The evolution of Arctic permafrost over the last 3 centuries from ensemble simulations with the CryoGridLite permafrost model

Understanding the future evolution of permafrost requires a better understanding of its climatological past. This requires permafrost models to efficiently simulate the thermal dynamics of permafrost over the past centuries to millennia, taking into account highly uncertain soil and snow properties....

Full description

Saved in:
Bibliographic Details
Published inThe cryosphere Vol. 18; no. 1; pp. 363 - 385
Main Authors Langer, Moritz, Nitzbon, Jan, Groenke, Brian, Assmann, Lisa-Marie, Schneider von Deimling, Thomas, Stuenzi, Simone Maria, Westermann, Sebastian
Format Journal Article
LanguageEnglish
Published Katlenburg-Lindau Copernicus GmbH 26.01.2024
Copernicus Publications
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Understanding the future evolution of permafrost requires a better understanding of its climatological past. This requires permafrost models to efficiently simulate the thermal dynamics of permafrost over the past centuries to millennia, taking into account highly uncertain soil and snow properties. In this study, we present a computationally efficient numerical permafrost model which satisfactorily reproduces the current ground temperatures and active layer thicknesses of permafrost in the Arctic and their trends over recent centuries. The performed simulations provide insights into the evolution of permafrost since the 18th century and show that permafrost on the North American continent is subject to early degradation, while permafrost on the Eurasian continent is relatively stable over the investigated 300-year period. Permafrost warming since industrialization has occurred primarily in three “hotspot” regions in northeastern Canada, northern Alaska, and, to a lesser extent, western Siberia. We find that the extent of areas with a high probability (p3 m>0.9) of near-surface permafrost (i.e., 3 m of permafrost within the upper 10 m of the subsurface) has declined substantially since the early 19th century, with loss accelerating during the last 50 years. Our simulations further indicate that short-term climate cooling due to large volcanic eruptions in the Northern Hemisphere in some cases favors permafrost aggradation within the uppermost 10 m of the ground, but the effect only lasts for a relatively short period of a few decades. Despite some limitations, e.g., with respect to the representation of vegetation, the presented model shows great potential for further investigation of the climatological past of permafrost, especially in conjunction with paleoclimate modeling.
AbstractList Understanding the future evolution of permafrost requires a better understanding of its climatological past. This requires permafrost models to efficiently simulate the thermal dynamics of permafrost over the past centuries to millennia, taking into account highly uncertain soil and snow properties. In this study, we present a computationally efficient numerical permafrost model which satisfactorily reproduces the current ground temperatures and active layer thicknesses of permafrost in the Arctic and their trends over recent centuries. The performed simulations provide insights into the evolution of permafrost since the 18th century and show that permafrost on the North American continent is subject to early degradation, while permafrost on the Eurasian continent is relatively stable over the investigated 300-year period. Permafrost warming since industrialization has occurred primarily in three “hotspot” regions in northeastern Canada, northern Alaska, and, to a lesser extent, western Siberia. We find that the extent of areas with a high probability (p3m>0.9) of near-surface permafrost (i.e., 3 m of permafrost within the upper 10 m of the subsurface) has declined substantially since the early 19th century, with loss accelerating during the last 50 years. Our simulations further indicate that short-term climate cooling due to large volcanic eruptions in the Northern Hemisphere in some cases favors permafrost aggradation within the uppermost 10 m of the ground, but the effect only lasts for a relatively short period of a few decades. Despite some limitations, e.g., with respect to the representation of vegetation, the presented model shows great potential for further investigation of the climatological past of permafrost, especially in conjunction with paleoclimate modeling.
Understanding the future evolution of permafrost requires a better understanding of its climatological past. This requires permafrost models to efficiently simulate the thermal dynamics of permafrost over the past centuries to millennia, taking into account highly uncertain soil and snow properties. In this study, we present a computationally efficient numerical permafrost model which satisfactorily reproduces the current ground temperatures and active layer thicknesses of permafrost in the Arctic and their trends over recent centuries. The performed simulations provide insights into the evolution of permafrost since the 18th century and show that permafrost on the North American continent is subject to early degradation, while permafrost on the Eurasian continent is relatively stable over the investigated 300-year period. Permafrost warming since industrialization has occurred primarily in three “hotspot” regions in northeastern Canada, northern Alaska, and, to a lesser extent, western Siberia. We find that the extent of areas with a high probability (p3 m>0.9) of near-surface permafrost (i.e., 3 m of permafrost within the upper 10 m of the subsurface) has declined substantially since the early 19th century, with loss accelerating during the last 50 years. Our simulations further indicate that short-term climate cooling due to large volcanic eruptions in the Northern Hemisphere in some cases favors permafrost aggradation within the uppermost 10 m of the ground, but the effect only lasts for a relatively short period of a few decades. Despite some limitations, e.g., with respect to the representation of vegetation, the presented model shows great potential for further investigation of the climatological past of permafrost, especially in conjunction with paleoclimate modeling.
Understanding the future evolution of permafrost requires a better understanding of its climatological past. This requires permafrost models to efficiently simulate the thermal dynamics of permafrost over the past centuries to millennia, taking into account highly uncertain soil and snow properties. In this study, we present a computationally efficient numerical permafrost model which satisfactorily reproduces the current ground temperatures and active layer thicknesses of permafrost in the Arctic and their trends over recent centuries. The performed simulations provide insights into the evolution of permafrost since the 18th century and show that permafrost on the North American continent is subject to early degradation, while permafrost on the Eurasian continent is relatively stable over the investigated 300-year period. Permafrost warming since industrialization has occurred primarily in three "hotspot" regions in northeastern Canada, northern Alaska, and, to a lesser extent, western Siberia. We find that the extent of areas with a high probability (p.sub.3 m >0.9) of near-surface permafrost (i.e., 3 m of permafrost within the upper 10 m of the subsurface) has declined substantially since the early 19th century, with loss accelerating during the last 50 years. Our simulations further indicate that short-term climate cooling due to large volcanic eruptions in the Northern Hemisphere in some cases favors permafrost aggradation within the uppermost 10 m of the ground, but the effect only lasts for a relatively short period of a few decades. Despite some limitations, e.g., with respect to the representation of vegetation, the presented model shows great potential for further investigation of the climatological past of permafrost, especially in conjunction with paleoclimate modeling.
Audience Academic
Author Westermann, Sebastian
Schneider von Deimling, Thomas
Langer, Moritz
Assmann, Lisa-Marie
Stuenzi, Simone Maria
Nitzbon, Jan
Groenke, Brian
Author_xml – sequence: 1
  givenname: Moritz
  surname: Langer
  fullname: Langer, Moritz
– sequence: 2
  givenname: Jan
  orcidid: 0000-0001-7205-6298
  surname: Nitzbon
  fullname: Nitzbon, Jan
– sequence: 3
  givenname: Brian
  orcidid: 0000-0003-2570-9342
  surname: Groenke
  fullname: Groenke, Brian
– sequence: 4
  givenname: Lisa-Marie
  surname: Assmann
  fullname: Assmann, Lisa-Marie
– sequence: 5
  givenname: Thomas
  orcidid: 0000-0002-4140-0495
  surname: Schneider von Deimling
  fullname: Schneider von Deimling, Thomas
– sequence: 6
  givenname: Simone Maria
  orcidid: 0000-0002-6071-289X
  surname: Stuenzi
  fullname: Stuenzi, Simone Maria
– sequence: 7
  givenname: Sebastian
  surname: Westermann
  fullname: Westermann, Sebastian
BookMark eNp1kk9vFCEYxompiW316pnEk4ep_J0ZjpuN1k02MdF6JgzzsmUzM6zAVHvxs_hZ-snK7hptTQ0H4M3veeCF5wydTGEChF5TciGpEu-yrWhb8ZpXjDDxDJ1SpURFBBMnD9Yv0FlKW0Jqpog4RT-vrgHDTRjm7MOEg8OLaLO3eAdxNC6GlHG4gYhz4QZTdvzul4Upz9FDwgUYMUwJxm4AnPw4D2ZvlPB3n68PomW8DZfR92uf4aHrGHoYXqLnzgwJXv2ez9HXD--vlh-r9afL1XKxroxkLFfK8abj3IFT0DWdsQBUNL1tul5RWlNmFCeO1ApAMdH2hAhrODO8ltBy2fFztDr69sFs9S760cRbHYzXh0KIG21iaXsAXQthXM2M7SQIAtI0dackr3uqnOslLV746GWjT9lPegrRaEpayTSlDZOsIG-OyC6GbzOkrLdhjlPpUDNFW9FIwdu_1MaUc_3kQo7Gjj5ZvWhaIjkRjSjUxRNUGT2M3pYIOF_qjwRvHwkKk-FH3pg5Jb368vlJc1v-JEVwf96GEr1Plc5W01aXVOl9qopA_COwPh--vNzKD_-T3QPvEtGp
CitedBy_id crossref_primary_10_5194_essd_16_3719_2024
crossref_primary_10_7256_2453_8922_2024_4_72657
crossref_primary_10_1016_j_apr_2024_102329
crossref_primary_10_1002_ppp_2269
crossref_primary_10_1016_j_accre_2024_12_005
crossref_primary_10_3390_cli12110177
crossref_primary_10_7256_2453_8922_2025_1_72657
Cites_doi 10.5194/bg-11-6573-2014
10.1002/2014WR015965
10.5194/gmd-14-521-2021
10.1080/1088937X.2021.1988000
10.5194/gmd-7-631-2014
10.1029/2010JF001664
10.1002/ggge.20271
10.1016/j.yqres.2010.12.003
10.5194/gmd-16-2607-2023
10.1029/2020JF005673
10.1029/2011GL050168
10.1139/as-2021-0013
10.1007/BF02649725
10.1016/j.epsl.2007.09.017
10.1007/BF00221235
10.5194/gmd-8-2701-2015
10.1016/j.earscirev.2019.04.023
10.1175/JCLI-D-17-0198.1
10.1088/1748-9326/8/4/045013
10.1038/s43017-021-00233-0
10.1017/jog.2018.55
10.3189/172756503781830539
10.1017/qua.2021.27
10.1007/s41063-018-0041-3
10.5194/tc-6-221-2012
10.5194/tc-8-1935-2014
10.3133/cp45
10.1177/0959683617752858
10.1126/science.1157525
10.1038/s41467-020-15725-8
10.1002/2015MS000526
10.1175/2010JHM1202.1
10.5194/gmd-13-1663-2020
10.1007/s00382-006-0126-8
10.1080/04353676.1976.11879925
10.5194/tc-9-151-2015
10.1029/2004JB003208
10.1029/90JB02492
10.1088/1748-9326/ab8ec4
10.5194/tc-15-1399-2021
10.1023/B:CLIM.0000018501.98266.55
10.1007/BF01093225
10.1139/e2012-019
10.1002/2016JF003956
10.3389/feart.2021.758360
10.1038/s41561-019-0526-0
10.1175/1520-0442(2001)014<3324:TROASI>2.0.CO;2
10.1175/1520-0442-16.9.1261
10.5194/cp-14-2011-2018
10.1038/s43017-021-00240-1
10.5194/essd-5-393-2013
10.1038/nclimate3262
10.5194/cp-11-1165-2015
10.5194/cp-17-1455-2021
10.1002/jqs.3390030103
10.1175/JHM-D-21-0023.1
10.1016/j.geomorph.2017.09.001
10.5194/tc-12-3693-2018
10.1002/qj.828
10.1029/2006JF000696
10.1029/90JB02004
10.5194/gmd-9-523-2016
10.5194/cp-10-1707-2014
10.1111/bor.12036
10.5194/gmd-7-3111-2014
10.5194/tc-15-3423-2021
10.1029/2021JG006630
10.1046/j.1365-2389.2003.00539.x
10.1016/0031-0182(78)90036-6
10.1029/2022GL102053
10.5194/tc-15-2541-2021
10.5194/gmd-6-929-2013
10.2136/vzj2016.01.0010
10.1002/ppp.689
10.5194/tc-16-1247-2022
10.1175/1520-0442(1995)008<1261:ASSCCS>2.0.CO;2
10.5194/tc-7-719-2013
10.1002/ppp.2017
10.1016/j.advwatres.2013.07.016
10.5194/tc-5-945-2011
10.1038/s41467-018-08240-4
10.1080/00040851.1995.12003109
10.1007/s10933-008-9262-y
10.1002/jqs.3094
10.1137/100786320
10.2136/sssaj1966.03615995003000060011x
10.3389/feart.2021.689941
10.5194/tc-13-1089-2019
10.1002/ppp.690
10.1111/gcb.13248
10.5194/tc-11-1441-2017
10.1038/s43247-022-00498-3
10.1126/science.234.4777.689
10.5194/hess-26-1579-2022
10.1098/rsta.2007.2077
10.5194/gmd-6-563-2013
10.1175/JCLI-D-12-00108.1
10.1029/2007JF000883
10.1016/j.rse.2013.03.011
10.5194/hess-23-4717-2019
ContentType Journal Article
Copyright COPYRIGHT 2024 Copernicus GmbH
2024. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
info:eu-repo/semantics/openAccess
Copyright_xml – notice: COPYRIGHT 2024 Copernicus GmbH
– notice: 2024. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: info:eu-repo/semantics/openAccess
DBID AAYXX
CITATION
ISR
7QH
7TG
7TN
7UA
ABUWG
AEUYN
AFKRA
ATCPS
AZQEC
BENPR
BFMQW
BHPHI
BKSAR
C1K
CCPQU
DWQXO
F1W
GNUQQ
H95
H96
HCIFZ
KL.
L.G
PATMY
PCBAR
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQQKQ
PQUKI
PYCSY
3HK
DOA
DOI 10.5194/tc-18-363-2024
DatabaseName CrossRef
Gale In Context: Science
Aqualine
Meteorological & Geoastrophysical Abstracts
Oceanic Abstracts
Water Resources Abstracts
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
Agricultural & Environmental Science Collection
ProQuest Central Essentials
ProQuest Central
Continental Europe Database (ProQuest)
Natural Science Collection
Earth, Atmospheric & Aquatic Science Collection
Environmental Sciences and Pollution Management
ProQuest One
ProQuest Central Korea
ASFA: Aquatic Sciences and Fisheries Abstracts
ProQuest Central Student
Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
SciTech Premium Collection
Meteorological & Geoastrophysical Abstracts - Academic
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Environmental Science Database
Earth, Atmospheric & Aquatic Science Database
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
Environmental Science Collection
NORA - Norwegian Open Research Archives
DOAJ Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
Aquatic Science & Fisheries Abstracts (ASFA) Professional
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
Water Resources Abstracts
Environmental Sciences and Pollution Management
Earth, Atmospheric & Aquatic Science Collection
ProQuest Central
ProQuest One Sustainability
Meteorological & Geoastrophysical Abstracts
Oceanic Abstracts
Natural Science Collection
ProQuest Central Korea
Agricultural & Environmental Science Collection
Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources
ProQuest Central (New)
ProQuest One Academic Eastern Edition
Earth, Atmospheric & Aquatic Science Database
Continental Europe Database
Aqualine
Environmental Science Collection
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
ProQuest One Academic UKI Edition
ASFA: Aquatic Sciences and Fisheries Abstracts
Environmental Science Database
ProQuest One Academic
Meteorological & Geoastrophysical Abstracts - Academic
ProQuest One Academic (New)
DatabaseTitleList Publicly Available Content Database
CrossRef



Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Geography
Meteorology & Climatology
EISSN 1994-0424
1994-0416
EndPage 385
ExternalDocumentID oai_doaj_org_article_644af62acb5e40e5a76b9536d19ffd51
10852_117252
A780530474
10_5194_tc_18_363_2024
GeographicLocations Arctic region
GeographicLocations_xml – name: Arctic region
GroupedDBID 29F
2WC
5GY
5VS
7XC
8CJ
8FE
8FH
8R4
8R5
AAFWJ
AAYXX
ABDBF
ABUWG
ACUHS
ADBBV
AENEX
AEUYN
AFKRA
AFPKN
AHGZY
ALMA_UNASSIGNED_HOLDINGS
ATCPS
BCNDV
BENPR
BFMQW
BHPHI
BKSAR
BPHCQ
CCPQU
CITATION
D1J
D1K
E3Z
ESX
GROUPED_DOAJ
GX1
H13
HCIFZ
IAO
IEA
IEP
IGS
ISR
ITC
K6-
KQ8
LK5
M7R
MM-
M~E
OK1
OVT
P2P
PATMY
PCBAR
PHGZM
PHGZT
PIMPY
PQQKQ
PROAC
PYCSY
Q2X
RKB
RNS
TR2
TUS
ZBA
~02
BBORY
PMFND
7QH
7TG
7TN
7UA
AZQEC
C1K
DWQXO
F1W
GNUQQ
H95
H96
KL.
L.G
PKEHL
PQEST
PQUKI
3HK
C1A
IPNFZ
RIG
PUEGO
ID FETCH-LOGICAL-a522t-9f37b33fef9eb7bacee147dc7bd911612a930f069ee9248d004ca32a365e835b3
IEDL.DBID DOA
ISSN 1994-0424
1994-0416
IngestDate Wed Aug 27 01:28:55 EDT 2025
Mon Mar 31 03:23:21 EDT 2025
Mon Jun 30 11:41:10 EDT 2025
Tue Jun 17 22:25:05 EDT 2025
Tue Jun 10 21:14:20 EDT 2025
Fri Jun 27 06:01:28 EDT 2025
Tue Jul 01 03:15:35 EDT 2025
Thu Apr 24 22:54:58 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed false
IsScholarly true
Issue 1
Language English
License https://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a522t-9f37b33fef9eb7bacee147dc7bd911612a930f069ee9248d004ca32a365e835b3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-7205-6298
0000-0002-4140-0495
0000-0003-2570-9342
0000-0002-6071-289X
OpenAccessLink https://doaj.org/article/644af62acb5e40e5a76b9536d19ffd51
PQID 2918475438
PQPubID 105732
PageCount 23
ParticipantIDs doaj_primary_oai_doaj_org_article_644af62acb5e40e5a76b9536d19ffd51
cristin_nora_10852_117252
proquest_journals_2918475438
gale_infotracmisc_A780530474
gale_infotracacademiconefile_A780530474
gale_incontextgauss_ISR_A780530474
crossref_primary_10_5194_tc_18_363_2024
crossref_citationtrail_10_5194_tc_18_363_2024
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-01-26
PublicationDateYYYYMMDD 2024-01-26
PublicationDate_xml – month: 01
  year: 2024
  text: 2024-01-26
  day: 26
PublicationDecade 2020
PublicationPlace Katlenburg-Lindau
PublicationPlace_xml – name: Katlenburg-Lindau
PublicationTitle The cryosphere
PublicationYear 2024
Publisher Copernicus GmbH
Copernicus Publications
Publisher_xml – name: Copernicus GmbH
– name: Copernicus Publications
References ref57
ref56
ref59
ref58
ref53
ref52
ref55
ref54
ref51
ref50
ref46
ref45
ref48
ref47
ref42
ref41
ref44
ref43
ref49
ref8
ref7
ref9
ref4
ref3
ref6
ref5
ref100
ref101
ref40
ref35
ref34
ref37
ref36
ref31
ref30
ref33
ref32
ref39
ref38
ref24
ref23
ref26
ref25
ref20
ref22
ref21
ref28
ref27
ref29
ref13
ref12
ref15
ref14
ref97
ref96
ref11
ref99
ref10
ref98
ref17
ref16
ref19
ref18
ref93
ref92
ref95
ref94
ref91
ref90
ref89
ref86
ref85
ref88
ref87
ref82
ref81
ref84
ref83
ref80
ref79
ref78
ref106
ref75
ref104
ref74
ref105
ref77
ref102
ref76
ref103
ref2
ref1
ref71
ref70
ref73
ref72
ref68
ref67
ref69
ref64
ref63
ref66
ref65
ref60
ref62
ref61
References_xml – ident: ref36
  doi: 10.5194/bg-11-6573-2014
– ident: ref55
  doi: 10.1002/2014WR015965
– ident: ref76
  doi: 10.5194/gmd-14-521-2021
– ident: ref66
  doi: 10.1080/1088937X.2021.1988000
– ident: ref18
  doi: 10.5194/gmd-7-631-2014
– ident: ref22
  doi: 10.1029/2010JF001664
– ident: ref16
  doi: 10.1002/ggge.20271
– ident: ref40
  doi: 10.1016/j.yqres.2010.12.003
– ident: ref103
  doi: 10.5194/gmd-16-2607-2023
– ident: ref106
  doi: 10.1029/2020JF005673
– ident: ref59
  doi: 10.1029/2011GL050168
– ident: ref75
  doi: 10.1139/as-2021-0013
– ident: ref89
  doi: 10.1007/BF02649725
– ident: ref13
  doi: 10.1016/j.epsl.2007.09.017
– ident: ref71
  doi: 10.1007/BF00221235
– ident: ref53
– ident: ref5
  doi: 10.5194/gmd-8-2701-2015
– ident: ref67
  doi: 10.1016/j.earscirev.2019.04.023
– ident: ref93
  doi: 10.1175/JCLI-D-17-0198.1
– ident: ref37
  doi: 10.1088/1748-9326/8/4/045013
– ident: ref31
  doi: 10.1038/s43017-021-00233-0
– ident: ref94
  doi: 10.1017/jog.2018.55
– ident: ref86
  doi: 10.3189/172756503781830539
– ident: ref79
– ident: ref61
  doi: 10.1017/qua.2021.27
– ident: ref44
  doi: 10.1007/s41063-018-0041-3
– ident: ref33
– ident: ref26
  doi: 10.5194/tc-6-221-2012
– ident: ref42
  doi: 10.5194/tc-8-1935-2014
– ident: ref10
  doi: 10.3133/cp45
– ident: ref92
  doi: 10.1177/0959683617752858
– ident: ref24
  doi: 10.1126/science.1157525
– ident: ref63
  doi: 10.1038/s41467-020-15725-8
– ident: ref70
  doi: 10.1002/2015MS000526
– ident: ref88
  doi: 10.1175/2010JHM1202.1
– ident: ref32
  doi: 10.5194/gmd-13-1663-2020
– ident: ref77
  doi: 10.1007/s00382-006-0126-8
– ident: ref4
  doi: 10.1080/04353676.1976.11879925
– ident: ref28
  doi: 10.5194/tc-9-151-2015
– ident: ref90
  doi: 10.1029/2004JB003208
– ident: ref69
  doi: 10.1029/90JB02492
– ident: ref38
  doi: 10.1088/1748-9326/ab8ec4
– ident: ref64
  doi: 10.5194/tc-15-1399-2021
– ident: ref6
  doi: 10.1023/B:CLIM.0000018501.98266.55
– ident: ref29
  doi: 10.1007/BF01093225
– ident: ref81
  doi: 10.1139/e2012-019
– ident: ref52
– ident: ref50
  doi: 10.1002/2016JF003956
– ident: ref84
  doi: 10.3389/feart.2021.758360
– ident: ref96
  doi: 10.1038/s41561-019-0526-0
– ident: ref7
  doi: 10.1175/1520-0442(2001)014<3324:TROASI>2.0.CO;2
– ident: ref57
  doi: 10.1175/1520-0442-16.9.1261
– ident: ref78
  doi: 10.5194/cp-14-2011-2018
– ident: ref82
  doi: 10.1038/s43017-021-00240-1
– ident: ref35
  doi: 10.5194/essd-5-393-2013
– ident: ref12
  doi: 10.1038/nclimate3262
– ident: ref104
  doi: 10.5194/cp-11-1165-2015
– ident: ref91
  doi: 10.5194/cp-17-1455-2021
– ident: ref3
  doi: 10.1002/jqs.3390030103
– ident: ref83
  doi: 10.1175/JHM-D-21-0023.1
– ident: ref41
  doi: 10.1016/j.geomorph.2017.09.001
– ident: ref25
  doi: 10.5194/tc-12-3693-2018
– ident: ref17
  doi: 10.1002/qj.828
– ident: ref98
  doi: 10.1029/2006JF000696
– ident: ref2
– ident: ref30
  doi: 10.1029/90JB02004
– ident: ref101
  doi: 10.5194/gmd-9-523-2016
– ident: ref27
  doi: 10.5194/cp-10-1707-2014
– ident: ref23
  doi: 10.1111/bor.12036
– ident: ref15
  doi: 10.5194/gmd-7-3111-2014
– ident: ref56
  doi: 10.5194/tc-15-3423-2021
– ident: ref85
  doi: 10.1029/2021JG006630
– ident: ref14
  doi: 10.1046/j.1365-2389.2003.00539.x
– ident: ref105
  doi: 10.1016/0031-0182(78)90036-6
– ident: ref65
  doi: 10.1029/2022GL102053
– ident: ref95
  doi: 10.5194/tc-15-2541-2021
– ident: ref58
  doi: 10.5194/gmd-6-929-2013
– ident: ref97
  doi: 10.2136/vzj2016.01.0010
– ident: ref74
  doi: 10.1002/ppp.689
– ident: ref68
  doi: 10.5194/tc-16-1247-2022
– ident: ref87
  doi: 10.1175/1520-0442(1995)008<1261:ASSCCS>2.0.CO;2
– ident: ref100
  doi: 10.5194/tc-7-719-2013
– ident: ref34
  doi: 10.1002/ppp.2017
– ident: ref47
  doi: 10.1016/j.advwatres.2013.07.016
– ident: ref51
– ident: ref99
  doi: 10.5194/tc-5-945-2011
– ident: ref9
  doi: 10.1038/s41467-018-08240-4
– ident: ref1
  doi: 10.1080/00040851.1995.12003109
– ident: ref8
  doi: 10.1007/s10933-008-9262-y
– ident: ref43
  doi: 10.1002/jqs.3094
– ident: ref11
  doi: 10.1137/100786320
– ident: ref45
  doi: 10.2136/sssaj1966.03615995003000060011x
– ident: ref39
  doi: 10.3389/feart.2021.689941
– ident: ref62
  doi: 10.5194/tc-13-1089-2019
– ident: ref80
  doi: 10.1002/ppp.690
– ident: ref21
  doi: 10.1111/gcb.13248
– ident: ref102
  doi: 10.5194/tc-11-1441-2017
– ident: ref73
  doi: 10.1038/s43247-022-00498-3
– ident: ref48
  doi: 10.1126/science.234.4777.689
– ident: ref46
  doi: 10.5194/hess-26-1579-2022
– ident: ref60
  doi: 10.1098/rsta.2007.2077
– ident: ref19
  doi: 10.5194/gmd-6-563-2013
– ident: ref72
  doi: 10.1175/JCLI-D-12-00108.1
– ident: ref54
  doi: 10.1029/2007JF000883
– ident: ref49
  doi: 10.1016/j.rse.2013.03.011
– ident: ref20
  doi: 10.5194/hess-23-4717-2019
SSID ssj0062904
Score 2.398396
Snippet Understanding the future evolution of permafrost requires a better understanding of its climatological past. This requires permafrost models to efficiently...
SourceID doaj
cristin
proquest
gale
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Enrichment Source
Index Database
StartPage 363
SubjectTerms Accretion
Active layer
Analysis
Carbon
Evolution
Ground temperatures
Heat
Hydrology
Industrialization
Northern Hemisphere
Paleoclimate
Permafrost
Precipitation
Probability theory
Simulation
Simulation methods
Soil properties
Temperature
Thermal simulation
Thickness
Vegetation
Volcanic eruptions
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELagPcAFQQERKMhCCE5RE9uJkxNqVy0FqRUqVOrN8rOstE2WJEXqgf_OjNdb2EM57mY2ymZe33jsbwh517ggdQBHknGEmW9d3kAiBMcTRgstrYvtgpPT-vhcfLmoLtKC25i2Va5jYgzUrre4Rr7HWqhFZCV483H5M8epUdhdTSM07pNtCMENFF_bB4enX8_WsbhmbbHqKyMBrmBiRdsIqEXsTTYvmxzbmFD_4xkeG72q20hQkcf_rmgdU9DRY_IoYUe6v1L2E3LPdzvkQRpj_uNmh2QnAIH7Ia6U0_d0tpgDHo2fnpLfYBDU_0qWRvsA98HzUXSJsTng4Q-K2zkpIEIKkHqinNqYkaCWpngKhULF66_MwtNxfpWmfo0UF3Ljb2bDTf9pmDuk4fj3pnHWzjNyfnT4fXacp9kLuQZENuVt4NJwHnxovZFGQy4thXRWGgfhEWCRbnkRirr1Hiq4xoGvWc2Z5nXlAdQZ_pxsdX3nXxDqC84l-DmU7Va0tW20MIAiANjVWjAdMpKlV686MHukLK0YkpCzimUkXytD2URajrMzFiClUI1qsqpsFKhRoRoz8uFWfrmi67hT8gB1eyuFNNvxi364VMlrFYBFHWqmram8KHylZW2w3-3KNgRXlRl5i5ahkEijw506l_p6HNXnb2dqH4dFYE8TnykJhR6e3ep08AHeDnJvbUjubkiCp9vNy2sDVCnSjOqvX7z8_-VX5CH-b1w-YvUu2ZqGa_8aANVk3iSv-QMwVx3a
  priority: 102
  providerName: ProQuest
Title The evolution of Arctic permafrost over the last 3 centuries from ensemble simulations with the CryoGridLite permafrost model
URI https://www.proquest.com/docview/2918475438
http://hdl.handle.net/10852/117252
https://doaj.org/article/644af62acb5e40e5a76b9536d19ffd51
Volume 18
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NbtQwELZQOcAFQQERKJWFEJyiJrYTJ8d21R-QWqFCpb1Z_oWVtkm1SZF64Vl4Fp6MGcdbdQ8VFy4r7e5s5LVnPN94PN8Q8r5xQeoAhiRjCzPfurwBRwiGJ4wWWloX0wWnZ_XJhfg8r-Z3Wn3hnbCJHniauD3w1zrUTFtTeVH4SsvaYMrRlW0ILhZPM_B562Bq2oNr1hZTPhmJbwFzTHSNgFbE3mjzsskxfQlxP9bu2GhN3YZjivz99-3S0fUcPSVPEmak-9NYn5EHvtsmj1L78h832yQ7Bejbr-IJOf1AZ8sF4ND47jn5BYpA_c-kYbQP8Bysi6JXuCcHLPqgeI2TAhKkAKVHyv_8ttEVQRBNsfyEQqjrL83S02Fxmdp9DRRPcOOPZqub_ni1cMi_cfepscnOC3JxdPhtdpKnpgu5Big25m3g0nAefGi9kUaDEy2FdFYaB_si4CHd8iIUdes9hG6NAyOzmjPN68oDmjP8Jdnq-s6_ItQXnEswcIjXrWhr22hhAD4Aoqu1YDpkJEtzrzrQd-QqrRiyj7OKZSRfr4ayia0cm2YsQUrhOqrRqrJRsI4K1zEjH2_lryaejnslD3Bxb6WQXzt-AFqnktapf2ldRt6haihk0Ojwis53fT0M6tPXc7WPXSIwmYljSkKhh7FbnSoeYHaQdGtDcmdDEkzcbn691kCVtphBsRaCc1kJ3rz-H__oDXmMs4OnS6zeIVvj6tq_Bbw1ml3y8ODw7Mv5bjQxeD2el38Bj2UpMg
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LbxMxELZKKlQuCAqIhQIW4nFadWN7XweE2tDS0CZCpZV6M7bXLpHS3ZDdgnLgL_Ebmdl4CzmUW4_Jzlorz-sbj2eGkFdZ4VLlQJHSdoSZzYswA0cIiie0Eio1RZsuGI2Tg1Px6Sw-WyO_u1oYvFbZ2cTWUBeVwTPybZZDLJLGgmfvZ99DnBqF2dVuhMZSLA7t4ieEbPW74Qfg72vG9vdOBgehnyoQKsAaTZg7nmrOnXW51alW4CX6Ii1MqgtQfHD4KueRi5LcWohNsgKkyCjOFE9iC3BFc1j3FlkXHEKZHlnf3Rt_Pu5sf8LyaJnHxoa7gollm0hASWK7MWE_CzFtyiKsr79tWi0uVxxiOzfgOu_Qurz9e-Sux6p0Zylc98maLTfJhh-b_m2xSYIRQO5q3p7M0zd0MJ0A_m1_PSC_QACp_eElm1YO1sF6LDpDX-Cw2ITi9VEKCJQChG8op6b1gBC7U6x6oRBh2ws9tbSeXPgpYzXFg-P2ncF8UX2cTwps-_Hvou1sn4fk9Ea48oj0yqq0jwm1Eecp2BWruRF5YjIlNKAWAJKJEky5gAR-62UJaoYtUmOGTc9ZzAISdsyQxjdJx1kdU6CSyEbZGNnPJLBRIhsD8vaKfrZsD3It5S7y9ooK23q3f1Tzc-mthARwqlzClNGxFZGNVZpozK8X_dy5Iu4H5CVKhsTGHSXeDDpXl3Uth1-O5Q4Op8AcKn6TJ3IVfLtRvtACdgd7fa1Qbq1QgmUxq487AZTestXyrx4--f_jF2Tj4GR0JI-G48On5A7uAR5dsWSL9Jr5pX0GYK7Rz70GUfL1ppX2DyfvWzc
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9NAEF6VVDwuPAoIQ4EV4nFy46zfB4TalNBQUgGlordld71bIlI7xA4oSPwx_gp_hhl7XQhSufXAMfFkZU3muTPzDSEPk8zEwoAixfUKM51mbgKOEBQvkCIQscrqcsFoL9o5CF4ehocr5Ec7C4Ntla1NrA11Vii8I--yFHKROAz8pGtsW8Tr7cGz6WcXN0hhpbVdp9GIyK5efIX0rXw63Ib_-hFjg-fv-juu3TDgCog7Kjc1fix932iTahlLAR6jF8SZimUGRgCcv0h9z3hRqjXkKUkGEqWEz4QfhRpCF-nDuefIahIlIeuQ1a3B6M371g9ELPWamjaC7wYsaCAjIWIKupVye4mLJVTm4az9eVVrdL7kHOsdAqd5itr9Da6Qny3jmq6XTxvzSm6ob39hSv6fnL1KLtuonG42anSNrOh8jVy0C-I_LtaIM4LkopjVNQj6mPYnY4j060_XyXdQNaq_WB2mhYFzcPKMTtHrGRyrodgoSyHWppCsVNSnqvb1Y11SnO-hOi_1sZxoWo6P7T61kuIVef2b_mxRvJiNMwQ4-fPQeovRDXJwJpy5STp5ketbhGrP92OwoFr6KkgjlYhAQnwGIXMkAiaMQxwrWDwHg4JgsCFDeHcWMoe4rahxZeHgcSvJBKg4CimvFO8lHISUo5A65MkJ_bQBQjmVcgsl94QKAczrL4rZEbf2kEMYLkzEhJKhDjwdijiS2EmQ9VJjsrDnkAco9xwhSnIUySMxL0s-3H_LN3ENB1aL8Z0skSng3ZWwIyXAHUQ1W6JcX6IEG6qWH7eqwa0NL_lvvbj978f3yQVQGP5quLd7h1xCFuAdHYvWSaeazfVdiForec-aB0o-nLXe_AJpuqdM
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+evolution+of+Arctic+permafrost+over+the+last+3+centuries+from+ensemble+simulations+with+the+CryoGridLite+permafrost+model&rft.jtitle=The+cryosphere&rft.au=Langer%2C+Moritz&rft.au=Nitzbon%2C+Jan&rft.au=Groenke%2C+Brian&rft.au=Assmann%2C+Lisa-Marie&rft.date=2024-01-26&rft.pub=Copernicus+GmbH&rft.issn=1994-0416&rft.volume=18&rft.issue=1&rft.spage=363&rft_id=info:doi/10.5194%2Ftc-18-363-2024&rft.externalDBID=ISR&rft.externalDocID=A780530474
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1994-0424&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1994-0424&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1994-0424&client=summon