SVSNet: An End-to-end Speaker Voice Similarity Assessment Model

Neural evaluation metrics derived for numerous speech generation tasks have recently attracted great attention. In this paper, we propose SVSNet, the first end-to-end neural network model to assess the speaker voice similarity between converted speech and natural speech for voice conversion tasks. U...

Full description

Saved in:
Bibliographic Details
Published inarXiv.org
Main Authors Cheng-Hung, Hu, Yu-Huai Peng, Yamagishi, Junichi, Tsao, Yu, Wang, Hsin-Min
Format Paper Journal Article
LanguageEnglish
Published Ithaca Cornell University Library, arXiv.org 17.02.2022
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Neural evaluation metrics derived for numerous speech generation tasks have recently attracted great attention. In this paper, we propose SVSNet, the first end-to-end neural network model to assess the speaker voice similarity between converted speech and natural speech for voice conversion tasks. Unlike most neural evaluation metrics that use hand-crafted features, SVSNet directly takes the raw waveform as input to more completely utilize speech information for prediction. SVSNet consists of encoder, co-attention, distance calculation, and prediction modules and is trained in an end-to-end manner. The experimental results on the Voice Conversion Challenge 2018 and 2020 (VCC2018 and VCC2020) datasets show that SVSNet outperforms well-known baseline systems in the assessment of speaker similarity at the utterance and system levels.
AbstractList Neural evaluation metrics derived for numerous speech generation tasks have recently attracted great attention. In this paper, we propose SVSNet, the first end-to-end neural network model to assess the speaker voice similarity between converted speech and natural speech for voice conversion tasks. Unlike most neural evaluation metrics that use hand-crafted features, SVSNet directly takes the raw waveform as input to more completely utilize speech information for prediction. SVSNet consists of encoder, co-attention, distance calculation, and prediction modules and is trained in an end-to-end manner. The experimental results on the Voice Conversion Challenge 2018 and 2020 (VCC2018 and VCC2020) datasets show that SVSNet outperforms well-known baseline systems in the assessment of speaker similarity at the utterance and system levels.
Neural evaluation metrics derived for numerous speech generation tasks have recently attracted great attention. In this paper, we propose SVSNet, the first end-to-end neural network model to assess the speaker voice similarity between converted speech and natural speech for voice conversion tasks. Unlike most neural evaluation metrics that use hand-crafted features, SVSNet directly takes the raw waveform as input to more completely utilize speech information for prediction. SVSNet consists of encoder, co-attention, distance calculation, and prediction modules and is trained in an end-to-end manner. The experimental results on the Voice Conversion Challenge 2018 and 2020 (VCC2018 and VCC2020) datasets show that SVSNet outperforms well-known baseline systems in the assessment of speaker similarity at the utterance and system levels.
Author Wang, Hsin-Min
Yamagishi, Junichi
Cheng-Hung, Hu
Yu-Huai Peng
Tsao, Yu
Author_xml – sequence: 1
  givenname: Hu
  surname: Cheng-Hung
  fullname: Cheng-Hung, Hu
– sequence: 2
  fullname: Yu-Huai Peng
– sequence: 3
  givenname: Junichi
  surname: Yamagishi
  fullname: Yamagishi, Junichi
– sequence: 4
  givenname: Yu
  surname: Tsao
  fullname: Tsao, Yu
– sequence: 5
  givenname: Hsin-Min
  surname: Wang
  fullname: Wang, Hsin-Min
BackLink https://doi.org/10.1109/LSP.2022.3152672$$DView published paper (Access to full text may be restricted)
https://doi.org/10.48550/arXiv.2107.09392$$DView paper in arXiv
BookMark eNotz8tOwzAUBFALgUQp_QBWWGKd4Gs7D7NBVVUeUoFFqm4jp7mWUhI72Clq_54-WM1mNJpzQy6ts0jIHbBY5knCHrXfNb8xB5bFTAnFL8iICwFRLjm_JpMQNowxnmY8ScSIPBer4hOHJzq1dG7raHAR2poWPepv9HTlmjXSoumaVvtm2NNpCBhCh3agH67G9pZcGd0GnPznmCxf5svZW7T4en2fTReRTjhESWY0ok4VpiJXEtaAlQGQUINkXNfIKlbnXFQyA6iMTjkzoDODRuSGKSnG5P48e9KVvW867fflUVmelIfGw7nRe_ezxTCUG7f19vCpPEpTAUqA-AOiDVUh
ContentType Paper
Journal Article
Copyright 2022. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
http://arxiv.org/licenses/nonexclusive-distrib/1.0
Copyright_xml – notice: 2022. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: http://arxiv.org/licenses/nonexclusive-distrib/1.0
DBID 8FE
8FG
ABJCF
ABUWG
AFKRA
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
HCIFZ
L6V
M7S
PIMPY
PQEST
PQQKQ
PQUKI
PRINS
PTHSS
AKY
GOX
DOI 10.48550/arxiv.2107.09392
DatabaseName ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
AUTh Library subscriptions: ProQuest Central
Technology Collection
ProQuest One Community College
ProQuest Central
SciTech Premium Collection (Proquest) (PQ_SDU_P3)
ProQuest Engineering Collection
Engineering Database
Publicly Available Content Database (Proquest) (PQ_SDU_P3)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
arXiv Computer Science
arXiv.org
DatabaseTitle Publicly Available Content Database
Engineering Database
Technology Collection
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central China
ProQuest Central
ProQuest Engineering Collection
ProQuest One Academic UKI Edition
ProQuest Central Korea
Materials Science & Engineering Collection
ProQuest One Academic
Engineering Collection
DatabaseTitleList
Publicly Available Content Database
Database_xml – sequence: 1
  dbid: GOX
  name: arXiv.org
  url: http://arxiv.org/find
  sourceTypes: Open Access Repository
– sequence: 2
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 2331-8422
ExternalDocumentID 2107_09392
Genre Working Paper/Pre-Print
GroupedDBID 8FE
8FG
ABJCF
ABUWG
AFKRA
ALMA_UNASSIGNED_HOLDINGS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
FRJ
HCIFZ
L6V
M7S
M~E
PIMPY
PQEST
PQQKQ
PQUKI
PRINS
PTHSS
AKY
GOX
ID FETCH-LOGICAL-a521-57faeea69e638941c1ebf1141d1402ade0b0d823b4711bfa620f1a7fef38f0943
IEDL.DBID 8FG
IngestDate Mon Jan 08 05:48:18 EST 2024
Thu Oct 10 18:37:59 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a521-57faeea69e638941c1ebf1141d1402ade0b0d823b4711bfa620f1a7fef38f0943
OpenAccessLink https://www.proquest.com/docview/2553631931?pq-origsite=%requestingapplication%
PQID 2553631931
PQPubID 2050157
ParticipantIDs arxiv_primary_2107_09392
proquest_journals_2553631931
PublicationCentury 2000
PublicationDate 20220217
PublicationDateYYYYMMDD 2022-02-17
PublicationDate_xml – month: 02
  year: 2022
  text: 20220217
  day: 17
PublicationDecade 2020
PublicationPlace Ithaca
PublicationPlace_xml – name: Ithaca
PublicationTitle arXiv.org
PublicationYear 2022
Publisher Cornell University Library, arXiv.org
Publisher_xml – name: Cornell University Library, arXiv.org
SSID ssj0002672553
Score 1.8358343
SecondaryResourceType preprint
Snippet Neural evaluation metrics derived for numerous speech generation tasks have recently attracted great attention. In this paper, we propose SVSNet, the first...
Neural evaluation metrics derived for numerous speech generation tasks have recently attracted great attention. In this paper, we propose SVSNet, the first...
SourceID arxiv
proquest
SourceType Open Access Repository
Aggregation Database
SubjectTerms Coders
Computer Science - Learning
Computer Science - Sound
Evaluation
Neural networks
Similarity
Speech recognition
Waveforms
SummonAdditionalLinks – databaseName: arXiv.org
  dbid: GOX
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwdV09T8MwELVKJxYEAtRCQR5YDbWdOglbhQoVEmVoqbpFvuQsVUBatQHx8zk7KQwIyZNlDz5_3Hv2-R1jV-AUFTQCIn9143Qh0kTnIslTSBVIGYfv0U8TM36JHheDRYvx3V8Yu_laftb6wLC9IT4SXxPnTumQ3VPKh2w9PC_qx8kgxdW0_21HGDNU_Tlag7-4P2QHDdDjw3pmjlgLy2OCxvPpBKtbPiz5qCxEtRJYFny6RvuKGz5f0bbl0-X7kvgmwWM-_NHN5D5p2dsJm92PZndj0aQwEJb8ohjEziJak6IHBpHMJYIjBiIL4jXKFtiHfpEoDeQiJDhrVN9JGzt0OnE-5u-UtctViR3GB7mJDFqAxCvKxKl1ALmyGh0xljjKu6wTBp6ta5WKzNskCzbpst7OFlmzQrcZUQltaP9pefZ_z3O2r3y4v0-AEvdYu9p84AU54Qouw0x8A2ighho
  priority: 102
  providerName: Cornell University
Title SVSNet: An End-to-end Speaker Voice Similarity Assessment Model
URI https://www.proquest.com/docview/2553631931
https://arxiv.org/abs/2107.09392
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3dS8MwEA-6IvjmJ5vO0Qdfsy1p17S-yJR9IGwON8feStJeYKjt3Kb45N_uJevmgyCUQBv60Et6d7-7y_0IuVaa4wUBVb4J3WgvpVHoJTRMIhVxxZiwx6MHw6D_7D_MWrMi4LYqyiq3OtEq6jRPTIy8ga6vF-B-8djt4p0a1iiTXS0oNPaJw7gQhroh7PZ2MRYeCPPaJplpW3c15PJr_llHnCPqiOVNAtSxj_6oYmtfukfEGckFLI_JHmQn5MCWZSarU3Slp-MhrG_cduZ2spSucwpZ6o4XIF9g6U5z_M3d8fxtjvgU3Wm3veuz6RqSs9czMul2Jvd9WlAeUIl2lLaElgAyiMA4Ej5LGCiNiIWliIO4TKGpmmnIPYUmhSktA97UTAoN2gu1qRE8J6Usz6BM3FYS-AFIpULTgUZEUiuVcOmBRoQj_KRCyvbD48Wmq0VsZBJbmVRIdSuLuNjRq_hX_hf_T1-SQ26OCBjSFFElpfXyA67QcK9Vza5OjTh3neHoCe96jzMcB9-dHxM9moQ
link.rule.ids 228,230,781,785,886,12770,21393,27930,33378,33749,43605,43810
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3NT8IwFG8UYvTmZ0RRd_BaoNtYNy-GGBAViAlIuC1t95oQdcwxjX--r2XgwcRkpy477LV97_3e14-Qa6ldfCCg0jehG-0lNAo9RUMVyciVjHHbHj0cBf0X_3HWnpUBt2VZVrnWiVZRJwtlYuRNdH29AM-Lx26zD2pYo0x2taTQ2CZV30PH3HSK9-43MRY34OazVTLTju5qivx7_tVAnMMbiOVNArRql_6oYmtfevuk-iwyyA_IFqSHZMeWZarlEbrS0_EIihunkzrdNKHFgkKaOOMMxCvkznSB19wZz9_niE_RnXY6mzmbjiE5ezsmk153ctenJeUBFWhHaZtrASCCCIwj4TPFQGpELCxBHOSKBFqylYSuJ9GkMKlF4LY0E1yD9kJtagRPSCVdpHBKnLYK_ACElKGZQMMjoaVUrvBAI8LhvqqRU_vjcbaaahEbmcRWJjVSX8siLk_0Mv6V_9n_r6_Ibn8yHMSDh9HTOdlzTbuAIVDhdVIp8k-4QCNeyEu7Uz9c8pmV
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=SVSNet%3A+An+End-to-end+Speaker+Voice+Similarity+Assessment+Model&rft.jtitle=arXiv.org&rft.au=Cheng-Hung%2C+Hu&rft.au=Yu-Huai+Peng&rft.au=Yamagishi%2C+Junichi&rft.au=Tsao%2C+Yu&rft.date=2022-02-17&rft.pub=Cornell+University+Library%2C+arXiv.org&rft.eissn=2331-8422&rft_id=info:doi/10.48550%2Farxiv.2107.09392