Quantitative Rates of Convergence to Non-Equilibrium Steady State for a Weakly Anharmonic Chain of Oscillators

We study a \(1\)-dimensional chain of \(N\) weakly anharmonic classical oscillators coupled at its ends to heat baths at different temperatures. Each oscillator is subject to pinning potential and it also interacts with its nearest neighbors. In our set up both potentials are homogeneous and bounded...

Full description

Saved in:
Bibliographic Details
Published inarXiv.org
Main Author Menegaki, Angeliki
Format Paper Journal Article
LanguageEnglish
Published Ithaca Cornell University Library, arXiv.org 25.09.2019
Subjects
Online AccessGet full text
ISSN2331-8422
DOI10.48550/arxiv.1909.11718

Cover

Loading…
Abstract We study a \(1\)-dimensional chain of \(N\) weakly anharmonic classical oscillators coupled at its ends to heat baths at different temperatures. Each oscillator is subject to pinning potential and it also interacts with its nearest neighbors. In our set up both potentials are homogeneous and bounded (with \(N\) dependent bounds) perturbations of the harmonic ones. We show how a generalized version of Bakry-Emery theory can be adapted to this case of a hypoelliptic generator which is inspired by F. Baudoin (2017). By that we prove exponential convergence to non-equilibrium steady state (NESS) in Wasserstein-Kantorovich distance and in relative entropy with quantitative rates. We estimate the constants in the rate by solving a Lyapunov-type matrix equation and we obtain that the exponential rate, for the homogeneous chain, has order bigger than \(N^{-3}\). For the purely harmonic chain the order of the rate is in \( [N^{-3},N^{-1}]\). This shows that, in this set up, the spectral gap decays at most polynomially with \(N\).
AbstractList We study a \(1\)-dimensional chain of \(N\) weakly anharmonic classical oscillators coupled at its ends to heat baths at different temperatures. Each oscillator is subject to pinning potential and it also interacts with its nearest neighbors. In our set up both potentials are homogeneous and bounded (with \(N\) dependent bounds) perturbations of the harmonic ones. We show how a generalized version of Bakry-Emery theory can be adapted to this case of a hypoelliptic generator which is inspired by F. Baudoin (2017). By that we prove exponential convergence to non-equilibrium steady state (NESS) in Wasserstein-Kantorovich distance and in relative entropy with quantitative rates. We estimate the constants in the rate by solving a Lyapunov-type matrix equation and we obtain that the exponential rate, for the homogeneous chain, has order bigger than \(N^{-3}\). For the purely harmonic chain the order of the rate is in \( [N^{-3},N^{-1}]\). This shows that, in this set up, the spectral gap decays at most polynomially with \(N\).
We study a $1$-dimensional chain of $N$ weakly anharmonic classical oscillators coupled at its ends to heat baths at different temperatures. Each oscillator is subject to pinning potential and it also interacts with its nearest neighbors. In our set up both potentials are homogeneous and bounded (with $N$ dependent bounds) perturbations of the harmonic ones. We show how a generalized version of Bakry-Emery theory can be adapted to this case of a hypoelliptic generator which is inspired by F. Baudoin (2017). By that we prove exponential convergence to non-equilibrium steady state (NESS) in Wasserstein-Kantorovich distance and in relative entropy with quantitative rates. We estimate the constants in the rate by solving a Lyapunov-type matrix equation and we obtain that the exponential rate, for the homogeneous chain, has order bigger than $N^{-3}$. For the purely harmonic chain the order of the rate is in $ [N^{-3},N^{-1}]$. This shows that, in this set up, the spectral gap decays at most polynomially with $N$.
Author Menegaki, Angeliki
Author_xml – sequence: 1
  givenname: Angeliki
  surname: Menegaki
  fullname: Menegaki, Angeliki
BackLink https://doi.org/10.48550/arXiv.1909.11718$$DView paper in arXiv
https://doi.org/10.1007/s10955-020-02565-5$$DView published paper (Access to full text may be restricted)
BookMark eNotkF1PwjAYhRujiYj8AK9s4vWw7daxXpIFPxIiUUm8XN5urRRHC21H5N87wKtz8-Sck-cGXVpnFUJ3lIyzgnPyCP7X7MdUEDGmdEKLCzRgaUqTImPsGo1CWBNCWD5hnKcDZN87sNFEiGav8AdEFbDTuHR2r_y3srXC0eE3Z5PZrjOtkd50G_wZFTSHPnoea-cx4C8FP-0BT-0K_MZZU-NyBcYeyxahNm0L0flwi640tEGN_nOIlk-zZfmSzBfPr-V0ngBnLKklEakQIAtS06yRIDVlTBRFLhvd5ExyQeomE5IpPVFNrlMACUpq0KrOVZMO0f259iSj2nqzAX-ojlKqk5SeeDgTW-92nQqxWrvO2_5TdVziOReMpX99vGlv
ContentType Paper
Journal Article
Copyright 2019. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
http://arxiv.org/licenses/nonexclusive-distrib/1.0
Copyright_xml – notice: 2019. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: http://arxiv.org/licenses/nonexclusive-distrib/1.0
DBID 8FE
8FG
ABJCF
ABUWG
AFKRA
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
HCIFZ
L6V
M7S
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
AKZ
GOX
DOI 10.48550/arxiv.1909.11718
DatabaseName ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials - QC
ProQuest Central
Technology Collection
ProQuest One
ProQuest Central
SciTech Premium Collection
ProQuest Engineering Collection
Engineering Database
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering collection
arXiv Mathematics
arXiv.org
DatabaseTitle Publicly Available Content Database
Engineering Database
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
ProQuest One Academic UKI Edition
ProQuest Central Korea
Materials Science & Engineering Collection
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
Engineering Collection
DatabaseTitleList Publicly Available Content Database

Database_xml – sequence: 1
  dbid: GOX
  name: arXiv.org
  url: http://arxiv.org/find
  sourceTypes: Open Access Repository
– sequence: 2
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 2331-8422
ExternalDocumentID 1909_11718
Genre Working Paper/Pre-Print
GroupedDBID 8FE
8FG
ABJCF
ABUWG
AFKRA
ALMA_UNASSIGNED_HOLDINGS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
FRJ
HCIFZ
L6V
M7S
M~E
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
AKZ
GOX
ID FETCH-LOGICAL-a522-cb09399ab80c14dbabf1229886bdfd62b590cd49b2ef7ed6f3aabaebfafec6ed3
IEDL.DBID 8FG
IngestDate Tue Jul 22 21:57:50 EDT 2025
Mon Jun 30 09:30:13 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a522-cb09399ab80c14dbabf1229886bdfd62b590cd49b2ef7ed6f3aabaebfafec6ed3
Notes SourceType-Working Papers-1
ObjectType-Working Paper/Pre-Print-1
content type line 50
OpenAccessLink https://www.proquest.com/docview/2298565922?pq-origsite=%requestingapplication%
PQID 2298565922
PQPubID 2050157
ParticipantIDs arxiv_primary_1909_11718
proquest_journals_2298565922
PublicationCentury 2000
PublicationDate 20190925
2019-09-25
PublicationDateYYYYMMDD 2019-09-25
PublicationDate_xml – month: 09
  year: 2019
  text: 20190925
  day: 25
PublicationDecade 2010
PublicationPlace Ithaca
PublicationPlace_xml – name: Ithaca
PublicationTitle arXiv.org
PublicationYear 2019
Publisher Cornell University Library, arXiv.org
Publisher_xml – name: Cornell University Library, arXiv.org
SSID ssj0002672553
Score 1.7027719
SecondaryResourceType preprint
Snippet We study a \(1\)-dimensional chain of \(N\) weakly anharmonic classical oscillators coupled at its ends to heat baths at different temperatures. Each...
We study a $1$-dimensional chain of $N$ weakly anharmonic classical oscillators coupled at its ends to heat baths at different temperatures. Each oscillator is...
SourceID arxiv
proquest
SourceType Open Access Repository
Aggregation Database
SubjectTerms Anharmonicity
Chains
Convergence
Mathematics - Analysis of PDEs
Mathematics - Mathematical Physics
Mathematics - Probability
Mathematics - Spectral Theory
Oscillators
Physics - Mathematical Physics
Steady state
SummonAdditionalLinks – databaseName: arXiv.org
  dbid: GOX
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwdZ1RT8IwEMcb4MkXo1EDiuYefF0sZSvbIyEg8QGiwcjbcl3bSNRNgRn49l67ER-Mr0u3LHdN73e5_10Zu-1b2gaZzAKKDhiEUicBErcGaAkm0MpIo1dbzOT0OXxYRssGg0MvDK53q-9qPrDa3FG0SlxZsRc3WVMIl1zdz5dVcdKP4qrX_64jxvSP_hytPl5MTthxDXowrDxzyhomP2P5Y4m5b-uiQwaeHOdBYWHkpN--C9LAtoBZkQfjr3Ll5fjlBzjNrd6D50IgyASEF4Nv73sY5m7ytJtuC6NXyvHdx-YU1Mi37hadc7aYjBejaVDfeEAGoqQwUzwhYEAV86wXaoXK9oRI4lgqbbUUKkp4psNECWMHRkvbR1RolEVrMml0_4K18iI3bQZqIAzHWBL_EBFxgzZOBPLQcqlkZlWHtb2d0s9qqEXqTJh6E3ZY92C6tN7Qm9T9RuRKsOLy_zev2BHxhJdgiajLWtt1aa4pZm_VjXfcD0fimfs
  priority: 102
  providerName: Cornell University
Title Quantitative Rates of Convergence to Non-Equilibrium Steady State for a Weakly Anharmonic Chain of Oscillators
URI https://www.proquest.com/docview/2298565922
https://arxiv.org/abs/1909.11718
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LS8NAEF60RfDmk6q17MFrbLpNtslJtPSBYFtLxd7C7AuLmvQp9uJvd3ab6kHwEkgCOXw7O_Nl5tsZQq7qBs1AculhdAAv4Cr2AHmrBwbJBBgeKnBqix7vPgX343CcJ9wWuaxy6xOdo1aZtDnyKmNxFNoaILuZzjw7NcpWV_MRGrukWMNIY-08and-ciyMN5Ax1zfFTNe6qwrzz8nHNUbB2JYr7aiPonv0xxW7-NI-IMUBTPX8kOzo9IjsOVmmXByT9HEFqTsGhk6JDi0vpJmhTSsVd6cmNV1mtJelXmu2mjj5_uqdWo2uWlPHIymSUgr0WcPr25reprZTte2GS5svMEntx_oYBNEW7NSdEzJqt0bNrpdPSEBA8SdSCj9GggEi8mUtUAKEqVmcIi6UUZyJMPalCmLBtGloxU0dQIAWBoyWXKv6KSmkWapLhIoG0z5EHPkSMihfg4liBn5gfC64NOKMlBxOyXTTBCOxECYOwjNS3kKX5Btgkfwu1_n_ry_IPnIQJ9tiYZkUlvOVvsQ4vxQVt5gVUrxr9QZDvOv0x3h9-Gp9A6kCrnc
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LTxtBDLYgUQW3thQBpWUOcNyyTHYnu4eqKiEovAJFQXBbeV5q1HY35NGSH8V_xJ4k7QGpN667krXyeO3P4882wG7DkxkYZSKKDhglyuYREm6N0BOYQK9Si4Ft0VWdm-T0Lr1bgsdFLwzTKhc-MThqWxm-I9-XMs9SrgHKL4P7iLdGcXV1sUJjZhZnbvqHUrbR55MjOt89KY_bvVYnmm8VoI-gxMtoyuHzHHUWm4PEatT-gGVnSltvldRpHhub5Fo633RW-QaiRqc9emeUsw0Suwz1hBtaa1A_bHevrv9e6kjVJIjemFVPw6ywfRw-9H9_orCbc32Ud4vUw6Nnvj8EtOPXUL_CgRu-gSVXvoVXgQdqRmtQfptgGfrOyAuKawaiovKixdz00KbpxLgS3aqM2veTfugXmPwSTAq2UxGAqyAULFDcOvzxcyq-ljwam8fvitZ37Jcs7JKiLhkfr_l5B72XUN461MqqdBsgdFO6GDNFAI0gW-zQZ7nEOPGx0sp4vQkbQU_FYDZ1o2AVFkGFm7C9UF0x_-NGxT_72Pr_6x1Y6fQuzovzk-7Ze1glABQ4YzLdhtp4OHEfCGSM9cf50QooXtiYngCfluw-
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Quantitative+Rates+of+Convergence+to+Non-Equilibrium+Steady+State+for+a+Weakly+Anharmonic+Chain+of+Oscillators&rft.jtitle=arXiv.org&rft.au=Menegaki%2C+Angeliki&rft.date=2019-09-25&rft.pub=Cornell+University+Library%2C+arXiv.org&rft.eissn=2331-8422&rft_id=info:doi/10.48550%2Farxiv.1909.11718