Cross-Lingual Speaker Verification with Domain-Balanced Hard Prototype Mining and Language-Dependent Score Normalization

In this paper we describe the top-scoring IDLab submission for the text-independent task of the Short-duration Speaker Verification (SdSV) Challenge 2020. The main difficulty of the challenge exists in the large degree of varying phonetic overlap between the potentially cross-lingual trials, along w...

Full description

Saved in:
Bibliographic Details
Published inarXiv.org
Main Authors Thienpondt, Jenthe, Brecht Desplanques, Demuynck, Kris
Format Paper Journal Article
LanguageEnglish
Published Ithaca Cornell University Library, arXiv.org 10.08.2020
Subjects
Online AccessGet full text

Cover

Loading…
Abstract In this paper we describe the top-scoring IDLab submission for the text-independent task of the Short-duration Speaker Verification (SdSV) Challenge 2020. The main difficulty of the challenge exists in the large degree of varying phonetic overlap between the potentially cross-lingual trials, along with the limited availability of in-domain DeepMine Farsi training data. We introduce domain-balanced hard prototype mining to fine-tune the state-of-the-art ECAPA-TDNN x-vector based speaker embedding extractor. The sample mining technique efficiently exploits speaker distances between the speaker prototypes of the popular AAM-softmax loss function to construct challenging training batches that are balanced on the domain-level. To enhance the scoring of cross-lingual trials, we propose a language-dependent s-norm score normalization. The imposter cohort only contains data from the Farsi target-domain which simulates the enrollment data always being Farsi. In case a Gaussian-Backend language model detects the test speaker embedding to contain English, a cross-language compensation offset determined on the AAM-softmax speaker prototypes is subtracted from the maximum expected imposter mean score. A fusion of five systems with minor topological tweaks resulted in a final MinDCF and EER of 0.065 and 1.45% respectively on the SdSVC evaluation set.
AbstractList In this paper we describe the top-scoring IDLab submission for the text-independent task of the Short-duration Speaker Verification (SdSV) Challenge 2020. The main difficulty of the challenge exists in the large degree of varying phonetic overlap between the potentially cross-lingual trials, along with the limited availability of in-domain DeepMine Farsi training data. We introduce domain-balanced hard prototype mining to fine-tune the state-of-the-art ECAPA-TDNN x-vector based speaker embedding extractor. The sample mining technique efficiently exploits speaker distances between the speaker prototypes of the popular AAM-softmax loss function to construct challenging training batches that are balanced on the domain-level. To enhance the scoring of cross-lingual trials, we propose a language-dependent s-norm score normalization. The imposter cohort only contains data from the Farsi target-domain which simulates the enrollment data always being Farsi. In case a Gaussian-Backend language model detects the test speaker embedding to contain English, a cross-language compensation offset determined on the AAM-softmax speaker prototypes is subtracted from the maximum expected imposter mean score. A fusion of five systems with minor topological tweaks resulted in a final MinDCF and EER of 0.065 and 1.45% respectively on the SdSVC evaluation set.
In this paper we describe the top-scoring IDLab submission for the text-independent task of the Short-duration Speaker Verification (SdSV) Challenge 2020. The main difficulty of the challenge exists in the large degree of varying phonetic overlap between the potentially cross-lingual trials, along with the limited availability of in-domain DeepMine Farsi training data. We introduce domain-balanced hard prototype mining to fine-tune the state-of-the-art ECAPA-TDNN x-vector based speaker embedding extractor. The sample mining technique efficiently exploits speaker distances between the speaker prototypes of the popular AAM-softmax loss function to construct challenging training batches that are balanced on the domain-level. To enhance the scoring of cross-lingual trials, we propose a language-dependent s-norm score normalization. The imposter cohort only contains data from the Farsi target-domain which simulates the enrollment data always being Farsi. In case a Gaussian-Backend language model detects the test speaker embedding to contain English, a cross-language compensation offset determined on the AAM-softmax speaker prototypes is subtracted from the maximum expected imposter mean score. A fusion of five systems with minor topological tweaks resulted in a final MinDCF and EER of 0.065 and 1.45% respectively on the SdSVC evaluation set.
Author Thienpondt, Jenthe
Brecht Desplanques
Demuynck, Kris
Author_xml – sequence: 1
  givenname: Jenthe
  surname: Thienpondt
  fullname: Thienpondt, Jenthe
– sequence: 2
  fullname: Brecht Desplanques
– sequence: 3
  givenname: Kris
  surname: Demuynck
  fullname: Demuynck, Kris
BackLink https://doi.org/10.21437/Interspeech.2020-2662$$DView published paper (Access to full text may be restricted)
https://doi.org/10.48550/arXiv.2007.07689$$DView paper in arXiv
BookMark eNotkMtOwzAURC0EEqX0A1hhiXWKcx07yRLKo0jhIbViGznxTXFJ7eCk0PL1pC2axWxGR6NzRo6ts0jIRcjGUSIEu1Z-Y77HwFg8ZrFM0iMyAM7DIIkATsmobZeMMZAxCMEHZDPxrm2DzNjFWtV01qD6RE_f0ZvKlKozztIf033QO7dSxga3qla2RE2nymv65l3num2D9NnYHkGV1TRTO9YCgzts0Gq0HZ2VziN9cX6lavO7p56Tk0rVLY7-e0jmD_fzyTTIXh-fJjdZoARAwKsk5QxFyjUUSclFyCLBUXKIqkKLSoaFSCHkBVSyEMgLHpVxpeOISYk6jfmQXB6wey15481K-W2-05Pv9fSLq8Oi8e5rjW2XL93a2_5TDlGfGNIE-B9rMGq2
ContentType Paper
Journal Article
Copyright 2020. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
http://arxiv.org/licenses/nonexclusive-distrib/1.0
Copyright_xml – notice: 2020. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: http://arxiv.org/licenses/nonexclusive-distrib/1.0
DBID 8FE
8FG
ABJCF
ABUWG
AFKRA
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
HCIFZ
L6V
M7S
PIMPY
PQEST
PQQKQ
PQUKI
PRINS
PTHSS
AKY
GOX
DOI 10.48550/arxiv.2007.07689
DatabaseName ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
Technology Collection
ProQuest One Community College
ProQuest Central
SciTech Premium Collection (Proquest) (PQ_SDU_P3)
ProQuest Engineering Collection
Engineering Database
Access via ProQuest (Open Access)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
arXiv Computer Science
arXiv.org
DatabaseTitle Publicly Available Content Database
Engineering Database
Technology Collection
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central China
ProQuest Central
ProQuest Engineering Collection
ProQuest One Academic UKI Edition
ProQuest Central Korea
Materials Science & Engineering Collection
ProQuest One Academic
Engineering Collection
DatabaseTitleList Publicly Available Content Database

Database_xml – sequence: 1
  dbid: GOX
  name: arXiv.org
  url: http://arxiv.org/find
  sourceTypes: Open Access Repository
– sequence: 2
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 2331-8422
ExternalDocumentID 2007_07689
Genre Working Paper/Pre-Print
GroupedDBID 8FE
8FG
ABJCF
ABUWG
AFKRA
ALMA_UNASSIGNED_HOLDINGS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
FRJ
HCIFZ
L6V
M7S
M~E
PIMPY
PQEST
PQQKQ
PQUKI
PRINS
PTHSS
AKY
GOX
ID FETCH-LOGICAL-a522-3f8930e593d2b8c3510453e6324fbd5f61b59213b2f6b5e3b34c7fd74066ed973
IEDL.DBID GOX
IngestDate Mon Jan 08 05:40:55 EST 2024
Thu Oct 10 18:16:15 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a522-3f8930e593d2b8c3510453e6324fbd5f61b59213b2f6b5e3b34c7fd74066ed973
OpenAccessLink https://arxiv.org/abs/2007.07689
PQID 2424272982
PQPubID 2050157
ParticipantIDs arxiv_primary_2007_07689
proquest_journals_2424272982
PublicationCentury 2000
PublicationDate 20200810
PublicationDateYYYYMMDD 2020-08-10
PublicationDate_xml – month: 08
  year: 2020
  text: 20200810
  day: 10
PublicationDecade 2020
PublicationPlace Ithaca
PublicationPlace_xml – name: Ithaca
PublicationTitle arXiv.org
PublicationYear 2020
Publisher Cornell University Library, arXiv.org
Publisher_xml – name: Cornell University Library, arXiv.org
SSID ssj0002672553
Score 1.7760434
SecondaryResourceType preprint
Snippet In this paper we describe the top-scoring IDLab submission for the text-independent task of the Short-duration Speaker Verification (SdSV) Challenge 2020. The...
In this paper we describe the top-scoring IDLab submission for the text-independent task of the Short-duration Speaker Verification (SdSV) Challenge 2020. The...
SourceID arxiv
proquest
SourceType Open Access Repository
Aggregation Database
SubjectTerms Computer Science - Computation and Language
Computer Science - Sound
Computer simulation
Domains
Embedding
Persian language
Prototypes
Training
Verification
SummonAdditionalLinks – databaseName: ProQuest Technology Collection
  dbid: 8FG
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1NTwIxEG0UYuLNz4Ci6cFrw2673bInE0EkRggJaLiRdtsaI7K4gOHn2ylFDyZed7OXaXc-3sy8h9BNlkc6ZzwilklBEhdzSJYnCYmkim0seWQEbCP3B2nvOXmc8EkA3JZhrHLnE72j1kUOGHkT1hioywRb9HbxSUA1CrqrQUJjH1VjKgTc6lb34QdjoalwGTPbNjM9dVdTlpu3r8Bc6DJtGEP0j_64Yh9fukeoOpQLUx6jPTM_QQd-LDNfnqJNG4IYcQXj61rO8Ghh5Lsp8Yu7NjaAbRiQVNwpPlyJT-5gUDE3GkNDHg_LYlUAxor7XgYCy7nGTwGgJJ0gf7vCI6CyxAPIXmdhLfMMjbv343aPBK0EIjnM41uXd0SGZ0xT1XLGd1UWZwa42K3S3Kax4hmNmaI2VdwwxZJcWC1cOE-NzgQ7R5V5MTc1hDXneayE-1yZJI6ssozblhWRziS1RtRRzVtsutjSYYCQpZh6Y9ZRY2fEafgVltPfg7v4__UlOqRQzHq-2QaqrMq1uXIRf6Wu_bF-AzburCg
  priority: 102
  providerName: ProQuest
Title Cross-Lingual Speaker Verification with Domain-Balanced Hard Prototype Mining and Language-Dependent Score Normalization
URI https://www.proquest.com/docview/2424272982
https://arxiv.org/abs/2007.07689
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwdV09T8MwELXasrAgEKACpfLAapHYcZyM9FuIlooW1C2yYxshIKnSFHXit2M7qRgQi4fYXs5W3rvz3TsAbuLUkymhHtKEMxQYzEFxGgTI48LXPqeeYrYaeToLJ8_B_YquGgDua2F4sXv7qvSBxea2Uhg0jDhugibGNmVr_LiqHiedFFe9_ned4Zju059fq8OL0TE4qokevKtO5gQ0VHYKdn0LSsg4gK9bM7lYK_6uCvhiroGug2fQRkbhIP80Ljvq2cTDVEloH9jhvMjL3MZM4dS1dYA8k_ChDjiiQd3OtoQLK00JZ5aNftRllmdgORou-xNU9z5AnNr8em14hKdoTCQWkTGm8ZooUVZbXQtJdegLGmOfCKxDQRURJEiZlszAc6hkzMg5aGV5ptoASkpTXzCzXajA97TQhOpIM0_GHGvFLkDbWSxZV_IWtjElS5wxL0Bnb8SkvtqbxNaTYEPJI3z5_84rcIitY-q0YzugVRZbdW3QuxRd0IxG4y446A1n86euO1AzTr-HPwQun0Q
link.rule.ids 228,230,783,787,888,12779,21402,27939,33387,33758,43614,43819
linkProvider Cornell University
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV07T8MwELagFYKNpyhPD6wWSRzHzYREoRRoKyQKYovs2EaIkoS0Rf35-FwXBiTWWFnOyT2-u_s-hM7SPFA5ZQExVHAS25hD0jyOSSBkaELBAs1hG3kwTHpP8d0Le_GA28SPVS59onPUqswBIz-HNYbIZoLt6KL6JKAaBd1VL6GxipoxtYEGNsW7Nz8YS5RwmzHTRTPTUXedi3r-9uWZC22mDWOI7tEfV-ziS3cTNR9EpesttKKLbbTmxjLzyQ6adyCIEVswvs7EGD9WWrzrGj_bz8Z4sA0Dkoqvyg9b4pNLGFTMtcLQkMcPdTktAWPFAycDgUWhcN8DlOTKy99O8SNQWeIhZK9jv5a5i0bd61GnR7xWAhEM5vGNzTsCzVKqItm2xrdVFqMauNiNVMwkoWRpFFIZmUQyTSWNc24Ut-E80SrldA81irLQ-wgrxvJQcvu61HEYGGkoM23DA5WKyGjeQvvOYlm1oMMAIUueOWO20NHSiJn_FSbZ78Ud_H98itZ7o0E_698O7w_RRgSFreOePUKNaT3Txzb6T-WJu-JvXAevCg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Cross-Lingual+Speaker+Verification+with+Domain-Balanced+Hard+Prototype+Mining+and+Language-Dependent+Score+Normalization&rft.jtitle=arXiv.org&rft.au=Thienpondt%2C+Jenthe&rft.au=Brecht+Desplanques&rft.au=Demuynck%2C+Kris&rft.date=2020-08-10&rft.pub=Cornell+University+Library%2C+arXiv.org&rft.eissn=2331-8422&rft_id=info:doi/10.48550%2Farxiv.2007.07689