Evaluation of a new model of aeolian transport in the presence of vegetation

Aeolian transport is an important characteristic of many arid and semiarid regions worldwide that affects dust emission and ecosystem processes. The purpose of this paper is to evaluate a recent model of aeolian transport in the presence of vegetation [Okin, 2008]. This approach differs from previou...

Full description

Saved in:
Bibliographic Details
Published inJournal of geophysical research. Earth surface Vol. 118; no. 1; pp. 288 - 306
Main Authors Li, Junran, Okin, Gregory S, Herrick, Jeffrey E, Belnap, Jayne, Miller, Mark E, Vest, Kimberly, Draut, Amy E
Format Journal Article
LanguageEnglish
Published 01.03.2013
Subjects
Online AccessGet more information

Cover

Loading…
More Information
Summary:Aeolian transport is an important characteristic of many arid and semiarid regions worldwide that affects dust emission and ecosystem processes. The purpose of this paper is to evaluate a recent model of aeolian transport in the presence of vegetation [Okin, 2008]. This approach differs from previous models by accounting for how vegetation affects the distribution of shear velocity on the surface rather than merely calculating the average effect of vegetation on surface shear velocity or simply using empirical relationships. Vegetation, soil, and meteorological data at 65 field sites with measurements of horizontal aeolian flux were collected from the Western United States. Measured fluxes were tested against modeled values to evaluate model performance, to obtain a set of optimum model parameters, and to estimate the uncertainty in these parameters. The same field data were used to model horizontal aeolian flux using three other schemes. Our results show that the Okin [2008] model can predict horizontal aeolian flux with an approximate relative error of 2.1 and that further empirical corrections can reduce the approximate relative error to 1.0. The level of error is within what would be expected given uncertainties in threshold shear velocity and windspeed at our sites. The model outperforms the alternative schemes both in terms of approximate relative error as well as the number of sites at which threshold shear velocity was exceeded. These results lend support to an understanding of the physics of aeolian transport in which 1) vegetation’s impact on transport is dependent upon the distribution of vegetation rather than merely its average lateral cover, and 2) vegetation impacts surface shear stress locally by depressing it in the immediate lee of plants rather than by changing the bulk surface’s threshold shear velocity. Our results also suggest that threshold shear velocity is exceeded more than might be estimated by single measurements of threshold shear stress and roughness length commonly associated with vegetated surfaces, highlighting the variation of threshold shear velocity with space and time in real landscapes.
Bibliography:http://dx.doi.org/10.1002/jgrf.20040
http://handle.nal.usda.gov/10113/57170
ISSN:2169-9011
2169-9011
DOI:10.1002/jgrf.20040