Person Re-identification via Attention Pyramid

In this paper, we propose an attention pyramid method for person re-identification. Unlike conventional attention-based methods which only learn a global attention map, our attention pyramid exploits the attention regions in a multi-scale manner because human attention varies with different scales....

Full description

Saved in:
Bibliographic Details
Published inarXiv.org
Main Authors Chen, Guangyi, Gu, Tianpei, Lu, Jiwen, Jin-An, Bao, Zhou, Jie
Format Paper Journal Article
LanguageEnglish
Published Ithaca Cornell University Library, arXiv.org 11.08.2021
Subjects
Online AccessGet full text

Cover

Loading…
Abstract In this paper, we propose an attention pyramid method for person re-identification. Unlike conventional attention-based methods which only learn a global attention map, our attention pyramid exploits the attention regions in a multi-scale manner because human attention varies with different scales. Our attention pyramid imitates the process of human visual perception which tends to notice the foreground person over the cluttered background, and further focus on the specific color of the shirt with close observation. Specifically, we describe our attention pyramid by a "split-attend-merge-stack" principle. We first split the features into multiple local parts and learn the corresponding attentions. Then, we merge local attentions and stack these merged attentions with the residual connection as an attention pyramid. The proposed attention pyramid is a lightweight plug-and-play module that can be applied to off-the-shelf models. We implement our attention pyramid method in two different attention mechanisms including channel-wise attention and spatial attention. We evaluate our method on four largescale person re-identification benchmarks including Market-1501, DukeMTMC, CUHK03, and MSMT17. Experimental results demonstrate the superiority of our method, which outperforms the state-of-the-art methods by a large margin with limited computational cost.
AbstractList In this paper, we propose an attention pyramid method for person re-identification. Unlike conventional attention-based methods which only learn a global attention map, our attention pyramid exploits the attention regions in a multi-scale manner because human attention varies with different scales. Our attention pyramid imitates the process of human visual perception which tends to notice the foreground person over the cluttered background, and further focus on the specific color of the shirt with close observation. Specifically, we describe our attention pyramid by a "split-attend-merge-stack" principle. We first split the features into multiple local parts and learn the corresponding attentions. Then, we merge local attentions and stack these merged attentions with the residual connection as an attention pyramid. The proposed attention pyramid is a lightweight plug-and-play module that can be applied to off-the-shelf models. We implement our attention pyramid method in two different attention mechanisms including channel-wise attention and spatial attention. We evaluate our method on four largescale person re-identification benchmarks including Market-1501, DukeMTMC, CUHK03, and MSMT17. Experimental results demonstrate the superiority of our method, which outperforms the state-of-the-art methods by a large margin with limited computational cost.
In this paper, we propose an attention pyramid method for person re-identification. Unlike conventional attention-based methods which only learn a global attention map, our attention pyramid exploits the attention regions in a multi-scale manner because human attention varies with different scales. Our attention pyramid imitates the process of human visual perception which tends to notice the foreground person over the cluttered background, and further focus on the specific color of the shirt with close observation. Specifically, we describe our attention pyramid by a "split-attend-merge-stack" principle. We first split the features into multiple local parts and learn the corresponding attentions. Then, we merge local attentions and stack these merged attentions with the residual connection as an attention pyramid. The proposed attention pyramid is a lightweight plug-and-play module that can be applied to off-the-shelf models. We implement our attention pyramid method in two different attention mechanisms including channel-wise attention and spatial attention. We evaluate our method on four largescale person re-identification benchmarks including Market-1501, DukeMTMC, CUHK03, and MSMT17. Experimental results demonstrate the superiority of our method, which outperforms the state-of-the-art methods by a large margin with limited computational cost.
Author Lu, Jiwen
Zhou, Jie
Chen, Guangyi
Gu, Tianpei
Jin-An, Bao
Author_xml – sequence: 1
  givenname: Guangyi
  surname: Chen
  fullname: Chen, Guangyi
– sequence: 2
  givenname: Tianpei
  surname: Gu
  fullname: Gu, Tianpei
– sequence: 3
  givenname: Jiwen
  surname: Lu
  fullname: Lu, Jiwen
– sequence: 4
  givenname: Bao
  surname: Jin-An
  fullname: Jin-An, Bao
– sequence: 5
  givenname: Jie
  surname: Zhou
  fullname: Zhou, Jie
BackLink https://doi.org/10.1109/TIP.2021.3107211$$DView published paper (Access to full text may be restricted)
https://doi.org/10.48550/arXiv.2108.05340$$DView paper in arXiv
BookMark eNotj0FLAzEUhIMoWGt_gCcLnnd9L8nL7h5L0SoULOp9eW4SSLG7NZsW--_dtp6GGYZhvhtx2XatE-IOIdclETxy_A37XCKUOZDScCFGUinMSi3ltZj0_RoApCkkkRqJfOVi37XTd5cF69oUfGg4hSHZB57OUjpmg1sdIm-CvRVXnr97N_nXsfh4fvqcv2TLt8XrfLbMmCRmWuIw7x0YRE-sEK1Eg9CALohtKStnvVHGNRUTs9WusZ6-oCoq9KpQY3F_Xj2x1NsYNhwP9ZGpPjENjYdzYxu7n53rU73udrEdLtWSDOiyIoXqD4EcT0A
ContentType Paper
Journal Article
Copyright 2021. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
http://arxiv.org/licenses/nonexclusive-distrib/1.0
Copyright_xml – notice: 2021. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: http://arxiv.org/licenses/nonexclusive-distrib/1.0
DBID 8FE
8FG
ABJCF
ABUWG
AFKRA
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
HCIFZ
L6V
M7S
PIMPY
PQEST
PQQKQ
PQUKI
PRINS
PTHSS
AKY
GOX
DOI 10.48550/arxiv.2108.05340
DatabaseName ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
Technology Collection
ProQuest One Community College
ProQuest Central
SciTech Premium Collection (Proquest) (PQ_SDU_P3)
ProQuest Engineering Collection
Engineering Database
Publicly Available Content Database
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
arXiv Computer Science
arXiv.org
DatabaseTitle Publicly Available Content Database
Engineering Database
Technology Collection
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central China
ProQuest Central
ProQuest Engineering Collection
ProQuest One Academic UKI Edition
ProQuest Central Korea
Materials Science & Engineering Collection
ProQuest One Academic
Engineering Collection
DatabaseTitleList
Publicly Available Content Database
Database_xml – sequence: 1
  dbid: GOX
  name: arXiv.org
  url: http://arxiv.org/find
  sourceTypes: Open Access Repository
– sequence: 2
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 2331-8422
ExternalDocumentID 2108_05340
Genre Working Paper/Pre-Print
GroupedDBID 8FE
8FG
ABJCF
ABUWG
AFKRA
ALMA_UNASSIGNED_HOLDINGS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
FRJ
HCIFZ
L6V
M7S
M~E
PIMPY
PQEST
PQQKQ
PQUKI
PRINS
PTHSS
AKY
GOX
ID FETCH-LOGICAL-a521-421725fe0611f5a311d21610c0475ad829edf636ec9a5aad4ecdf5b09791f373
IEDL.DBID 8FG
IngestDate Mon Jan 08 05:38:21 EST 2024
Thu Oct 10 20:37:41 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a521-421725fe0611f5a311d21610c0475ad829edf636ec9a5aad4ecdf5b09791f373
OpenAccessLink https://www.proquest.com/docview/2560489531?pq-origsite=%requestingapplication%
PQID 2560489531
PQPubID 2050157
ParticipantIDs arxiv_primary_2108_05340
proquest_journals_2560489531
PublicationCentury 2000
PublicationDate 20210811
2021-08-11
PublicationDateYYYYMMDD 2021-08-11
PublicationDate_xml – month: 08
  year: 2021
  text: 20210811
  day: 11
PublicationDecade 2020
PublicationPlace Ithaca
PublicationPlace_xml – name: Ithaca
PublicationTitle arXiv.org
PublicationYear 2021
Publisher Cornell University Library, arXiv.org
Publisher_xml – name: Cornell University Library, arXiv.org
SSID ssj0002672553
Score 1.816549
SecondaryResourceType preprint
Snippet In this paper, we propose an attention pyramid method for person re-identification. Unlike conventional attention-based methods which only learn a global...
In this paper, we propose an attention pyramid method for person re-identification. Unlike conventional attention-based methods which only learn a global...
SourceID arxiv
proquest
SourceType Open Access Repository
Aggregation Database
SubjectTerms Computer Science - Artificial Intelligence
Computer Science - Computer Vision and Pattern Recognition
Visual perception
SummonAdditionalLinks – databaseName: arXiv.org
  dbid: GOX
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwdV1NSwMxEB1qT15EUWm1Sg5et-Zzd3MsYi2CWvyAvS3ZTQJ7UKTdFv33TrJbPIjXkBzmZZJ5QyZvAK6MlU5XVCaOSUxQapsmRmV48DT3VmD8pVHx5uExXbzJ-0IVAyC7vzBm9dVsO33gan2N-Ug-RTeRmJTvcR5Ktu6eiu5xMkpx9fN_5yHHjEN_rtYYL-aHcNATPTLrduYIBu7jGKbLSHDJs0sa29fpRGjItjFk1rZd8SFZfq_Me2NP4GV--3qzSPqOBWggR1NDtyflHcZI5pURjFmOjIrWVGbK2JxrZ30qUldro0yAqbZeVVRnmnmRiVMYYs7vRkA48zwo1eOol8bxiuaZ57aSVAjKTTqGUTSz_Ow0KcqAQBkRGMNkZ3nZ--O6DMRG5hoP3Nn_K89hn4eKjSD4yiYwbFcbd4Eht60uI-4_F9x-yw
  priority: 102
  providerName: Cornell University
Title Person Re-identification via Attention Pyramid
URI https://www.proquest.com/docview/2560489531
https://arxiv.org/abs/2108.05340
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV07T8MwELagERIbT7VQqgysaf1KnEwIUB9CaokKSN0iJ7alDrQlDRUs_HbObgoDEkukOJO_nO-7O5--Q-haKq6THPNAEw4JSqGiQIYCDl5CjWLAv9gp3own0eiFP8zCWV1wW9dtlTuf6By1Wha2Rt6z1MzjBEzmZvUW2KlR9na1HqGxjzxChbDJVzwY_tRYaCQgYmbby0wn3dWT5cd804U8J-6C-dmSh-eW_rhixy-DI-SlcqXLY7SnFyfowLVlFutT1E1dQOxPdTBXdV-Pg9LfzKV_W1XbZkU__Szl61ydoadB__l-FNQTDgAQCtDY6VCh0cCpxISSEaIoRGC4wFyEUsU00cpELNJFIkNpYS2UCXOciIQYJtg5aiyWC91EPiWGWmV7WDVcaprjWBiqco4Zw1RGLdR028xWWw2LzCKQOQRaqL3beVbb7zr7Rfvi_8-X6JDaLg8rEkvaqFGV7_oKaLrKO-5fdJB315-kU3gbPs7gOf7qfwMUE5Na
link.rule.ids 228,230,783,787,888,12777,21400,27937,33385,33756,43612,43817
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV09T8MwED1BKwQbn2qhQAbWtI4_knhCCFEKtFUFReoWObEtZaANaajg32O7KQxIrM7kl8u98_nlHcCVkFTxFFFfBdQcUDIZ-oJF5sPjWEti-Bc5x5vROBy80scZm9UNt2Utq9zkRJeo5SKzPfKepWYacxMy18W7b6dG2dvVeoTGNjQpMVxt_xTv3__0WHAYmYqZrC8znXVXT5Sf-aprzjlx14SfbXk03dKfVOz4pb8PzYkoVHkAW2p-CDtOlpktj6A7cQWx96z8XNa6Hgelt8qFd1NVa7GiN_kqxVsuj-Glfze9Hfj1hAMDCDbQ2OlQTCvDqYFmggSBxKYCQxmiERMyxlxJHZJQZVwwYWHNpGYp4hEPNInICTTmi7lqgYcDja2zvVnVVCicojjSWKYUEYKwCNvQcttMirWHRWIRSBwCbehsdp7U8btMftE-_f_xJewOpqNhMnwYP53BHraKD2sYG3SgUZUf6txQdpVeuPfyDYh8kmI
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Person+Re-identification+via+Attention+Pyramid&rft.jtitle=arXiv.org&rft.au=Chen%2C+Guangyi&rft.au=Gu%2C+Tianpei&rft.au=Lu%2C+Jiwen&rft.au=Jin-An%2C+Bao&rft.date=2021-08-11&rft.pub=Cornell+University+Library%2C+arXiv.org&rft.eissn=2331-8422&rft_id=info:doi/10.48550%2Farxiv.2108.05340