The evolution of Arctic permafrost over the last 3 centuries from ensemble simulations with the CryoGridLite permafrost model
Understanding the future evolution of permafrost requires a better understanding of its climatological past. This requires permafrost models to efficiently simulate the thermal dynamics of permafrost over the past centuries to millennia, taking into account highly uncertain soil and snow properties....
Saved in:
Published in | The cryosphere Vol. 18; no. 1; pp. 363 - 385 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
Katlenburg-Lindau
Copernicus GmbH
26.01.2024
Copernicus Publications |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Understanding the future evolution of permafrost requires a better understanding of its climatological past. This requires permafrost models to efficiently simulate the thermal dynamics of permafrost over the past centuries to millennia, taking into account highly uncertain soil and snow properties. In this study, we present a computationally efficient numerical permafrost model which satisfactorily reproduces the current ground temperatures and active layer thicknesses of permafrost in the Arctic and their trends over recent centuries. The performed simulations provide insights into the evolution of permafrost since the 18th century and show that permafrost on the North American continent is subject to early degradation, while permafrost on the Eurasian continent is relatively stable over the investigated 300-year period. Permafrost warming since industrialization has occurred primarily in three “hotspot” regions in northeastern Canada, northern Alaska, and, to a lesser extent, western Siberia. We find that the extent of areas with a high probability (p3 m>0.9) of near-surface permafrost (i.e., 3 m of permafrost within the upper 10 m of the subsurface) has declined substantially since the early 19th century, with loss accelerating during the last 50 years. Our simulations further indicate that short-term climate cooling due to large volcanic eruptions in the Northern Hemisphere in some cases favors permafrost aggradation within the uppermost 10 m of the ground, but the effect only lasts for a relatively short period of a few decades. Despite some limitations, e.g., with respect to the representation of vegetation, the presented model shows great potential for further investigation of the climatological past of permafrost, especially in conjunction with paleoclimate modeling. |
---|---|
AbstractList | Understanding the future evolution of permafrost requires a better understanding of its climatological past. This requires permafrost models to efficiently simulate the thermal dynamics of permafrost over the past centuries to millennia, taking into account highly uncertain soil and snow properties. In this study, we present a computationally efficient numerical permafrost model which satisfactorily reproduces the current ground temperatures and active layer thicknesses of permafrost in the Arctic and their trends over recent centuries. The performed simulations provide insights into the evolution of permafrost since the 18th century and show that permafrost on the North American continent is subject to early degradation, while permafrost on the Eurasian continent is relatively stable over the investigated 300-year period. Permafrost warming since industrialization has occurred primarily in three “hotspot” regions in northeastern Canada, northern Alaska, and, to a lesser extent, western Siberia. We find that the extent of areas with a high probability (p3m>0.9) of near-surface permafrost (i.e., 3 m of permafrost within the upper 10 m of the subsurface) has declined substantially since the early 19th century, with loss accelerating during the last 50 years. Our simulations further indicate that short-term climate cooling due to large volcanic eruptions in the Northern Hemisphere in some cases favors permafrost aggradation within the uppermost 10 m of the ground, but the effect only lasts for a relatively short period of a few decades. Despite some limitations, e.g., with respect to the representation of vegetation, the presented model shows great potential for further investigation of the climatological past of permafrost, especially in conjunction with paleoclimate modeling. Understanding the future evolution of permafrost requires a better understanding of its climatological past. This requires permafrost models to efficiently simulate the thermal dynamics of permafrost over the past centuries to millennia, taking into account highly uncertain soil and snow properties. In this study, we present a computationally efficient numerical permafrost model which satisfactorily reproduces the current ground temperatures and active layer thicknesses of permafrost in the Arctic and their trends over recent centuries. The performed simulations provide insights into the evolution of permafrost since the 18th century and show that permafrost on the North American continent is subject to early degradation, while permafrost on the Eurasian continent is relatively stable over the investigated 300-year period. Permafrost warming since industrialization has occurred primarily in three “hotspot” regions in northeastern Canada, northern Alaska, and, to a lesser extent, western Siberia. We find that the extent of areas with a high probability (p3 m>0.9) of near-surface permafrost (i.e., 3 m of permafrost within the upper 10 m of the subsurface) has declined substantially since the early 19th century, with loss accelerating during the last 50 years. Our simulations further indicate that short-term climate cooling due to large volcanic eruptions in the Northern Hemisphere in some cases favors permafrost aggradation within the uppermost 10 m of the ground, but the effect only lasts for a relatively short period of a few decades. Despite some limitations, e.g., with respect to the representation of vegetation, the presented model shows great potential for further investigation of the climatological past of permafrost, especially in conjunction with paleoclimate modeling. Understanding the future evolution of permafrost requires a better understanding of its climatological past. This requires permafrost models to efficiently simulate the thermal dynamics of permafrost over the past centuries to millennia, taking into account highly uncertain soil and snow properties. In this study, we present a computationally efficient numerical permafrost model which satisfactorily reproduces the current ground temperatures and active layer thicknesses of permafrost in the Arctic and their trends over recent centuries. The performed simulations provide insights into the evolution of permafrost since the 18th century and show that permafrost on the North American continent is subject to early degradation, while permafrost on the Eurasian continent is relatively stable over the investigated 300-year period. Permafrost warming since industrialization has occurred primarily in three "hotspot" regions in northeastern Canada, northern Alaska, and, to a lesser extent, western Siberia. We find that the extent of areas with a high probability (p.sub.3 m >0.9) of near-surface permafrost (i.e., 3 m of permafrost within the upper 10 m of the subsurface) has declined substantially since the early 19th century, with loss accelerating during the last 50 years. Our simulations further indicate that short-term climate cooling due to large volcanic eruptions in the Northern Hemisphere in some cases favors permafrost aggradation within the uppermost 10 m of the ground, but the effect only lasts for a relatively short period of a few decades. Despite some limitations, e.g., with respect to the representation of vegetation, the presented model shows great potential for further investigation of the climatological past of permafrost, especially in conjunction with paleoclimate modeling. |
Audience | Academic |
Author | Westermann, Sebastian Schneider von Deimling, Thomas Langer, Moritz Assmann, Lisa-Marie Stuenzi, Simone Maria Nitzbon, Jan Groenke, Brian |
Author_xml | – sequence: 1 givenname: Moritz surname: Langer fullname: Langer, Moritz – sequence: 2 givenname: Jan orcidid: 0000-0001-7205-6298 surname: Nitzbon fullname: Nitzbon, Jan – sequence: 3 givenname: Brian orcidid: 0000-0003-2570-9342 surname: Groenke fullname: Groenke, Brian – sequence: 4 givenname: Lisa-Marie surname: Assmann fullname: Assmann, Lisa-Marie – sequence: 5 givenname: Thomas orcidid: 0000-0002-4140-0495 surname: Schneider von Deimling fullname: Schneider von Deimling, Thomas – sequence: 6 givenname: Simone Maria orcidid: 0000-0002-6071-289X surname: Stuenzi fullname: Stuenzi, Simone Maria – sequence: 7 givenname: Sebastian surname: Westermann fullname: Westermann, Sebastian |
BookMark | eNp1kk9vFCEYxompiW316pnEk4ep_J0ZjpuN1k02MdF6JgzzsmUzM6zAVHvxs_hZ-snK7hptTQ0H4M3veeCF5wydTGEChF5TciGpEu-yrWhb8ZpXjDDxDJ1SpURFBBMnD9Yv0FlKW0Jqpog4RT-vrgHDTRjm7MOEg8OLaLO3eAdxNC6GlHG4gYhz4QZTdvzul4Upz9FDwgUYMUwJxm4AnPw4D2ZvlPB3n68PomW8DZfR92uf4aHrGHoYXqLnzgwJXv2ez9HXD--vlh-r9afL1XKxroxkLFfK8abj3IFT0DWdsQBUNL1tul5RWlNmFCeO1ApAMdH2hAhrODO8ltBy2fFztDr69sFs9S760cRbHYzXh0KIG21iaXsAXQthXM2M7SQIAtI0dackr3uqnOslLV746GWjT9lPegrRaEpayTSlDZOsIG-OyC6GbzOkrLdhjlPpUDNFW9FIwdu_1MaUc_3kQo7Gjj5ZvWhaIjkRjSjUxRNUGT2M3pYIOF_qjwRvHwkKk-FH3pg5Jb368vlJc1v-JEVwf96GEr1Plc5W01aXVOl9qopA_COwPh--vNzKD_-T3QPvEtGp |
CitedBy_id | crossref_primary_10_5194_essd_16_3719_2024 crossref_primary_10_7256_2453_8922_2024_4_72657 crossref_primary_10_1016_j_apr_2024_102329 crossref_primary_10_1002_ppp_2269 crossref_primary_10_1016_j_accre_2024_12_005 crossref_primary_10_3390_cli12110177 crossref_primary_10_7256_2453_8922_2025_1_72657 |
Cites_doi | 10.5194/bg-11-6573-2014 10.1002/2014WR015965 10.5194/gmd-14-521-2021 10.1080/1088937X.2021.1988000 10.5194/gmd-7-631-2014 10.1029/2010JF001664 10.1002/ggge.20271 10.1016/j.yqres.2010.12.003 10.5194/gmd-16-2607-2023 10.1029/2020JF005673 10.1029/2011GL050168 10.1139/as-2021-0013 10.1007/BF02649725 10.1016/j.epsl.2007.09.017 10.1007/BF00221235 10.5194/gmd-8-2701-2015 10.1016/j.earscirev.2019.04.023 10.1175/JCLI-D-17-0198.1 10.1088/1748-9326/8/4/045013 10.1038/s43017-021-00233-0 10.1017/jog.2018.55 10.3189/172756503781830539 10.1017/qua.2021.27 10.1007/s41063-018-0041-3 10.5194/tc-6-221-2012 10.5194/tc-8-1935-2014 10.3133/cp45 10.1177/0959683617752858 10.1126/science.1157525 10.1038/s41467-020-15725-8 10.1002/2015MS000526 10.1175/2010JHM1202.1 10.5194/gmd-13-1663-2020 10.1007/s00382-006-0126-8 10.1080/04353676.1976.11879925 10.5194/tc-9-151-2015 10.1029/2004JB003208 10.1029/90JB02492 10.1088/1748-9326/ab8ec4 10.5194/tc-15-1399-2021 10.1023/B:CLIM.0000018501.98266.55 10.1007/BF01093225 10.1139/e2012-019 10.1002/2016JF003956 10.3389/feart.2021.758360 10.1038/s41561-019-0526-0 10.1175/1520-0442(2001)014<3324:TROASI>2.0.CO;2 10.1175/1520-0442-16.9.1261 10.5194/cp-14-2011-2018 10.1038/s43017-021-00240-1 10.5194/essd-5-393-2013 10.1038/nclimate3262 10.5194/cp-11-1165-2015 10.5194/cp-17-1455-2021 10.1002/jqs.3390030103 10.1175/JHM-D-21-0023.1 10.1016/j.geomorph.2017.09.001 10.5194/tc-12-3693-2018 10.1002/qj.828 10.1029/2006JF000696 10.1029/90JB02004 10.5194/gmd-9-523-2016 10.5194/cp-10-1707-2014 10.1111/bor.12036 10.5194/gmd-7-3111-2014 10.5194/tc-15-3423-2021 10.1029/2021JG006630 10.1046/j.1365-2389.2003.00539.x 10.1016/0031-0182(78)90036-6 10.1029/2022GL102053 10.5194/tc-15-2541-2021 10.5194/gmd-6-929-2013 10.2136/vzj2016.01.0010 10.1002/ppp.689 10.5194/tc-16-1247-2022 10.1175/1520-0442(1995)008<1261:ASSCCS>2.0.CO;2 10.5194/tc-7-719-2013 10.1002/ppp.2017 10.1016/j.advwatres.2013.07.016 10.5194/tc-5-945-2011 10.1038/s41467-018-08240-4 10.1080/00040851.1995.12003109 10.1007/s10933-008-9262-y 10.1002/jqs.3094 10.1137/100786320 10.2136/sssaj1966.03615995003000060011x 10.3389/feart.2021.689941 10.5194/tc-13-1089-2019 10.1002/ppp.690 10.1111/gcb.13248 10.5194/tc-11-1441-2017 10.1038/s43247-022-00498-3 10.1126/science.234.4777.689 10.5194/hess-26-1579-2022 10.1098/rsta.2007.2077 10.5194/gmd-6-563-2013 10.1175/JCLI-D-12-00108.1 10.1029/2007JF000883 10.1016/j.rse.2013.03.011 10.5194/hess-23-4717-2019 |
ContentType | Journal Article |
Copyright | COPYRIGHT 2024 Copernicus GmbH 2024. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. info:eu-repo/semantics/openAccess |
Copyright_xml | – notice: COPYRIGHT 2024 Copernicus GmbH – notice: 2024. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: info:eu-repo/semantics/openAccess |
DBID | AAYXX CITATION ISR 7QH 7TG 7TN 7UA ABUWG AEUYN AFKRA ATCPS AZQEC BENPR BFMQW BHPHI BKSAR C1K CCPQU DWQXO F1W GNUQQ H95 H96 HCIFZ KL. L.G PATMY PCBAR PHGZM PHGZT PIMPY PKEHL PQEST PQQKQ PQUKI PYCSY 3HK DOA |
DOI | 10.5194/tc-18-363-2024 |
DatabaseName | CrossRef Gale In Context: Science Aqualine Meteorological & Geoastrophysical Abstracts Oceanic Abstracts Water Resources Abstracts ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland Agricultural & Environmental Science Collection ProQuest Central Essentials ProQuest Central Continental Europe Database (ProQuest) Natural Science Collection Earth, Atmospheric & Aquatic Science Collection Environmental Sciences and Pollution Management ProQuest One ProQuest Central Korea ASFA: Aquatic Sciences and Fisheries Abstracts ProQuest Central Student Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources SciTech Premium Collection Meteorological & Geoastrophysical Abstracts - Academic Aquatic Science & Fisheries Abstracts (ASFA) Professional Environmental Science Database Earth, Atmospheric & Aquatic Science Database ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition Environmental Science Collection NORA - Norwegian Open Research Archives DOAJ Open Access Journals |
DatabaseTitle | CrossRef Publicly Available Content Database Aquatic Science & Fisheries Abstracts (ASFA) Professional ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College Water Resources Abstracts Environmental Sciences and Pollution Management Earth, Atmospheric & Aquatic Science Collection ProQuest Central ProQuest One Sustainability Meteorological & Geoastrophysical Abstracts Oceanic Abstracts Natural Science Collection ProQuest Central Korea Agricultural & Environmental Science Collection Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources ProQuest Central (New) ProQuest One Academic Eastern Edition Earth, Atmospheric & Aquatic Science Database Continental Europe Database Aqualine Environmental Science Collection Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources ProQuest One Academic UKI Edition ASFA: Aquatic Sciences and Fisheries Abstracts Environmental Science Database ProQuest One Academic Meteorological & Geoastrophysical Abstracts - Academic ProQuest One Academic (New) |
DatabaseTitleList | Publicly Available Content Database CrossRef |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Geography Meteorology & Climatology |
EISSN | 1994-0424 1994-0416 |
EndPage | 385 |
ExternalDocumentID | oai_doaj_org_article_644af62acb5e40e5a76b9536d19ffd51 10852_117252 A780530474 10_5194_tc_18_363_2024 |
GeographicLocations | Arctic region |
GeographicLocations_xml | – name: Arctic region |
GroupedDBID | 29F 2WC 5GY 5VS 7XC 8CJ 8FE 8FH 8R4 8R5 AAFWJ AAYXX ABDBF ABUWG ACUHS ADBBV AENEX AEUYN AFKRA AFPKN AHGZY ALMA_UNASSIGNED_HOLDINGS ATCPS BCNDV BENPR BFMQW BHPHI BKSAR BPHCQ CCPQU CITATION D1J D1K E3Z ESX GROUPED_DOAJ GX1 H13 HCIFZ IAO IEA IEP IGS ISR ITC K6- KQ8 LK5 M7R MM- M~E OK1 OVT P2P PATMY PCBAR PHGZM PHGZT PIMPY PQQKQ PROAC PYCSY Q2X RKB RNS TR2 TUS ZBA ~02 BBORY PMFND 7QH 7TG 7TN 7UA AZQEC C1K DWQXO F1W GNUQQ H95 H96 KL. L.G PKEHL PQEST PQUKI 3HK C1A IPNFZ RIG PUEGO |
ID | FETCH-LOGICAL-a522t-9f37b33fef9eb7bacee147dc7bd911612a930f069ee9248d004ca32a365e835b3 |
IEDL.DBID | DOA |
ISSN | 1994-0424 1994-0416 |
IngestDate | Wed Aug 27 01:28:55 EDT 2025 Mon Mar 31 03:23:21 EDT 2025 Mon Jun 30 11:41:10 EDT 2025 Tue Jun 17 22:25:05 EDT 2025 Tue Jun 10 21:14:20 EDT 2025 Fri Jun 27 06:01:28 EDT 2025 Tue Jul 01 03:15:35 EDT 2025 Thu Apr 24 22:54:58 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | false |
IsScholarly | true |
Issue | 1 |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a522t-9f37b33fef9eb7bacee147dc7bd911612a930f069ee9248d004ca32a365e835b3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0001-7205-6298 0000-0002-4140-0495 0000-0003-2570-9342 0000-0002-6071-289X |
OpenAccessLink | https://doaj.org/article/644af62acb5e40e5a76b9536d19ffd51 |
PQID | 2918475438 |
PQPubID | 105732 |
PageCount | 23 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_644af62acb5e40e5a76b9536d19ffd51 cristin_nora_10852_117252 proquest_journals_2918475438 gale_infotracmisc_A780530474 gale_infotracacademiconefile_A780530474 gale_incontextgauss_ISR_A780530474 crossref_primary_10_5194_tc_18_363_2024 crossref_citationtrail_10_5194_tc_18_363_2024 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-01-26 |
PublicationDateYYYYMMDD | 2024-01-26 |
PublicationDate_xml | – month: 01 year: 2024 text: 2024-01-26 day: 26 |
PublicationDecade | 2020 |
PublicationPlace | Katlenburg-Lindau |
PublicationPlace_xml | – name: Katlenburg-Lindau |
PublicationTitle | The cryosphere |
PublicationYear | 2024 |
Publisher | Copernicus GmbH Copernicus Publications |
Publisher_xml | – name: Copernicus GmbH – name: Copernicus Publications |
References | ref57 ref56 ref59 ref58 ref53 ref52 ref55 ref54 ref51 ref50 ref46 ref45 ref48 ref47 ref42 ref41 ref44 ref43 ref49 ref8 ref7 ref9 ref4 ref3 ref6 ref5 ref100 ref101 ref40 ref35 ref34 ref37 ref36 ref31 ref30 ref33 ref32 ref39 ref38 ref24 ref23 ref26 ref25 ref20 ref22 ref21 ref28 ref27 ref29 ref13 ref12 ref15 ref14 ref97 ref96 ref11 ref99 ref10 ref98 ref17 ref16 ref19 ref18 ref93 ref92 ref95 ref94 ref91 ref90 ref89 ref86 ref85 ref88 ref87 ref82 ref81 ref84 ref83 ref80 ref79 ref78 ref106 ref75 ref104 ref74 ref105 ref77 ref102 ref76 ref103 ref2 ref1 ref71 ref70 ref73 ref72 ref68 ref67 ref69 ref64 ref63 ref66 ref65 ref60 ref62 ref61 |
References_xml | – ident: ref36 doi: 10.5194/bg-11-6573-2014 – ident: ref55 doi: 10.1002/2014WR015965 – ident: ref76 doi: 10.5194/gmd-14-521-2021 – ident: ref66 doi: 10.1080/1088937X.2021.1988000 – ident: ref18 doi: 10.5194/gmd-7-631-2014 – ident: ref22 doi: 10.1029/2010JF001664 – ident: ref16 doi: 10.1002/ggge.20271 – ident: ref40 doi: 10.1016/j.yqres.2010.12.003 – ident: ref103 doi: 10.5194/gmd-16-2607-2023 – ident: ref106 doi: 10.1029/2020JF005673 – ident: ref59 doi: 10.1029/2011GL050168 – ident: ref75 doi: 10.1139/as-2021-0013 – ident: ref89 doi: 10.1007/BF02649725 – ident: ref13 doi: 10.1016/j.epsl.2007.09.017 – ident: ref71 doi: 10.1007/BF00221235 – ident: ref53 – ident: ref5 doi: 10.5194/gmd-8-2701-2015 – ident: ref67 doi: 10.1016/j.earscirev.2019.04.023 – ident: ref93 doi: 10.1175/JCLI-D-17-0198.1 – ident: ref37 doi: 10.1088/1748-9326/8/4/045013 – ident: ref31 doi: 10.1038/s43017-021-00233-0 – ident: ref94 doi: 10.1017/jog.2018.55 – ident: ref86 doi: 10.3189/172756503781830539 – ident: ref79 – ident: ref61 doi: 10.1017/qua.2021.27 – ident: ref44 doi: 10.1007/s41063-018-0041-3 – ident: ref33 – ident: ref26 doi: 10.5194/tc-6-221-2012 – ident: ref42 doi: 10.5194/tc-8-1935-2014 – ident: ref10 doi: 10.3133/cp45 – ident: ref92 doi: 10.1177/0959683617752858 – ident: ref24 doi: 10.1126/science.1157525 – ident: ref63 doi: 10.1038/s41467-020-15725-8 – ident: ref70 doi: 10.1002/2015MS000526 – ident: ref88 doi: 10.1175/2010JHM1202.1 – ident: ref32 doi: 10.5194/gmd-13-1663-2020 – ident: ref77 doi: 10.1007/s00382-006-0126-8 – ident: ref4 doi: 10.1080/04353676.1976.11879925 – ident: ref28 doi: 10.5194/tc-9-151-2015 – ident: ref90 doi: 10.1029/2004JB003208 – ident: ref69 doi: 10.1029/90JB02492 – ident: ref38 doi: 10.1088/1748-9326/ab8ec4 – ident: ref64 doi: 10.5194/tc-15-1399-2021 – ident: ref6 doi: 10.1023/B:CLIM.0000018501.98266.55 – ident: ref29 doi: 10.1007/BF01093225 – ident: ref81 doi: 10.1139/e2012-019 – ident: ref52 – ident: ref50 doi: 10.1002/2016JF003956 – ident: ref84 doi: 10.3389/feart.2021.758360 – ident: ref96 doi: 10.1038/s41561-019-0526-0 – ident: ref7 doi: 10.1175/1520-0442(2001)014<3324:TROASI>2.0.CO;2 – ident: ref57 doi: 10.1175/1520-0442-16.9.1261 – ident: ref78 doi: 10.5194/cp-14-2011-2018 – ident: ref82 doi: 10.1038/s43017-021-00240-1 – ident: ref35 doi: 10.5194/essd-5-393-2013 – ident: ref12 doi: 10.1038/nclimate3262 – ident: ref104 doi: 10.5194/cp-11-1165-2015 – ident: ref91 doi: 10.5194/cp-17-1455-2021 – ident: ref3 doi: 10.1002/jqs.3390030103 – ident: ref83 doi: 10.1175/JHM-D-21-0023.1 – ident: ref41 doi: 10.1016/j.geomorph.2017.09.001 – ident: ref25 doi: 10.5194/tc-12-3693-2018 – ident: ref17 doi: 10.1002/qj.828 – ident: ref98 doi: 10.1029/2006JF000696 – ident: ref2 – ident: ref30 doi: 10.1029/90JB02004 – ident: ref101 doi: 10.5194/gmd-9-523-2016 – ident: ref27 doi: 10.5194/cp-10-1707-2014 – ident: ref23 doi: 10.1111/bor.12036 – ident: ref15 doi: 10.5194/gmd-7-3111-2014 – ident: ref56 doi: 10.5194/tc-15-3423-2021 – ident: ref85 doi: 10.1029/2021JG006630 – ident: ref14 doi: 10.1046/j.1365-2389.2003.00539.x – ident: ref105 doi: 10.1016/0031-0182(78)90036-6 – ident: ref65 doi: 10.1029/2022GL102053 – ident: ref95 doi: 10.5194/tc-15-2541-2021 – ident: ref58 doi: 10.5194/gmd-6-929-2013 – ident: ref97 doi: 10.2136/vzj2016.01.0010 – ident: ref74 doi: 10.1002/ppp.689 – ident: ref68 doi: 10.5194/tc-16-1247-2022 – ident: ref87 doi: 10.1175/1520-0442(1995)008<1261:ASSCCS>2.0.CO;2 – ident: ref100 doi: 10.5194/tc-7-719-2013 – ident: ref34 doi: 10.1002/ppp.2017 – ident: ref47 doi: 10.1016/j.advwatres.2013.07.016 – ident: ref51 – ident: ref99 doi: 10.5194/tc-5-945-2011 – ident: ref9 doi: 10.1038/s41467-018-08240-4 – ident: ref1 doi: 10.1080/00040851.1995.12003109 – ident: ref8 doi: 10.1007/s10933-008-9262-y – ident: ref43 doi: 10.1002/jqs.3094 – ident: ref11 doi: 10.1137/100786320 – ident: ref45 doi: 10.2136/sssaj1966.03615995003000060011x – ident: ref39 doi: 10.3389/feart.2021.689941 – ident: ref62 doi: 10.5194/tc-13-1089-2019 – ident: ref80 doi: 10.1002/ppp.690 – ident: ref21 doi: 10.1111/gcb.13248 – ident: ref102 doi: 10.5194/tc-11-1441-2017 – ident: ref73 doi: 10.1038/s43247-022-00498-3 – ident: ref48 doi: 10.1126/science.234.4777.689 – ident: ref46 doi: 10.5194/hess-26-1579-2022 – ident: ref60 doi: 10.1098/rsta.2007.2077 – ident: ref19 doi: 10.5194/gmd-6-563-2013 – ident: ref72 doi: 10.1175/JCLI-D-12-00108.1 – ident: ref54 doi: 10.1029/2007JF000883 – ident: ref49 doi: 10.1016/j.rse.2013.03.011 – ident: ref20 doi: 10.5194/hess-23-4717-2019 |
SSID | ssj0062904 |
Score | 2.398396 |
Snippet | Understanding the future evolution of permafrost requires a better understanding of its climatological past. This requires permafrost models to efficiently... |
SourceID | doaj cristin proquest gale crossref |
SourceType | Open Website Open Access Repository Aggregation Database Enrichment Source Index Database |
StartPage | 363 |
SubjectTerms | Accretion Active layer Analysis Carbon Evolution Ground temperatures Heat Hydrology Industrialization Northern Hemisphere Paleoclimate Permafrost Precipitation Probability theory Simulation Simulation methods Soil properties Temperature Thermal simulation Thickness Vegetation Volcanic eruptions |
SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELagPcAFQQERKMhCCE5RE9uJkxNqVy0FqRUqVOrN8rOstE2WJEXqgf_OjNdb2EM57mY2ymZe33jsbwh517ggdQBHknGEmW9d3kAiBMcTRgstrYvtgpPT-vhcfLmoLtKC25i2Va5jYgzUrre4Rr7HWqhFZCV483H5M8epUdhdTSM07pNtCMENFF_bB4enX8_WsbhmbbHqKyMBrmBiRdsIqEXsTTYvmxzbmFD_4xkeG72q20hQkcf_rmgdU9DRY_IoYUe6v1L2E3LPdzvkQRpj_uNmh2QnAIH7Ia6U0_d0tpgDHo2fnpLfYBDU_0qWRvsA98HzUXSJsTng4Q-K2zkpIEIKkHqinNqYkaCWpngKhULF66_MwtNxfpWmfo0UF3Ljb2bDTf9pmDuk4fj3pnHWzjNyfnT4fXacp9kLuQZENuVt4NJwHnxovZFGQy4thXRWGgfhEWCRbnkRirr1Hiq4xoGvWc2Z5nXlAdQZ_pxsdX3nXxDqC84l-DmU7Va0tW20MIAiANjVWjAdMpKlV686MHukLK0YkpCzimUkXytD2URajrMzFiClUI1qsqpsFKhRoRoz8uFWfrmi67hT8gB1eyuFNNvxi364VMlrFYBFHWqmram8KHylZW2w3-3KNgRXlRl5i5ahkEijw506l_p6HNXnb2dqH4dFYE8TnykJhR6e3ep08AHeDnJvbUjubkiCp9vNy2sDVCnSjOqvX7z8_-VX5CH-b1w-YvUu2ZqGa_8aANVk3iSv-QMwVx3a priority: 102 providerName: ProQuest |
Title | The evolution of Arctic permafrost over the last 3 centuries from ensemble simulations with the CryoGridLite permafrost model |
URI | https://www.proquest.com/docview/2918475438 http://hdl.handle.net/10852/117252 https://doaj.org/article/644af62acb5e40e5a76b9536d19ffd51 |
Volume | 18 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NbtQwELZQOcAFQQERKJWFEJyiJrYTJ8d21R-QWqFCpb1Z_oWVtkm1SZF64Vl4Fp6MGcdbdQ8VFy4r7e5s5LVnPN94PN8Q8r5xQeoAhiRjCzPfurwBRwiGJ4wWWloX0wWnZ_XJhfg8r-Z3Wn3hnbCJHniauD3w1zrUTFtTeVH4SsvaYMrRlW0ILhZPM_B562Bq2oNr1hZTPhmJbwFzTHSNgFbE3mjzsskxfQlxP9bu2GhN3YZjivz99-3S0fUcPSVPEmak-9NYn5EHvtsmj1L78h832yQ7Bejbr-IJOf1AZ8sF4ND47jn5BYpA_c-kYbQP8Bysi6JXuCcHLPqgeI2TAhKkAKVHyv_8ttEVQRBNsfyEQqjrL83S02Fxmdp9DRRPcOOPZqub_ni1cMi_cfepscnOC3JxdPhtdpKnpgu5Big25m3g0nAefGi9kUaDEy2FdFYaB_si4CHd8iIUdes9hG6NAyOzmjPN68oDmjP8Jdnq-s6_ItQXnEswcIjXrWhr22hhAD4Aoqu1YDpkJEtzrzrQd-QqrRiyj7OKZSRfr4ayia0cm2YsQUrhOqrRqrJRsI4K1zEjH2_lryaejnslD3Bxb6WQXzt-AFqnktapf2ldRt6haihk0Ojwis53fT0M6tPXc7WPXSIwmYljSkKhh7FbnSoeYHaQdGtDcmdDEkzcbn691kCVtphBsRaCc1kJ3rz-H__oDXmMs4OnS6zeIVvj6tq_Bbw1ml3y8ODw7Mv5bjQxeD2el38Bj2UpMg |
linkProvider | Directory of Open Access Journals |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LbxMxELZKKlQuCAqIhQIW4nFadWN7XweE2tDS0CZCpZV6M7bXLpHS3ZDdgnLgL_Ebmdl4CzmUW4_Jzlorz-sbj2eGkFdZ4VLlQJHSdoSZzYswA0cIiie0Eio1RZsuGI2Tg1Px6Sw-WyO_u1oYvFbZ2cTWUBeVwTPybZZDLJLGgmfvZ99DnBqF2dVuhMZSLA7t4ieEbPW74Qfg72vG9vdOBgehnyoQKsAaTZg7nmrOnXW51alW4CX6Ii1MqgtQfHD4KueRi5LcWohNsgKkyCjOFE9iC3BFc1j3FlkXHEKZHlnf3Rt_Pu5sf8LyaJnHxoa7gollm0hASWK7MWE_CzFtyiKsr79tWi0uVxxiOzfgOu_Qurz9e-Sux6p0Zylc98maLTfJhh-b_m2xSYIRQO5q3p7M0zd0MJ0A_m1_PSC_QACp_eElm1YO1sF6LDpDX-Cw2ITi9VEKCJQChG8op6b1gBC7U6x6oRBh2ws9tbSeXPgpYzXFg-P2ncF8UX2cTwps-_Hvou1sn4fk9Ea48oj0yqq0jwm1Eecp2BWruRF5YjIlNKAWAJKJEky5gAR-62UJaoYtUmOGTc9ZzAISdsyQxjdJx1kdU6CSyEbZGNnPJLBRIhsD8vaKfrZsD3It5S7y9ooK23q3f1Tzc-mthARwqlzClNGxFZGNVZpozK8X_dy5Iu4H5CVKhsTGHSXeDDpXl3Uth1-O5Q4Op8AcKn6TJ3IVfLtRvtACdgd7fa1Qbq1QgmUxq487AZTestXyrx4--f_jF2Tj4GR0JI-G48On5A7uAR5dsWSL9Jr5pX0GYK7Rz70GUfL1ppX2DyfvWzc |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9NAEF6VVDwuPAoIQ4EV4nFy46zfB4TalNBQUgGlordld71bIlI7xA4oSPwx_gp_hhl7XQhSufXAMfFkZU3muTPzDSEPk8zEwoAixfUKM51mbgKOEBQvkCIQscrqcsFoL9o5CF4ehocr5Ec7C4Ntla1NrA11Vii8I--yFHKROAz8pGtsW8Tr7cGz6WcXN0hhpbVdp9GIyK5efIX0rXw63Ib_-hFjg-fv-juu3TDgCog7Kjc1fix932iTahlLAR6jF8SZimUGRgCcv0h9z3hRqjXkKUkGEqWEz4QfhRpCF-nDuefIahIlIeuQ1a3B6M371g9ELPWamjaC7wYsaCAjIWIKupVye4mLJVTm4az9eVVrdL7kHOsdAqd5itr9Da6Qny3jmq6XTxvzSm6ob39hSv6fnL1KLtuonG42anSNrOh8jVy0C-I_LtaIM4LkopjVNQj6mPYnY4j060_XyXdQNaq_WB2mhYFzcPKMTtHrGRyrodgoSyHWppCsVNSnqvb1Y11SnO-hOi_1sZxoWo6P7T61kuIVef2b_mxRvJiNMwQ4-fPQeovRDXJwJpy5STp5ketbhGrP92OwoFr6KkgjlYhAQnwGIXMkAiaMQxwrWDwHg4JgsCFDeHcWMoe4rahxZeHgcSvJBKg4CimvFO8lHISUo5A65MkJ_bQBQjmVcgsl94QKAczrL4rZEbf2kEMYLkzEhJKhDjwdijiS2EmQ9VJjsrDnkAco9xwhSnIUySMxL0s-3H_LN3ENB1aL8Z0skSng3ZWwIyXAHUQ1W6JcX6IEG6qWH7eqwa0NL_lvvbj978f3yQVQGP5quLd7h1xCFuAdHYvWSaeazfVdiForec-aB0o-nLXe_AJpuqdM |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+evolution+of+Arctic+permafrost+over+the+last+3+centuries+from+ensemble+simulations+with+the+CryoGridLite+permafrost+model&rft.jtitle=The+cryosphere&rft.au=Langer%2C+Moritz&rft.au=Nitzbon%2C+Jan&rft.au=Groenke%2C+Brian&rft.au=Assmann%2C+Lisa-Marie&rft.date=2024-01-26&rft.pub=Copernicus+GmbH&rft.issn=1994-0416&rft.volume=18&rft.issue=1&rft.spage=363&rft_id=info:doi/10.5194%2Ftc-18-363-2024&rft.externalDBID=ISR&rft.externalDocID=A780530474 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1994-0424&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1994-0424&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1994-0424&client=summon |