Visual cohort comparison for spatial single-cell omics-data

Spatially-resolved omics-data enable researchers to precisely distinguish cell types in tissue and explore their spatial interactions, enabling deep understanding of tissue functionality. To understand what causes or deteriorates a disease and identify related biomarkers, clinical researchers regula...

Full description

Saved in:
Bibliographic Details
Published inarXiv.org
Main Authors Somarakis, Antonios, Ijsselsteijn, Marieke E, Luk, Sietse J, Boyd Kenkhuis, Noel F C C de Miranda, Boudewijn P F Lelieveldt, Höllt, Thomas
Format Paper Journal Article
LanguageEnglish
Published Ithaca Cornell University Library, arXiv.org 30.07.2020
Subjects
Online AccessGet full text
ISSN2331-8422
DOI10.48550/arxiv.2006.05175

Cover

Loading…
Abstract Spatially-resolved omics-data enable researchers to precisely distinguish cell types in tissue and explore their spatial interactions, enabling deep understanding of tissue functionality. To understand what causes or deteriorates a disease and identify related biomarkers, clinical researchers regularly perform large-scale cohort studies, requiring the comparison of such data at cellular level. In such studies, with little a-priori knowledge of what to expect in the data, explorative data analysis is a necessity. Here, we present an interactive visual analysis workflow for the comparison of cohorts of spatially-resolved omics-data. Our workflow allows the comparative analysis of two cohorts based on multiple levels-of-detail, from simple abundance of contained cell types over complex co-localization patterns to individual comparison of complete tissue images. As a result, the workflow enables the identification of cohort-differentiating features, as well as outlier samples at any stage of the workflow. During the development of the workflow, we continuously consulted with domain experts. To show the effectiveness of the workflow we conducted multiple case studies with domain experts from different application areas and with different data modalities.
AbstractList Presented in IEEE Vis 2020. Published in IEEE Transactions on Visualization and Computer Graphics (TVCG) Spatially-resolved omics-data enable researchers to precisely distinguish cell types in tissue and explore their spatial interactions, enabling deep understanding of tissue functionality. To understand what causes or deteriorates a disease and identify related biomarkers, clinical researchers regularly perform large-scale cohort studies, requiring the comparison of such data at cellular level. In such studies, with little a-priori knowledge of what to expect in the data, explorative data analysis is a necessity. Here, we present an interactive visual analysis workflow for the comparison of cohorts of spatially-resolved omics-data. Our workflow allows the comparative analysis of two cohorts based on multiple levels-of-detail, from simple abundance of contained cell types over complex co-localization patterns to individual comparison of complete tissue images. As a result, the workflow enables the identification of cohort-differentiating features, as well as outlier samples at any stage of the workflow. During the development of the workflow, we continuously consulted with domain experts. To show the effectiveness of the workflow we conducted multiple case studies with domain experts from different application areas and with different data modalities.
Spatially-resolved omics-data enable researchers to precisely distinguish cell types in tissue and explore their spatial interactions, enabling deep understanding of tissue functionality. To understand what causes or deteriorates a disease and identify related biomarkers, clinical researchers regularly perform large-scale cohort studies, requiring the comparison of such data at cellular level. In such studies, with little a-priori knowledge of what to expect in the data, explorative data analysis is a necessity. Here, we present an interactive visual analysis workflow for the comparison of cohorts of spatially-resolved omics-data. Our workflow allows the comparative analysis of two cohorts based on multiple levels-of-detail, from simple abundance of contained cell types over complex co-localization patterns to individual comparison of complete tissue images. As a result, the workflow enables the identification of cohort-differentiating features, as well as outlier samples at any stage of the workflow. During the development of the workflow, we continuously consulted with domain experts. To show the effectiveness of the workflow we conducted multiple case studies with domain experts from different application areas and with different data modalities.
Author Noel F C C de Miranda
Ijsselsteijn, Marieke E
Höllt, Thomas
Boyd Kenkhuis
Luk, Sietse J
Boudewijn P F Lelieveldt
Somarakis, Antonios
Author_xml – sequence: 1
  givenname: Antonios
  surname: Somarakis
  fullname: Somarakis, Antonios
– sequence: 2
  givenname: Marieke
  surname: Ijsselsteijn
  middlename: E
  fullname: Ijsselsteijn, Marieke E
– sequence: 3
  givenname: Sietse
  surname: Luk
  middlename: J
  fullname: Luk, Sietse J
– sequence: 4
  fullname: Boyd Kenkhuis
– sequence: 5
  fullname: Noel F C C de Miranda
– sequence: 6
  fullname: Boudewijn P F Lelieveldt
– sequence: 7
  givenname: Thomas
  surname: Höllt
  fullname: Höllt, Thomas
BackLink https://doi.org/10.48550/arXiv.2006.05175$$DView paper in arXiv
https://doi.org/10.1109/TVCG.2020.3030336$$DView published paper (Access to full text may be restricted)
BookMark eNotj01LAzEURYMoWGt_gCsHXE99eUkmKa6k-AUFN8Xt8JpJNGU6GZOp6L93bF2dxb1c7rlgp13sHGNXHObSKAW3lL7D1xwBqjkortUJm6AQvDQS8ZzNct4CAFYalRITdvcW8p7awsaPmIYRu55SyLErfExF7mkIY5pD99660rq2LeIu2Fw2NNAlO_PUZjf755StHx_Wy-dy9fr0srxflaSQl9WGg680oCNopLICtQJaWG4QrPEVOOW1URo9-oVonCPeSG2to40xVhgxZdfH2YNZ3aewo_RT_xnWB8OxcXNs9Cl-7l0e6m3cp278VKPkfCErIbn4BSXhVOE
ContentType Paper
Journal Article
Copyright 2020. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
http://arxiv.org/licenses/nonexclusive-distrib/1.0
Copyright_xml – notice: 2020. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: http://arxiv.org/licenses/nonexclusive-distrib/1.0
DBID 8FE
8FG
ABJCF
ABUWG
AFKRA
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
HCIFZ
L6V
M7S
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
AKY
ALC
GOX
DOI 10.48550/arxiv.2006.05175
DatabaseName ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
Technology Collection
ProQuest One
ProQuest Central Korea
SciTech Premium Collection
ProQuest Engineering Collection
Engineering Database
ProQuest Central Premium
ProQuest One Academic
ProQuest Publicly Available Content
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
arXiv Computer Science
arXiv Quantitative Biology
arXiv.org
DatabaseTitle Publicly Available Content Database
Engineering Database
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
ProQuest One Academic UKI Edition
ProQuest Central Korea
Materials Science & Engineering Collection
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
Engineering Collection
DatabaseTitleList
Publicly Available Content Database
Database_xml – sequence: 1
  dbid: GOX
  name: arXiv.org
  url: http://arxiv.org/find
  sourceTypes: Open Access Repository
– sequence: 2
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 2331-8422
ExternalDocumentID 2006_05175
Genre Working Paper/Pre-Print
GroupedDBID 8FE
8FG
ABJCF
ABUWG
AFKRA
ALMA_UNASSIGNED_HOLDINGS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
FRJ
HCIFZ
L6V
M7S
M~E
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
AKY
ALC
GOX
ID FETCH-LOGICAL-a521-6b10f6702ea0d45c32750a9c1820c8f60e5f78572f2f93deea1d47cceab88c383
IEDL.DBID GOX
IngestDate Wed Jul 23 00:23:36 EDT 2025
Mon Jun 30 09:27:28 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a521-6b10f6702ea0d45c32750a9c1820c8f60e5f78572f2f93deea1d47cceab88c383
Notes SourceType-Working Papers-1
ObjectType-Working Paper/Pre-Print-1
content type line 50
OpenAccessLink https://arxiv.org/abs/2006.05175
PQID 2411946341
PQPubID 2050157
ParticipantIDs arxiv_primary_2006_05175
proquest_journals_2411946341
PublicationCentury 2000
PublicationDate 20200730
PublicationDateYYYYMMDD 2020-07-30
PublicationDate_xml – month: 07
  year: 2020
  text: 20200730
  day: 30
PublicationDecade 2020
PublicationPlace Ithaca
PublicationPlace_xml – name: Ithaca
PublicationTitle arXiv.org
PublicationYear 2020
Publisher Cornell University Library, arXiv.org
Publisher_xml – name: Cornell University Library, arXiv.org
SSID ssj0002672553
Score 1.7320402
SecondaryResourceType preprint
Snippet Spatially-resolved omics-data enable researchers to precisely distinguish cell types in tissue and explore their spatial interactions, enabling deep...
Presented in IEEE Vis 2020. Published in IEEE Transactions on Visualization and Computer Graphics (TVCG) Spatially-resolved omics-data enable researchers to...
SourceID arxiv
proquest
SourceType Open Access Repository
Aggregation Database
SubjectTerms Biomarkers
Computer Science - Human-Computer Interaction
Data analysis
Domains
Outliers (statistics)
Quantitative Biology - Genomics
Researchers
Spatial data
Subject specialists
Workflow
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3PS8MwFA66InjzJ5tO6cFrWJumSYMHQdkYHsaQKbuVND9gMLbZduKfb16WzYPgtbk0r-W9fO99-T6EHgSzgleE4pRaiSmxFa6YzXCqrOTuzTU1nuU7YeN3-jrP56Hh1gRa5T4n-kSt1wp65ANXaRzeZi7pPm0-MbhGwXQ1WGgco8il4MKBr-h5OJm-HboshHF3Zs5240wv3jWQ9ffiK0wh8hT4hZF_9CcZ-wozOkPRVG5MfY6OzOoCnXhipmou0ePHotnKZQxGtnUbq4NtYOxOm3EDfGi3CoB_aTB04WO4ZtxgYH5eodloOHsZ42B4gKWrophVaWIZT4iRiaa5ykB7XQoFGuuqsCwxueVFzoklVmTaGJlqypUysioK5aDmNeqs1ivTRXEOMi9UJUwIC5p7Qmub5YYCOoKbGz3U9ZsuNztNC3CjZKWPRw_193Eow__clL_Rv_l_-RadEkCk0P1M-qjT1ltz58p2W92Hb_MDCkeXBA
  priority: 102
  providerName: ProQuest
Title Visual cohort comparison for spatial single-cell omics-data
URI https://www.proquest.com/docview/2411946341
https://arxiv.org/abs/2006.05175
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwdV1LSwMxEB7aevEiikpra8nBa3A3m81u8KTSB4JVpEpvS5JNoCBVuq148rebyW71IF5yyAOSScg3k8x8A3AhhZOZZpzG3CnKmdNUC5fQ2DiV-ZmX3AYv35mYPvO7RbpoAdnFwqj15_Kj5gfW1WX9V5B6iGtDmzF02Zo8LOrPyUDF1fT_7ed1zFD152oNeDE-hING0SPX9c4cQcuujuHqZVltfS2mpV1viPlJAki87kgq9G72rWi-v1qKb-oEg4Yrin6cJzAfj-a3U9qkL6DKYyIVOo6cyCJmVVTy1CTIpK6kQcZ0kzsR2dRleZoxx5xMSmtVXPLMGKt0nhtvOJ5CZ_W2sl0gKZK2cBMJKR0y6MmydElqOdo6GIfRg25YdPFeM1RgbklRBHn0YLCTQ9GczqrwqB1LLjyAnf0_sg_7DG1LfMeMBtDZrLf23APwRg-hnY8nQ9i7Gc0en4ZhT3x5_zX6BkhAiLI
linkProvider Cornell University
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NT8IwFH9BiNGbnxFF3UGPDVvXdVuM8aAiCBIPaLgtXdcmJASQgR9_lP-jfYXhwcQb1zVZttf2ff7e-wFcxFzHYUoZ8ZgWhFGdkpRrn3hSi9B8ecaURfl2efOFPfaDfgm-i14YhFUWOtEq6mwsMUdeN5bGxNvcKN2byRtB1iisrhYUGotj0VZfHyZky69bd2Z_Lylt3Pdum2TJKkCEMVWEp56reehSJdyMBdLHAeciljjIXEaauyrQYRSEVFMd-5lSwstYKKUSaRRJE8-Z125Ahfl-jBcqajysUjqUh8ZB9xe1UzsprC6mn4P3Zckj8BDMWLGP_mh-a84aO1B5FhM13YWSGu3BpkWBynwfrl4H-VwMHWTNnc4cueIodIxr6-QIvjarmF0YKoIpfwd7mnOCMNMD6K1DDodQHo1H6gicAGfKMOnyONY44C_OMu0HimEohm0iVTiyP51MFgM0kPqSJ1YeVagVckiWlydPfrf6-P_lc9hq9p46SafVbZ_ANsVQGNOubg3Ks-lcnRp_YZae2V1yIFnzqfgBndXRtg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Visual+cohort+comparison+for+spatial+single-cell+omics-data&rft.jtitle=arXiv.org&rft.au=Somarakis%2C+Antonios&rft.au=Ijsselsteijn%2C+Marieke+E&rft.au=Luk%2C+Sietse+J&rft.au=Boyd+Kenkhuis&rft.date=2020-07-30&rft.pub=Cornell+University+Library%2C+arXiv.org&rft.eissn=2331-8422&rft_id=info:doi/10.48550%2Farxiv.2006.05175