Representation Learning via Quantum Neural Tangent Kernels
Variational quantum circuits are used in quantum machine learning and variational quantum simulation tasks. Designing good variational circuits or predicting how well they perform for given learning or optimization tasks is still unclear. Here we discuss these problems, analyzing variational quantum...
Saved in:
Published in | arXiv.org |
---|---|
Main Authors | , , , , |
Format | Paper Journal Article |
Language | English |
Published |
Ithaca
Cornell University Library, arXiv.org
13.11.2021
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Variational quantum circuits are used in quantum machine learning and variational quantum simulation tasks. Designing good variational circuits or predicting how well they perform for given learning or optimization tasks is still unclear. Here we discuss these problems, analyzing variational quantum circuits using the theory of neural tangent kernels. We define quantum neural tangent kernels, and derive dynamical equations for their associated loss function in optimization and learning tasks. We analytically solve the dynamics in the frozen limit, or lazy training regime, where variational angles change slowly and a linear perturbation is good enough. We extend the analysis to a dynamical setting, including quadratic corrections in the variational angles. We then consider hybrid quantum-classical architecture and define a large-width limit for hybrid kernels, showing that a hybrid quantum-classical neural network can be approximately Gaussian. The results presented here show limits for which analytical understandings of the training dynamics for variational quantum circuits, used for quantum machine learning and optimization problems, are possible. These analytical results are supported by numerical simulations of quantum machine learning experiments. |
---|---|
AbstractList | PRX Quantum 3, 030323, 2022 Variational quantum circuits are used in quantum machine learning and
variational quantum simulation tasks. Designing good variational circuits or
predicting how well they perform for given learning or optimization tasks is
still unclear. Here we discuss these problems, analyzing variational quantum
circuits using the theory of neural tangent kernels. We define quantum neural
tangent kernels, and derive dynamical equations for their associated loss
function in optimization and learning tasks. We analytically solve the dynamics
in the frozen limit, or lazy training regime, where variational angles change
slowly and a linear perturbation is good enough. We extend the analysis to a
dynamical setting, including quadratic corrections in the variational angles.
We then consider hybrid quantum-classical architecture and define a large-width
limit for hybrid kernels, showing that a hybrid quantum-classical neural
network can be approximately Gaussian. The results presented here show limits
for which analytical understandings of the training dynamics for variational
quantum circuits, used for quantum machine learning and optimization problems,
are possible. These analytical results are supported by numerical simulations
of quantum machine learning experiments. Variational quantum circuits are used in quantum machine learning and variational quantum simulation tasks. Designing good variational circuits or predicting how well they perform for given learning or optimization tasks is still unclear. Here we discuss these problems, analyzing variational quantum circuits using the theory of neural tangent kernels. We define quantum neural tangent kernels, and derive dynamical equations for their associated loss function in optimization and learning tasks. We analytically solve the dynamics in the frozen limit, or lazy training regime, where variational angles change slowly and a linear perturbation is good enough. We extend the analysis to a dynamical setting, including quadratic corrections in the variational angles. We then consider hybrid quantum-classical architecture and define a large-width limit for hybrid kernels, showing that a hybrid quantum-classical neural network can be approximately Gaussian. The results presented here show limits for which analytical understandings of the training dynamics for variational quantum circuits, used for quantum machine learning and optimization problems, are possible. These analytical results are supported by numerical simulations of quantum machine learning experiments. |
Author | Glick, Jennifer R Liu, Junyu Mezzacapo, Antonio Tacchino, Francesco Jiang, Liang |
Author_xml | – sequence: 1 givenname: Junyu surname: Liu fullname: Liu, Junyu – sequence: 2 givenname: Francesco surname: Tacchino fullname: Tacchino, Francesco – sequence: 3 givenname: Jennifer surname: Glick middlename: R fullname: Glick, Jennifer R – sequence: 4 givenname: Liang surname: Jiang fullname: Jiang, Liang – sequence: 5 givenname: Antonio surname: Mezzacapo fullname: Mezzacapo, Antonio |
BackLink | https://doi.org/10.48550/arXiv.2111.04225$$DView paper in arXiv https://doi.org/10.1103/PRXQuantum.3.030323$$DView published paper (Access to full text may be restricted) |
BookMark | eNotj1tLw0AQhRdRsNb-AJ8M-Jy4O5vJxTcp3jAoSt7DJDspKekmbpKi_97YyjwcBj4O57sQp7azLMSVkkGYIMpbct_NPgClVCBDADwRC9Ba-cn8nIvVMGyllBDFgKgX4u6Te8cD25HGprNexuRsYzfeviHvYyI7TjvvjSdHrZeT3cyg98rOcjtcirOa2oFX_7kU-eNDvn72s_enl_V95hMC-LWqwWBYVhoNEYcxpnUpSVc1Q6TmSzUYUCmHIZacokFjIIqqGiBmSo1eiutj7UGs6F2zI_dT_AkWB8GZuDkSveu-Jh7GYttNzs6bCsAU40RGEvQv8ZdU0g |
ContentType | Paper Journal Article |
Copyright | 2021. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. http://arxiv.org/licenses/nonexclusive-distrib/1.0 |
Copyright_xml | – notice: 2021. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: http://arxiv.org/licenses/nonexclusive-distrib/1.0 |
DBID | 8FE 8FG ABJCF ABUWG AFKRA AZQEC BENPR BGLVJ CCPQU DWQXO HCIFZ L6V M7S PIMPY PQEST PQQKQ PQUKI PRINS PTHSS AKY EPD GOX |
DOI | 10.48550/arxiv.2111.04225 |
DatabaseName | ProQuest SciTech Collection ProQuest Technology Collection Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central ProQuest Central Essentials ProQuest Central Technology Collection ProQuest One Community College ProQuest Central Korea SciTech Premium Collection ProQuest Engineering Collection Engineering Database Publicly Available Content Database ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection arXiv Computer Science arXiv Statistics arXiv.org |
DatabaseTitle | Publicly Available Content Database Engineering Database Technology Collection ProQuest Central Essentials ProQuest One Academic Eastern Edition ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Technology Collection ProQuest SciTech Collection ProQuest Central China ProQuest Central ProQuest Engineering Collection ProQuest One Academic UKI Edition ProQuest Central Korea Materials Science & Engineering Collection ProQuest One Academic Engineering Collection |
DatabaseTitleList | Publicly Available Content Database |
Database_xml | – sequence: 1 dbid: GOX name: arXiv.org url: http://arxiv.org/find sourceTypes: Open Access Repository – sequence: 2 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Physics |
EISSN | 2331-8422 |
ExternalDocumentID | 2111_04225 |
Genre | Working Paper/Pre-Print |
GroupedDBID | 8FE 8FG ABJCF ABUWG AFKRA ALMA_UNASSIGNED_HOLDINGS AZQEC BENPR BGLVJ CCPQU DWQXO FRJ HCIFZ L6V M7S M~E PIMPY PQEST PQQKQ PQUKI PRINS PTHSS AKY EPD GOX |
ID | FETCH-LOGICAL-a522-f1f2d54bc35daae4759fb0a3cfe261616932d219e445be95d5dd266cf227ea9d3 |
IEDL.DBID | 8FG |
IngestDate | Mon Jan 08 05:41:00 EST 2024 Thu Oct 10 17:10:05 EDT 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | false |
IsScholarly | false |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a522-f1f2d54bc35daae4759fb0a3cfe261616932d219e445be95d5dd266cf227ea9d3 |
OpenAccessLink | https://www.proquest.com/docview/2595780602?pq-origsite=%requestingapplication% |
PQID | 2595780602 |
PQPubID | 2050157 |
ParticipantIDs | arxiv_primary_2111_04225 proquest_journals_2595780602 |
PublicationCentury | 2000 |
PublicationDate | 20211113 |
PublicationDateYYYYMMDD | 2021-11-13 |
PublicationDate_xml | – month: 11 year: 2021 text: 20211113 day: 13 |
PublicationDecade | 2020 |
PublicationPlace | Ithaca |
PublicationPlace_xml | – name: Ithaca |
PublicationTitle | arXiv.org |
PublicationYear | 2021 |
Publisher | Cornell University Library, arXiv.org |
Publisher_xml | – name: Cornell University Library, arXiv.org |
SSID | ssj0002672553 |
Score | 1.8253729 |
SecondaryResourceType | preprint |
Snippet | Variational quantum circuits are used in quantum machine learning and variational quantum simulation tasks. Designing good variational circuits or predicting... PRX Quantum 3, 030323, 2022 Variational quantum circuits are used in quantum machine learning and variational quantum simulation tasks. Designing good... |
SourceID | arxiv proquest |
SourceType | Open Access Repository Aggregation Database |
SubjectTerms | Circuit design Cognitive tasks Computer Science - Artificial Intelligence Computer Science - Learning Computer simulation Kernels Machine learning Mathematical analysis Neural networks Optimization Performance prediction Perturbation Physics - Quantum Physics Statistics - Machine Learning Training |
SummonAdditionalLinks | – databaseName: arXiv.org dbid: GOX link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwdV1LSwMxEB7anryIotJqlRy8rm7z2O16E7EWRUWp0NsyeUkPrrJ94M93kt3iQbyG5JBJZr4ZMt8XgHOZ67HOlElcbk0iUYwSDF8Ceo25LDJZuEgSe3zKpm_yfq7mHWBbLgzW34tNow-sl5dUnYwugkqV6kKX89Cydfc8bx4noxRXO_93HuWYcehPaI14MdmD3TbRY9fNyexDx1UHcPUaG09bvk_FWnXTd7ZZIHtZ0y7XHyzoZdDKGUbaE3twdUUAdgizye3sZpq0vxckSDlN4keeWyW1EcoiuiCr53WKwnhHRUsWNFC4pXDhpFTaFcoqawksjec8d1hYcQS96rNy_UCrNqIYC5TSUH5VeDTSpDjOyD_J_i4fQD_uufxqBCrKYI4ymmMAw60ZyvZyLkuqeMhP0yzlx_-vPIEdHto3QsebGEJvVa_dKeHvSp_FQ_gBwBaFXA priority: 102 providerName: Cornell University |
Title | Representation Learning via Quantum Neural Tangent Kernels |
URI | https://www.proquest.com/docview/2595780602 https://arxiv.org/abs/2111.04225 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV07T8MwELagERIbT7VQqgysaRPbcRIWJFAfArWUqkjdoovtoEqQlr7ExG_n7KYwILFEcjL57Nx3Pn_3HSHXPMriTITS05GSHgcWeGBaAuYZRDwRPNG2SKw_EL0X_jAJJ2XCbVnSKnc-0TpqNZMmR97CMB03ly98ejv_8EzXKHO7WrbQ2CdOQCNhKH1xp_uTY6EiwoiZbS8zrXRXCxaf000TTz1B06hfIaQ49tUfV2zxpXNEnCHM9eKY7OnihBxYWqZcnpKbkSWqlvVBhVuqob66mym4z2u0yvrdNfoa8OaOwZZJuY96USDgnZFxpz2-73lltwMPMAby8iCnKuSZZKEC0EaGL898YDLXeMgRRjOFKnQvmvMw00moQqUQXGVOaaQhUeycVIpZoaumDFuyJGbAucR4LMlBculDLPB_xvXSUY1U7ZzT-VbQIjXmSK05aqS-M0NabuZl-mv6i_8_X5JDaigfhiXH6qSyWqz1FWL2KmvYhWkQ5649GI5w1H2a4LP_1f4GPROZ9A |
link.rule.ids | 228,230,780,784,885,12765,21388,27925,33373,33744,43600,43805 |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3JTsMwELWgFYIbq1ookAPXtGm8pOHCAVEKXQQoSL1FE9tBlSAt6SI-n7HrwgGJa3LK2Jk3Hr_3hpArFmWdTHDp60hJnwFt-2BGAuYZRCwWLNZWJDYcid4rexzzsWu4zR2tcpMTbaJWU2l65C0s03FzBSIIb2afvpkaZW5X3QiNbVJlFKHbKMW79z89llBEWDHT9WWmte5qQfk1WTXx1NNuGvcrhJSqffQnFVt86e6T6hPMdHlAtnRxSHYsLVPOj8j1iyWqOn1Q4Tk31DdvNQHveYlRWX54xl8D3r0ErEzK6-uyQMA7Jkn3Lrnt-W7agQ9YA_l5Ow8VZ5mkXAFoY8OXZwFQmWs85AjjmRIqTC-aMZ7pmCuuFIKrzMMw0hArekIqxbTQNSPDljTuUGBMYj0W5yCZDKAj8H_G9dJRndTsN6eztaFFasKR2nDUSWMThtRt5nn6G_rT_19fkt1eMhykg4dR_4zshYb-YRhztEEqi3KpzxG_F9mFXaRvfHSY_A |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Representation+Learning+via+Quantum+Neural+Tangent+Kernels&rft.jtitle=arXiv.org&rft.au=Liu%2C+Junyu&rft.au=Tacchino%2C+Francesco&rft.au=Glick%2C+Jennifer+R&rft.au=Jiang%2C+Liang&rft.date=2021-11-13&rft.pub=Cornell+University+Library%2C+arXiv.org&rft.eissn=2331-8422&rft_id=info:doi/10.48550%2Farxiv.2111.04225 |