODjuLTUUcfTf-fEpnb6Ih7mctwm3pi2r3OnEoKjdsqQc-YQaqUtOBvJm9RERaxS9rrYUGvvQjdHS0DnX-f1PjiVJFXrMfPuYGVp3TUz99boZY9QTjwPBAfqkYeqPKg72JT-C7rNZ-foY9vziBA5CWWbZnMKArmtbVmXeRrin9fuS_gCh9Axm-d3sdhq1dAaRwWgvksIn3lqhPRpZiiqEjTX5Fzwp8VJpZ7ngPPNZ5aRSSgvpEqZSI0zGWOk8P4fOYrnwPRiRk8GckoZVFYplxm2coatglZYeYfahF0AVq23HioLwFgFvH4Y7nEV7Wpvid20v_hcP4JDo1qlqOWZD6KzrT3-JRnltr8LKfwMttIkt
  priority: 102
  providerName: ProQuest
Title Compositional Thermostatics
URI https://www.proquest.com/docview/2600530663
https://arxiv.org/abs/2111.10315
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwdV09T8MwED21ZWFBIEAtLVEH1oDjj8YZAfVDSC0IFalbZMeO1IEPpS1i4rdz56RiQCweYmd4uTj3nuJ7B3DFuFemdBgBa1ksDS9iU2iHgxPekqGIo3rn-WI0e5EPK7VqwXBfC2Oqr_Vn7Q9sNzeoTpLr0IigDW3OSVxNH1f1z8lgxdWs_12HHDNc-vNpDflicgxHDdEb3taROYGWfzuFPm2_5pgUTmKMqtd3qulZF5szWE7Gy_tZ3LQniA2qt1hJz721UntMmqQSpE008QXBC9wk2lkhhch8VjqVpqmWynGWjow0GWOF8-IcOqjwfReGRBqYS5VhZYnTKhM2yTD121QrjzB70A2g8o_agSInvHnA24PBHmfevH2bnEznlSAycfH_nX04pNbpdAI5YQPobKudv8QEu7URtPVkGsHB3Xjx9ByFZ47j_Hv8Aw25fDY
linkProvider Cornell University
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LS8NAEB5qi-jNJ9ZW7UGPaZPsbpMcRFBbWvugSIXewm52A4K2Na2vH-V_dCZN9CB46yWHDAQ-ZjLzze48AM5t1wgZa9SAUrbFpRtZMvI1PjQzigaKaOp3HgybnQd-NxGTAnzlvTBUVpn7xNRR61lEZ-QNGqQuGAXIq_mLRVuj6HY1X6GxMoue-XzHlG1x2b1F_V64brs1vulY2VYBS2LSZQluXKMU9w3GOiL3XDk-hXnmRmjbvlaMMxaYINbC8zyfC-1iri-5DGw70obhZzegxKmhtQil69ZwdP9zqOM2PaTobHV7ms4Ka8jk4_GtjmmWU083KiAJTl_98f1pQGvvQGkk5ybZhYKZ7sFmWgcaLfahQv4hq-OSTzU0ouR5Rk1HKD2A8TqQHkJxOpuaI6gRq7G1J6QdxygWAVNOgNxEeb4wCLMMRymocL4akRES3jDFW4ZqjjPMfo9F-KvM4__FZ7DVGQ_6Yb877FVgm3a9U8m0Y1ehuExezQkygqU6zfRQg3DNmv8G0JjEEA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Compositional+Thermostatics&rft.jtitle=arXiv.org&rft.au=Baez%2C+John+C&rft.au=Lynch%2C+Owen&rft.au=Moeller%2C+Joe&rft.date=2023-02-10&rft.pub=Cornell+University+Library%2C+arXiv.org&rft.eissn=2331-8422&rft_id=info:doi/10.48550%2Farxiv.2111.10315