A mean score method for sensitivity analysis to departures from the missing at random assumption in randomised trials

Most analyses of randomised trials with incomplete outcomes make untestable assumptions and should therefore be subjected to sensitivity analyses. However, methods for sensitivity analyses are not widely used. We propose a mean score approach for exploring global sensitivity to departures from missi...

Full description

Saved in:
Bibliographic Details
Published inarXiv.org
Main Authors White, Ian R, Carpenter, James, Horton, Nicholas J
Format Paper Journal Article
LanguageEnglish
Published Ithaca Cornell University Library, arXiv.org 02.05.2017
Subjects
Online AccessGet full text
ISSN2331-8422
DOI10.48550/arxiv.1705.00951

Cover

Abstract Most analyses of randomised trials with incomplete outcomes make untestable assumptions and should therefore be subjected to sensitivity analyses. However, methods for sensitivity analyses are not widely used. We propose a mean score approach for exploring global sensitivity to departures from missing at random or other assumptions about incomplete outcome data in a randomised trial. We assume a single outcome analysed under a generalised linear model. One or more sensitivity parameters, specified by the user, measure the degree of departure from missing at random in a pattern mixture model. Advantages of our method are that its sensitivity parameters are relatively easy to interpret and so can be elicited from subject matter experts; it is fast and non-stochastic; and its point estimate, standard error and confidence interval agree perfectly with standard methods when particular values of the sensitivity parameters make those standard methods appropriate. We illustrate the method using data from a mental health trial.
AbstractList Most analyses of randomised trials with incomplete outcomes make untestable assumptions and should therefore be subjected to sensitivity analyses. However, methods for sensitivity analyses are not widely used. We propose a mean score approach for exploring global sensitivity to departures from missing at random or other assumptions about incomplete outcome data in a randomised trial. We assume a single outcome analysed under a generalised linear model. One or more sensitivity parameters, specified by the user, measure the degree of departure from missing at random in a pattern mixture model. Advantages of our method are that its sensitivity parameters are relatively easy to interpret and so can be elicited from subject matter experts; it is fast and non-stochastic; and its point estimate, standard error and confidence interval agree perfectly with standard methods when particular values of the sensitivity parameters make those standard methods appropriate. We illustrate the method using data from a mental health trial.
Most analyses of randomised trials with incomplete outcomes make untestable assumptions and should therefore be subjected to sensitivity analyses. However, methods for sensitivity analyses are not widely used. We propose a mean score approach for exploring global sensitivity to departures from missing at random or other assumptions about incomplete outcome data in a randomised trial. We assume a single outcome analysed under a generalised linear model. One or more sensitivity parameters, specified by the user, measure the degree of departure from missing at random in a pattern mixture model. Advantages of our method are that its sensitivity parameters are relatively easy to interpret and so can be elicited from subject matter experts; it is fast and non-stochastic; and its point estimate, standard error and confidence interval agree perfectly with standard methods when particular values of the sensitivity parameters make those standard methods appropriate. We illustrate the method using data from a mental health trial.
Author White, Ian R
Carpenter, James
Horton, Nicholas J
Author_xml – sequence: 1
  givenname: Ian
  surname: White
  middlename: R
  fullname: White, Ian R
– sequence: 2
  givenname: James
  surname: Carpenter
  fullname: Carpenter, James
– sequence: 3
  givenname: Nicholas
  surname: Horton
  middlename: J
  fullname: Horton, Nicholas J
BackLink https://doi.org/10.48550/arXiv.1705.00951$$DView paper in arXiv
https://doi.org/10.5705/ss.202016.0308$$DView published paper (Access to full text may be restricted)
BookMark eNotkM1OwzAQhC0EEqX0AThhiXOKf2InOVYVFKRKHOAebWOHumrs4HUq-vaEtqdZjWZ3Nd8dufbBW0IeOJvnpVLsGeKvO8x5wdScsUrxKzIRUvKszIW4JTPEHWNM6EIoJSdkWNDOgqfYhGjHMW2DoW2IFK1Hl9zBpSMFD_sjOqQpUGN7iGmIFmkbQ0fTdlxziM5_U0g0gjejC4hD1ycXPHX-Yjq0hqboYI_35KYdxc4uOiWfry9fy7ds_bF6Xy7WGSjBM2UsM6IV2hgFptKbQrCCy1Yyo_Iml6WxZWM2VVOWlRaNAVVBCxqk1qBbLqfk8Xz1hKTuo-sgHut_NPUJzZh4Oif6GH4Gi6nehSGObbEeX-WsFJpx-QfKOGtE
ContentType Paper
Journal Article
Copyright 2017. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
http://arxiv.org/licenses/nonexclusive-distrib/1.0
Copyright_xml – notice: 2017. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: http://arxiv.org/licenses/nonexclusive-distrib/1.0
DBID 8FE
8FG
ABJCF
ABUWG
AFKRA
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
HCIFZ
L6V
M7S
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
AKZ
EPD
GOX
DOI 10.48550/arxiv.1705.00951
DatabaseName ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
Technology collection
ProQuest One
ProQuest Central
Proquest SciTech Premium Collection
ProQuest Engineering Collection
Engineering Database
ProQuest Central Premium
ProQuest One Academic (New)
Proquest Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
arXiv Mathematics
arXiv Statistics
arXiv.org
DatabaseTitle Publicly Available Content Database
Engineering Database
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
ProQuest One Academic UKI Edition
ProQuest Central Korea
Materials Science & Engineering Collection
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
Engineering Collection
DatabaseTitleList Publicly Available Content Database

Database_xml – sequence: 1
  dbid: GOX
  name: arXiv.org
  url: http://arxiv.org/find
  sourceTypes: Open Access Repository
– sequence: 2
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 2331-8422
ExternalDocumentID 1705_00951
Genre Working Paper/Pre-Print
GroupedDBID 8FE
8FG
ABJCF
ABUWG
AFKRA
ALMA_UNASSIGNED_HOLDINGS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
FRJ
HCIFZ
L6V
M7S
M~E
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
AKZ
EPD
GOX
ID FETCH-LOGICAL-a521-5de0d2f26dd5ad96b720713f30d54c438de8cdb9c88962cda59afa6a366a6f13
IEDL.DBID GOX
IngestDate Tue Jul 22 23:13:54 EDT 2025
Mon Jun 30 09:31:06 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a521-5de0d2f26dd5ad96b720713f30d54c438de8cdb9c88962cda59afa6a366a6f13
Notes SourceType-Working Papers-1
ObjectType-Working Paper/Pre-Print-1
content type line 50
OpenAccessLink https://arxiv.org/abs/1705.00951
PQID 2074082601
PQPubID 2050157
ParticipantIDs arxiv_primary_1705_00951
proquest_journals_2074082601
PublicationCentury 2000
PublicationDate 20170502
2017-05-02
PublicationDateYYYYMMDD 2017-05-02
PublicationDate_xml – month: 05
  year: 2017
  text: 20170502
  day: 02
PublicationDecade 2010
PublicationPlace Ithaca
PublicationPlace_xml – name: Ithaca
PublicationTitle arXiv.org
PublicationYear 2017
Publisher Cornell University Library, arXiv.org
Publisher_xml – name: Cornell University Library, arXiv.org
SSID ssj0002672553
Score 1.6231142
SecondaryResourceType preprint
Snippet Most analyses of randomised trials with incomplete outcomes make untestable assumptions and should therefore be subjected to sensitivity analyses. However,...
Most analyses of randomised trials with incomplete outcomes make untestable assumptions and should therefore be subjected to sensitivity analyses. However,...
SourceID arxiv
proquest
SourceType Open Access Repository
Aggregation Database
SubjectTerms Confidence intervals
Mathematical models
Mathematics - Statistics Theory
Mental health
Methods
Parameter sensitivity
Randomization
Sensitivity analysis
Standard error
Statistics - Methodology
Statistics - Theory
SummonAdditionalLinks – databaseName: ProQuest Technology Collection
  dbid: 8FG
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1NT8MwDI1gExI3PjVgoBy4drRpmrYnhBBjQgIhAdJuVVon0g50o-kQPx877eCAxNW92anfi-34MXaZWDwqOodAamUDaYwMMlGaoCoTiNIMOYelx8mPT2r2Jh_mybwvuLl-rHKTE32ihmVFNXKqhJA2Mt4frlcfAalGUXe1l9DYZsMIkYbOeTa9_6mxCJUiY467ZqZf3XWlm6_F54R2yEw8u0BO6k1_UrHHl-keGz7rlWn22ZapD9iOH8us3CFb3_B3o2vuaNkk79SeOdJM7mjuvBN-4LrfK8LbJQdEl4aaAo7TwxGO9I5jJKkgwHXLEZgArUiYMYoUEr6oe-PCGeBew8MdsZfp3evtLOiFEgKN6BskYEIQViiAREOuylTQ3dPGISSyknEGJqugzKssy5WoQCe5tlrpWCkMUBQfs0G9rM2IcQtKSRBpCEpIm8syjlRoY62MRmao7AkbeW8Vq24VRkGOLLwjT9h448Ci_w1c8Ru00_8_n7FdQXhJk4RizAZtszbniPZteeFD-g2hRaxz
  priority: 102
  providerName: ProQuest
Title A mean score method for sensitivity analysis to departures from the missing at random assumption in randomised trials
URI https://www.proquest.com/docview/2074082601
https://arxiv.org/abs/1705.00951
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwdV1NS8NAEB3aevEiikqrtczBazTdbLbJsUo_EFrFD-gtbDK70IOpNKl48rc7m6R4EC85DBsIb5a8N8nOG4Dr0PJW0TF5UivrSWOkF4nUeFka0nAUseawrjl5sVTzN_mwClctwH0vjN5-rT9rf-C0uHVeLzeVCmhDWwhXXM0eV_XPycqKq1n_u441ZhX682qt-GJ6DEeN0MNxnZkTaJn8FHZjfDc6x8KZR2I9vRlZNmLhzpHXgxxQNz4hWG6QmC227iN_ga4RBFmuIWfGFfioS2SiIY6yAOasOIhxnTfBdWEIq5kcxRm8TCev93OvGXzgaWZTLyTjk7BCEYWaYpWOhKslbeBTKDMZRGSijNI4i6JYiYx0GGurlQ6UYsCHwTl08k1uuoCWlJIkRj4pIW0s02CofBtoZTQrPWV70K3QSj5qa4vEAZlUQPagvwcwabZ1kfBzuAHVXMRd_H_nJRwKx33uVKDoQ6fc7swVM3eZDqAdTWcDOLibLJ-eB1Uy-br4nvwArF-fmA
linkProvider Cornell University
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB6FRojeeFV9AXOAo0Oyu97YB4QQEFKaREgUqadaa8-ulEOdNE4f_Cd-JDPrBA5I3HodS5Y8-3nnm9nZ-QBep4Gh4nJKjLMhMd6bJFOlT6oypcEwY84R5HLydGbHP8zX8_S8A7-2d2GkrXK7J8aNmhaV1MilEiLayJw_vF9eJaIaJaerWwmNFhan_uctp2zNu5NPvL5vlBp9Pvs4TjaqAonjUJWk5PukgrJEqaPclkMliVrQfUpNZXRGPquozKssy62qyKW5C846bS1_zUDzWx9A12idi1BENvryp6Kj7JD5uW6PTuOgsLdudTe_6cnEml7kMsyAo-mfjT9Gs9Fj6H5zS796Ah1fP4WHsQm0ap7B9Qe89K7GRkZbYqstjUxqsZEu91ZmAt1migmuF0gcy1ZyBNGgXFNBJpPIuJHyA7o1chgktjI9Z8wIAHBeb4zzxhNGxZDmOXy_BwfuwU69qP0-YCBrDalhn6wyITelHth-0M56xzzUhgPYj94qlu3gjUIcWURHHsDx1oHF5qdrir8QOfz_41fwaHw2nRSTk9npEewqidTSw6iOYWe9uvYvmGesy5dxeREu7hdNvwEJpujv
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+mean+score+method+for+sensitivity+analysis+to+departures+from+the+missing+at+random+assumption+in+randomised+trials&rft.jtitle=arXiv.org&rft.au=White%2C+Ian+R&rft.au=Carpenter%2C+James&rft.au=Horton%2C+Nicholas+J&rft.date=2017-05-02&rft.pub=Cornell+University+Library%2C+arXiv.org&rft.eissn=2331-8422&rft_id=info:doi/10.48550%2Farxiv.1705.00951