Full Page Handwriting Recognition via Image to Sequence Extraction

We present a Neural Network based Handwritten Text Recognition (HTR) model architecture that can be trained to recognize full pages of handwritten or printed text without image segmentation. Being based on Image to Sequence architecture, it can extract text present in an image and then sequence it c...

Full description

Saved in:
Bibliographic Details
Published inarXiv.org
Main Authors Singh, Sumeet S, Karayev, Sergey
Format Paper Journal Article
LanguageEnglish
Published Ithaca Cornell University Library, arXiv.org 26.06.2022
Subjects
Online AccessGet full text
ISSN2331-8422
DOI10.48550/arxiv.2103.06450

Cover

Loading…
Abstract We present a Neural Network based Handwritten Text Recognition (HTR) model architecture that can be trained to recognize full pages of handwritten or printed text without image segmentation. Being based on Image to Sequence architecture, it can extract text present in an image and then sequence it correctly without imposing any constraints regarding orientation, layout and size of text and non-text. Further, it can also be trained to generate auxiliary markup related to formatting, layout and content. We use character level vocabulary, thereby enabling language and terminology of any subject. The model achieves a new state-of-art in paragraph level recognition on the IAM dataset. When evaluated on scans of real world handwritten free form test answers - beset with curved and slanted lines, drawings, tables, math, chemistry and other symbols - it performs better than all commercially available HTR cloud APIs. It is deployed in production as part of a commercial web application.
AbstractList We present a Neural Network based Handwritten Text Recognition (HTR) model architecture that can be trained to recognize full pages of handwritten or printed text without image segmentation. Being based on Image to Sequence architecture, it can extract text present in an image and then sequence it correctly without imposing any constraints regarding orientation, layout and size of text and non-text. Further, it can also be trained to generate auxiliary markup related to formatting, layout and content. We use character level vocabulary, thereby enabling language and terminology of any subject. The model achieves a new state-of-art in paragraph level recognition on the IAM dataset. When evaluated on scans of real world handwritten free form test answers - beset with curved and slanted lines, drawings, tables, math, chemistry and other symbols - it performs better than all commercially available HTR cloud APIs. It is deployed in production as part of a commercial web application.
We present a Neural Network based Handwritten Text Recognition (HTR) model architecture that can be trained to recognize full pages of handwritten or printed text without image segmentation. Being based on Image to Sequence architecture, it can extract text present in an image and then sequence it correctly without imposing any constraints regarding orientation, layout and size of text and non-text. Further, it can also be trained to generate auxiliary markup related to formatting, layout and content. We use character level vocabulary, thereby enabling language and terminology of any subject. The model achieves a new state-of-art in paragraph level recognition on the IAM dataset. When evaluated on scans of real world handwritten free form test answers - beset with curved and slanted lines, drawings, tables, math, chemistry and other symbols - it performs better than all commercially available HTR cloud APIs. It is deployed in production as part of a commercial web application.
Author Singh, Sumeet S
Karayev, Sergey
Author_xml – sequence: 1
  givenname: Sumeet
  surname: Singh
  middlename: S
  fullname: Singh, Sumeet S
– sequence: 2
  givenname: Sergey
  surname: Karayev
  fullname: Karayev, Sergey
BackLink https://doi.org/10.48550/arXiv.2103.06450$$DView paper in arXiv
https://doi.org/10.1007/978-3-030-86334-0_4$$DView published paper (Access to full text may be restricted)
BookMark eNotj1FPwjAUhRujiYj8AJ9s4vPwtre3o49KQEhINMr7Uka7jIwOu4H47x3g0zkPX07Od8euQx0cYw8ChmpEBM82HsvDUArAIWhFcMV6ElEkIyXlLRs0zQYApE4lEfbY63RfVfzDFo7PbFj_xLItQ8E_XV4Xoet14IfS8vn2RLQ1_3LfexdyxyfHNtr8BNyzG2-rxg3-s8-W08lyPEsW72_z8csisSRl4lE5hJEho7y1qVCQp56sw9ystVbCgAZvNOkUjROEDgn9yqw0iFQa4bHPHi-zZ8FsF8utjb_ZSTQ7i3bE04XYxbp72bTZpt7H0H3KJAGkQIYk_gEIaVWz
ContentType Paper
Journal Article
Copyright 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
http://creativecommons.org/licenses/by/4.0
Copyright_xml – notice: 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: http://creativecommons.org/licenses/by/4.0
DBID 8FE
8FG
ABJCF
ABUWG
AFKRA
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
HCIFZ
L6V
M7S
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
AKY
GOX
DOI 10.48550/arxiv.2103.06450
DatabaseName ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
Technology Collection
ProQuest One
ProQuest Central
SciTech Premium Collection
ProQuest Engineering Collection
Engineering Database
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
arXiv Computer Science
arXiv.org
DatabaseTitle Publicly Available Content Database
Engineering Database
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
ProQuest One Academic UKI Edition
ProQuest Central Korea
Materials Science & Engineering Collection
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
Engineering Collection
DatabaseTitleList
Publicly Available Content Database
Database_xml – sequence: 1
  dbid: GOX
  name: arXiv.org
  url: http://arxiv.org/find
  sourceTypes: Open Access Repository
– sequence: 2
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 2331-8422
ExternalDocumentID 2103_06450
Genre Working Paper/Pre-Print
GroupedDBID 8FE
8FG
ABJCF
ABUWG
AFKRA
ALMA_UNASSIGNED_HOLDINGS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
FRJ
HCIFZ
L6V
M7S
M~E
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
AKY
GOX
ID FETCH-LOGICAL-a522-f34e3089594faa7140c7f5ae3c9d66419060f9656739e153e353fb9b6017291f3
IEDL.DBID GOX
IngestDate Tue Jul 22 23:40:32 EDT 2025
Mon Jun 30 09:12:56 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a522-f34e3089594faa7140c7f5ae3c9d66419060f9656739e153e353fb9b6017291f3
Notes SourceType-Working Papers-1
ObjectType-Working Paper/Pre-Print-1
content type line 50
OpenAccessLink https://arxiv.org/abs/2103.06450
PQID 2500705952
PQPubID 2050157
ParticipantIDs arxiv_primary_2103_06450
proquest_journals_2500705952
PublicationCentury 2000
PublicationDate 20220626
PublicationDateYYYYMMDD 2022-06-26
PublicationDate_xml – month: 06
  year: 2022
  text: 20220626
  day: 26
PublicationDecade 2020
PublicationPlace Ithaca
PublicationPlace_xml – name: Ithaca
PublicationTitle arXiv.org
PublicationYear 2022
Publisher Cornell University Library, arXiv.org
Publisher_xml – name: Cornell University Library, arXiv.org
SSID ssj0002672553
Score 1.8012686
SecondaryResourceType preprint
Snippet We present a Neural Network based Handwritten Text Recognition (HTR) model architecture that can be trained to recognize full pages of handwritten or printed...
We present a Neural Network based Handwritten Text Recognition (HTR) model architecture that can be trained to recognize full pages of handwritten or printed...
SourceID arxiv
proquest
SourceType Open Access Repository
Aggregation Database
SubjectTerms Applications programs
Computer Science - Artificial Intelligence
Computer Science - Computation and Language
Computer Science - Computer Vision and Pattern Recognition
Computer Science - Learning
Datasets
Free form
Handwriting recognition
Image segmentation
Layouts
Neural networks
Object recognition
Printed text
SummonAdditionalLinks – databaseName: ProQuest Technology Collection
  dbid: 8FG
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV07T8MwELagFRIbT7VQkAdWt2kc2_GEBGopSKAKitQtshMbdSAJaSj9-ZzdFAYkVsdL7s7fPXz-DqGrDE4BZUoRowQkKCw0JE55QCAYj2hmbah9aeDxiU9eo4c5mzcFt2XTVrnFRA_UWZG6GvkAXDVYJ5MsvC4_iJsa5W5XmxEau6g9BE_jLDwe3_3UWEIuIGKmm8tMT901UNV6sepDnkP7jqkNkLjtl_5Asfcv4wPUnqrSVIdox-RHaM-3ZabLY3TjMkQ8hTOPJ5DyfzkGovwNP2-7foocrxYK37-7HXWBX5rGaDxa19XmycIJmo1Hs9sJaaYeEAWxELE0MjSIJZORVcrR6aXCMmVoKjPOI_DfPLASojBBpQG4MpRRq6XmLpmTQ0tPUSsvctNBWOhsqDOjrI6jiIFCAsG148cxIEeRqS7q-H9Pyg2xReLEknixdFFvK46kMepl8quCs_8_n6P90L0SCDgJeQ-16urTXIDvrvWlV9A3g-2W2A
  priority: 102
  providerName: ProQuest
Title Full Page Handwriting Recognition via Image to Sequence Extraction
URI https://www.proquest.com/docview/2500705952
https://arxiv.org/abs/2103.06450
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwdV1BT8IwFH4BvHgxGjWgSHrwOh3r2q1HMQM0AQliwm1pWWs4OAhM5ORv97Ub8WC89NC8Hvq61_d97es3gNsMo4AyKT0tIyQoLNBevOC-h2A8pJkxgXJHA6MxH76Fz3M2rwE5vIWRm_1yV-oDq-098hF6ZxXVkJTXg8CWbA1e5uXlpJPiqux_7RBjuq4_W6vLF_1TOKmAHnkoV-YMajo_h55lfGSCMUyGSOG_rKJQ_k6mhyqeVU52S0mePqxFsSKvVaEzSfbFpnyCcAGzfjJ7HHrVXww8idjGMzTU1I8FE6GR0srjLSLDpKYLkXEeYj7mvhGIqiIqNG4_mjJqlFDckjPRNfQSGvkq100gkcq6KtPSqDgMGTrYj7iyejcaMVKUyRY03dzTdSlUkVq3pM4tLWgf3JFWH-k2RfSDAc8EC67-H3kNx4Gt-Pe5F_A2NIrNp77BPFyoDtTj_qADR71kPJl23NJgO_pOfgArjInj
linkProvider Cornell University
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT8JAEJ4gxOjNZ0RR96DHQul2t_RgTFAIyCMEMeHWbNtdw8GCgIA_yv_obB96MPHGtW026czsN4-d-RbgJsRdQJkQhhQOJijMkkYt4KaBwbhNQ6UsPy4N9Pq89WI_jdk4B1_ZLIxuq8wwMQbqcBroGnkFXTVaJ3OZdT97N_StUfp0NbtCIzGLjvxcY8q2uGs_on5vLavZGD20jPRWAUNgrGEoaktq1lzm2koITVcXOIoJSQM35NxG_8hN5WKU41BXIhxIyqjyXZ_rZMmtKorL7kDBphgp5KFQb_QHw5-ijsUdDNFpcnoac4VVxHwzWZUxsaJlTQ2H0F-IH_3B_tihNQ-gMBAzOT-EnIyOYDfuAw0Wx1DXKSkZIMiQlojCtaY8il7JMGszmkZkNRGk_aa_WE7Jc9qJTRqb5TyZkTiB0TYEcgr5aBrJMyCOH1b9UArl12yboQWYDvc1IY9ExTmhKMJZ_O_eLGHS8LRYvFgsRShl4vDSXbTwfnV-_v_ra9hrjXpdr9vudy5g39IjCiY3LF6C_HL-IS8xcFj6V6m6CHhbNpBvjpXR3w
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Full+Page+Handwriting+Recognition+via+Image+to+Sequence+Extraction&rft.jtitle=arXiv.org&rft.au=Singh%2C+Sumeet+S&rft.au=Karayev%2C+Sergey&rft.date=2022-06-26&rft.pub=Cornell+University+Library%2C+arXiv.org&rft.eissn=2331-8422&rft_id=info:doi/10.48550%2Farxiv.2103.06450