A mean score method for sensitivity analysis to departures from the missing at random assumption in randomised trials
Most analyses of randomised trials with incomplete outcomes make untestable assumptions and should therefore be subjected to sensitivity analyses. However, methods for sensitivity analyses are not widely used. We propose a mean score approach for exploring global sensitivity to departures from missi...
Saved in:
Published in | arXiv.org |
---|---|
Main Authors | , , |
Format | Paper Journal Article |
Language | English |
Published |
Ithaca
Cornell University Library, arXiv.org
02.05.2017
|
Subjects | |
Online Access | Get full text |
ISSN | 2331-8422 |
DOI | 10.48550/arxiv.1705.00951 |
Cover
Abstract | Most analyses of randomised trials with incomplete outcomes make untestable assumptions and should therefore be subjected to sensitivity analyses. However, methods for sensitivity analyses are not widely used. We propose a mean score approach for exploring global sensitivity to departures from missing at random or other assumptions about incomplete outcome data in a randomised trial. We assume a single outcome analysed under a generalised linear model. One or more sensitivity parameters, specified by the user, measure the degree of departure from missing at random in a pattern mixture model. Advantages of our method are that its sensitivity parameters are relatively easy to interpret and so can be elicited from subject matter experts; it is fast and non-stochastic; and its point estimate, standard error and confidence interval agree perfectly with standard methods when particular values of the sensitivity parameters make those standard methods appropriate. We illustrate the method using data from a mental health trial. |
---|---|
AbstractList | Most analyses of randomised trials with incomplete outcomes make untestable assumptions and should therefore be subjected to sensitivity analyses. However, methods for sensitivity analyses are not widely used. We propose a mean score approach for exploring global sensitivity to departures from missing at random or other assumptions about incomplete outcome data in a randomised trial. We assume a single outcome analysed under a generalised linear model. One or more sensitivity parameters, specified by the user, measure the degree of departure from missing at random in a pattern mixture model. Advantages of our method are that its sensitivity parameters are relatively easy to interpret and so can be elicited from subject matter experts; it is fast and non-stochastic; and its point estimate, standard error and confidence interval agree perfectly with standard methods when particular values of the sensitivity parameters make those standard methods appropriate. We illustrate the method using data from a mental health trial. Most analyses of randomised trials with incomplete outcomes make untestable assumptions and should therefore be subjected to sensitivity analyses. However, methods for sensitivity analyses are not widely used. We propose a mean score approach for exploring global sensitivity to departures from missing at random or other assumptions about incomplete outcome data in a randomised trial. We assume a single outcome analysed under a generalised linear model. One or more sensitivity parameters, specified by the user, measure the degree of departure from missing at random in a pattern mixture model. Advantages of our method are that its sensitivity parameters are relatively easy to interpret and so can be elicited from subject matter experts; it is fast and non-stochastic; and its point estimate, standard error and confidence interval agree perfectly with standard methods when particular values of the sensitivity parameters make those standard methods appropriate. We illustrate the method using data from a mental health trial. |
Author | White, Ian R Carpenter, James Horton, Nicholas J |
Author_xml | – sequence: 1 givenname: Ian surname: White middlename: R fullname: White, Ian R – sequence: 2 givenname: James surname: Carpenter fullname: Carpenter, James – sequence: 3 givenname: Nicholas surname: Horton middlename: J fullname: Horton, Nicholas J |
BackLink | https://doi.org/10.48550/arXiv.1705.00951$$DView paper in arXiv https://doi.org/10.5705/ss.202016.0308$$DView published paper (Access to full text may be restricted) |
BookMark | eNotkM1OwzAQhC0EEqX0AThhiXOKf2InOVYVFKRKHOAebWOHumrs4HUq-vaEtqdZjWZ3Nd8dufbBW0IeOJvnpVLsGeKvO8x5wdScsUrxKzIRUvKszIW4JTPEHWNM6EIoJSdkWNDOgqfYhGjHMW2DoW2IFK1Hl9zBpSMFD_sjOqQpUGN7iGmIFmkbQ0fTdlxziM5_U0g0gjejC4hD1ycXPHX-Yjq0hqboYI_35KYdxc4uOiWfry9fy7ds_bF6Xy7WGSjBM2UsM6IV2hgFptKbQrCCy1Yyo_Iml6WxZWM2VVOWlRaNAVVBCxqk1qBbLqfk8Xz1hKTuo-sgHut_NPUJzZh4Oif6GH4Gi6nehSGObbEeX-WsFJpx-QfKOGtE |
ContentType | Paper Journal Article |
Copyright | 2017. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. http://arxiv.org/licenses/nonexclusive-distrib/1.0 |
Copyright_xml | – notice: 2017. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: http://arxiv.org/licenses/nonexclusive-distrib/1.0 |
DBID | 8FE 8FG ABJCF ABUWG AFKRA AZQEC BENPR BGLVJ CCPQU DWQXO HCIFZ L6V M7S PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS AKZ EPD GOX |
DOI | 10.48550/arxiv.1705.00951 |
DatabaseName | ProQuest SciTech Collection ProQuest Technology Collection Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central Technology collection ProQuest One ProQuest Central Proquest SciTech Premium Collection ProQuest Engineering Collection Engineering Database ProQuest Central Premium ProQuest One Academic (New) Proquest Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection arXiv Mathematics arXiv Statistics arXiv.org |
DatabaseTitle | Publicly Available Content Database Engineering Database Technology Collection ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest One Academic Eastern Edition ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Technology Collection ProQuest SciTech Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Engineering Collection ProQuest One Academic UKI Edition ProQuest Central Korea Materials Science & Engineering Collection ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) Engineering Collection |
DatabaseTitleList | Publicly Available Content Database |
Database_xml | – sequence: 1 dbid: GOX name: arXiv.org url: http://arxiv.org/find sourceTypes: Open Access Repository – sequence: 2 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Physics |
EISSN | 2331-8422 |
ExternalDocumentID | 1705_00951 |
Genre | Working Paper/Pre-Print |
GroupedDBID | 8FE 8FG ABJCF ABUWG AFKRA ALMA_UNASSIGNED_HOLDINGS AZQEC BENPR BGLVJ CCPQU DWQXO FRJ HCIFZ L6V M7S M~E PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS AKZ EPD GOX |
ID | FETCH-LOGICAL-a521-5de0d2f26dd5ad96b720713f30d54c438de8cdb9c88962cda59afa6a366a6f13 |
IEDL.DBID | GOX |
IngestDate | Tue Jul 22 23:13:54 EDT 2025 Mon Jun 30 09:31:06 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | false |
IsScholarly | false |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a521-5de0d2f26dd5ad96b720713f30d54c438de8cdb9c88962cda59afa6a366a6f13 |
Notes | SourceType-Working Papers-1 ObjectType-Working Paper/Pre-Print-1 content type line 50 |
OpenAccessLink | https://arxiv.org/abs/1705.00951 |
PQID | 2074082601 |
PQPubID | 2050157 |
ParticipantIDs | arxiv_primary_1705_00951 proquest_journals_2074082601 |
PublicationCentury | 2000 |
PublicationDate | 20170502 2017-05-02 |
PublicationDateYYYYMMDD | 2017-05-02 |
PublicationDate_xml | – month: 05 year: 2017 text: 20170502 day: 02 |
PublicationDecade | 2010 |
PublicationPlace | Ithaca |
PublicationPlace_xml | – name: Ithaca |
PublicationTitle | arXiv.org |
PublicationYear | 2017 |
Publisher | Cornell University Library, arXiv.org |
Publisher_xml | – name: Cornell University Library, arXiv.org |
SSID | ssj0002672553 |
Score | 1.6231142 |
SecondaryResourceType | preprint |
Snippet | Most analyses of randomised trials with incomplete outcomes make untestable assumptions and should therefore be subjected to sensitivity analyses. However,... Most analyses of randomised trials with incomplete outcomes make untestable assumptions and should therefore be subjected to sensitivity analyses. However,... |
SourceID | arxiv proquest |
SourceType | Open Access Repository Aggregation Database |
SubjectTerms | Confidence intervals Mathematical models Mathematics - Statistics Theory Mental health Methods Parameter sensitivity Randomization Sensitivity analysis Standard error Statistics - Methodology Statistics - Theory |
SummonAdditionalLinks | – databaseName: ProQuest Technology Collection dbid: 8FG link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1NT8MwDI1gExI3PjVgoBy4drRpmrYnhBBjQgIhAdJuVVon0g50o-kQPx877eCAxNW92anfi-34MXaZWDwqOodAamUDaYwMMlGaoCoTiNIMOYelx8mPT2r2Jh_mybwvuLl-rHKTE32ihmVFNXKqhJA2Mt4frlcfAalGUXe1l9DYZsMIkYbOeTa9_6mxCJUiY467ZqZf3XWlm6_F54R2yEw8u0BO6k1_UrHHl-keGz7rlWn22ZapD9iOH8us3CFb3_B3o2vuaNkk79SeOdJM7mjuvBN-4LrfK8LbJQdEl4aaAo7TwxGO9I5jJKkgwHXLEZgArUiYMYoUEr6oe-PCGeBew8MdsZfp3evtLOiFEgKN6BskYEIQViiAREOuylTQ3dPGISSyknEGJqugzKssy5WoQCe5tlrpWCkMUBQfs0G9rM2IcQtKSRBpCEpIm8syjlRoY62MRmao7AkbeW8Vq24VRkGOLLwjT9h448Ci_w1c8Ru00_8_n7FdQXhJk4RizAZtszbniPZteeFD-g2hRaxz priority: 102 providerName: ProQuest |
Title | A mean score method for sensitivity analysis to departures from the missing at random assumption in randomised trials |
URI | https://www.proquest.com/docview/2074082601 https://arxiv.org/abs/1705.00951 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwdV1NS8NAEB3aevEiikqrtczBazTdbLbJsUo_EFrFD-gtbDK70IOpNKl48rc7m6R4EC85DBsIb5a8N8nOG4Dr0PJW0TF5UivrSWOkF4nUeFka0nAUseawrjl5sVTzN_mwClctwH0vjN5-rT9rf-C0uHVeLzeVCmhDWwhXXM0eV_XPycqKq1n_u441ZhX682qt-GJ6DEeN0MNxnZkTaJn8FHZjfDc6x8KZR2I9vRlZNmLhzpHXgxxQNz4hWG6QmC227iN_ga4RBFmuIWfGFfioS2SiIY6yAOasOIhxnTfBdWEIq5kcxRm8TCev93OvGXzgaWZTLyTjk7BCEYWaYpWOhKslbeBTKDMZRGSijNI4i6JYiYx0GGurlQ6UYsCHwTl08k1uuoCWlJIkRj4pIW0s02CofBtoZTQrPWV70K3QSj5qa4vEAZlUQPagvwcwabZ1kfBzuAHVXMRd_H_nJRwKx33uVKDoQ6fc7swVM3eZDqAdTWcDOLibLJ-eB1Uy-br4nvwArF-fmA |
linkProvider | Cornell University |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB6FRojeeFV9AXOAo0Oyu97YB4QQEFKaREgUqadaa8-ulEOdNE4f_Cd-JDPrBA5I3HodS5Y8-3nnm9nZ-QBep4Gh4nJKjLMhMd6bJFOlT6oypcEwY84R5HLydGbHP8zX8_S8A7-2d2GkrXK7J8aNmhaV1MilEiLayJw_vF9eJaIaJaerWwmNFhan_uctp2zNu5NPvL5vlBp9Pvs4TjaqAonjUJWk5PukgrJEqaPclkMliVrQfUpNZXRGPquozKssy62qyKW5C846bS1_zUDzWx9A12idi1BENvryp6Kj7JD5uW6PTuOgsLdudTe_6cnEml7kMsyAo-mfjT9Gs9Fj6H5zS796Ah1fP4WHsQm0ap7B9Qe89K7GRkZbYqstjUxqsZEu91ZmAt1migmuF0gcy1ZyBNGgXFNBJpPIuJHyA7o1chgktjI9Z8wIAHBeb4zzxhNGxZDmOXy_BwfuwU69qP0-YCBrDalhn6wyITelHth-0M56xzzUhgPYj94qlu3gjUIcWURHHsDx1oHF5qdrir8QOfz_41fwaHw2nRSTk9npEewqidTSw6iOYWe9uvYvmGesy5dxeREu7hdNvwEJpujv |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+mean+score+method+for+sensitivity+analysis+to+departures+from+the+missing+at+random+assumption+in+randomised+trials&rft.jtitle=arXiv.org&rft.au=White%2C+Ian+R&rft.au=Carpenter%2C+James&rft.au=Horton%2C+Nicholas+J&rft.date=2017-05-02&rft.pub=Cornell+University+Library%2C+arXiv.org&rft.eissn=2331-8422&rft_id=info:doi/10.48550%2Farxiv.1705.00951 |